Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.603
Filtrar
1.
Plant Mol Biol ; 114(4): 82, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954114

RESUMEN

Transcription factors in coordination with phytohormones form an intricate regulatory network modulating vital cellular mechanisms like development, growth and senescence in plants. In this study, we have functionally characterized the transcription factor OsNAC121 by developing gene silencing and overexpressing transgenic rice plants, followed by detailed analyses of the plant architecture. Transgenic lines exhibited remodelling in crown root development, lateral root structure and density, tiller height and number, panicle and grain morphologies, underpinning the imbalanced auxin: cytokinin ratio due to perturbed auxin transportation. Application of cytokinin, auxin and abscisic acid increased OsNAC121 gene expression nearly 17-, 6- and 91-folds, respectively. qRT-PCR results showed differential expressions of auxin and cytokinin pathway genes, implying their altered levels. A 47-fold higher expression level of OsNAC121 during milky stage in untransformed rice, compared to 14-day old shoot tissue, suggests its crucial role in grain filling; as evidenced by a large number of undeveloped grains produced by the gene silenced lines. Crippled gravitropic response by the transgenic plants indicates their impaired auxin transport. Bioinformatics revealed that OsNAC121 interacts with co-repressor (TOPLESS) proteins and forms a part of the inhibitor complex OsIAA10, an essential core component of auxin signalling pathway. Therefore, OsNAC121 emerges as an important regulator of various aspects of plant architecture through modulation of crosstalk between auxin and cytokinin, altering their concentration gradient in the meristematic zones, and consequently modifying different plant organogenesis processes.


Asunto(s)
Citocininas , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Oryza , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas , Raíces de Plantas , Plantas Modificadas Genéticamente , Factores de Transcripción , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Citocininas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo
2.
Science ; 385(6704): eadm8762, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38963845

RESUMEN

Understanding how numerous quantitative trait loci (QTL) shape phenotypic variation is an important question in genetics. To address this, we established a permanent population of 18,421 (18K) rice lines with reduced population structure. We generated reference-level genome assemblies of the founders and genotyped all 18K-rice lines through whole-genome sequencing. Through high-resolution mapping, 96 high-quality candidate genes contributing to variation in 16 traits were identified, including OsMADS22 and OsFTL1 verified as causal genes for panicle number and heading date, respectively. We identified epistatic QTL pairs and constructed a genetic interaction network with 19 genes serving as hubs. Overall, 170 masking epistasis pairs were characterized, serving as an important factor contributing to genetic background effects across diverse varieties. The work provides a basis to guide grain yield and quality improvements in rice.


Asunto(s)
Epistasis Genética , Genoma de Planta , Oryza , Sitios de Carácter Cuantitativo , Oryza/genética , Secuenciación Completa del Genoma , Mapeo Cromosómico , Genes de Plantas , Genotipo , Redes Reguladoras de Genes , Fenotipo
3.
Sci Rep ; 14(1): 15139, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956423

RESUMEN

Mineral element accumulation in plants is influenced by soil conditions and varietal factors. We investigated the dynamic accumulation of 12 elements in straw at the flowering stage and in grains at the mature stage in eight rice varieties with different genetic backgrounds (Japonica, Indica, and admixture) and flowering times (early, middle, and late) grown in soil with various pH levels. In straw, Cd, As, Mn, Zn, Ca, Mg, and Cu accumulation was influenced by both soil pH and varietal factors, whereas P, Mo, and K accumulation was influenced by pH, and Fe and Ni accumulation was affected by varietal factors. In grains, Cd, As, Mn, Cu, Ni, Mo, Ca, and Mg accumulation was influenced by both pH and varietal factors, whereas Zn, Fe, and P accumulation was affected by varietal factors, and K accumulation was not altered. Only As, Mn, Ca and Mg showed similar trends in the straw and grains, whereas the pH responses of Zn, P, K, and Ni differed between them. pH and flowering time had synergistic effects on Cd, Zn, and Mn in straw and on Cd, Ni, Mo, and Mn in grains. Soil pH is a major factor influencing mineral uptake in rice straw and grains, and genetic factors, flowering stage factors, and their interaction with soil pH contribute in a combined manner.


Asunto(s)
Minerales , Oryza , Suelo , Oryza/genética , Oryza/metabolismo , Suelo/química , Concentración de Iones de Hidrógeno , Minerales/metabolismo , Minerales/análisis , Antecedentes Genéticos , Grano Comestible/metabolismo , Grano Comestible/genética
4.
Plant Cell Rep ; 43(7): 185, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951279

RESUMEN

The Oryza genus, containing Oryza sativa L., is quintessential to sustain global food security. This genus has a lot of sophisticated molecular mechanisms to cope with environmental stress, particularly during vulnerable stages like flowering. Recent studies have found key involvements and genetic modifications that increase resilience to stress, including exogenous application of melatonin, allantoin, and trehalose as well as OsSAPK3 and OsAAI1 in the genetic realm. Due to climate change and anthropogenic reasons, there is a rise in sea level which raises a concern of salinity stress. It is tackled through osmotic adjustment and ion homeostasis, mediated by genes like P5CS, P5CR, GSH1, GSH2, and SPS, and ion transporters like NHX, NKT, and SKC, respectively. Oxidative damage is reduced by a complex action of antioxidants, scavenging RONS. A complex action of genes mediates cold stress with studies highlighting the roles of OsWRKY71, microRNA2871b, OsDOF1, and OsICE1. There is a need to research the mechanism of action of proteins like OsRbohA in ROS control and the action of regulatory genes in stress response. This is highly relevant due to the changing climate which will raise a lot of environmental changes that will adversely affect production and global food security if certain countermeasures are not taken. Overall, this study aims to unravel the molecular intricacies of ROS and RNS signaling networks in Oryza plants under stress conditions, with the ultimate goal of informing strategies for enhancing stress tolerance and crop performance in this important agricultural genus.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Transducción de Señal , Estrés Fisiológico , Oryza/genética , Oryza/metabolismo , Oryza/fisiología , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/genética , Especies de Nitrógeno Reactivo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
6.
Theor Appl Genet ; 137(7): 173, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937300

RESUMEN

KEY MESSAGE: Genetic editing of grain size genes quickly improves three-line hybrid rice parents to increase the appearance quality and yield of hybrid rice. Grain size affects rice yield and quality. In this study, we used CRISPR/Cas9 to edit the grain size gene GW8 in the maintainer line WaitaiB (WTB) and restorer line Guanghui998 (GH998). The new slender sterile line WTEA (gw8) was obtained in the BC2F1 generation by transferring the grain mutation of the maintainer plant to the corresponding sterile line WantaiA (WTA, GW8) in the T1 generation. Two slender restorer lines, GH998E1 (gw8(II)) and GH998E2 (gw8(I)), were obtained in T1 generation. In the early stage, new sterile and restorer lines in grain mutations were created by targeted editing of GS3, TGW3, and GW8 genes. These parental lines were mated to detect the impact of grain-type mutations on hybrid rice yield and quality. Mutations in gs3, gw8, and tgw3 had a minimal impact on agronomic traits except the grain size and thousand-grain weight. The decrease in grain width in the combination mainly came from gw8/gw8, gs3/gs3 increased the grain length, gs3/gs3-gw8/gw8 had a more significant effect on the grain length, and gs3/gs3-gw8/gw8(I) contributed more to grain length than gs3/gs3-gw8/gw8(II). The heterozygous TGW3/tgw3 may not significantly increase grain length. Electron microscopy revealed that the low-chalky slender-grain variety had a cylindrical grain shape, a uniform distribution of endosperm cells, and tightly arranged starch grains. Quantitative fluorescence analysis of endospermdevelopment-related genes showed that the combination of slender grain hybrid rice caused by gs3 and gw8 mutations promoted endosperm development and improved appearance quality. An appropriate grain size mutation resulted in hybrid rice varieties with high yield and quality.


Asunto(s)
Sistemas CRISPR-Cas , Grano Comestible , Edición Génica , Oryza , Oryza/genética , Oryza/crecimiento & desarrollo , Edición Génica/métodos , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Genes de Plantas , Fenotipo , Fitomejoramiento/métodos , Mutación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo
7.
BMC Plant Biol ; 24(1): 618, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937693

RESUMEN

In acidic soils, aluminum (Al) toxicity inhibits the growth and development of plant roots and affects nutrient and water absorption, leading to reduced yield and quality. Therefore, it is crucial to investigate and identify candidate genes for Al tolerance and elucidate their physiological and molecular mechanisms under Al stress. In this study, we identified a new gene OsAlR3 regulating Al tolerance, and analyzed its mechanism from physiological, transcriptional and metabolic levels. Compared with the WT, malondialdehyde (MDA) and hydrogen peroxide (H2O2) content were significantly increased, superoxide dismutase (SOD) activity and citric acid (CA) content were significantly decreased in the osalr3 mutant lines when exposed to Al stress. Under Al stress, the osalr3 exhibited decreased expression of antioxidant-related genes and lower organic acid content compared with WT. Integrated transcriptome and metabolome analysis showed the phenylpropanoid biosynthetic pathway plays an important role in OsAlR3-mediated Al tolerance. Exogenous CA and oxalic acid (OA) could increase total root length and enhance the antioxidant capacity in the mutant lines under Al stress. Conclusively, we found a new gene OsAlR3 that positively regulates Al tolerance by promoting the chelation of Al ions through the secretion of organic acids, and increasing the expression of antioxidant genes.


Asunto(s)
Aluminio , Antioxidantes , Regulación de la Expresión Génica de las Plantas , Oryza , Aluminio/toxicidad , Oryza/genética , Oryza/metabolismo , Oryza/efectos de los fármacos , Oryza/fisiología , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Cítrico/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Genes de Plantas
8.
Genes (Basel) ; 15(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38927632

RESUMEN

Zinc (Zn)- and iron (Fe)-regulating transport-like proteins (ZIPs) are a class of proteins crucial for metal uptake and transport in plants, particularly for Zn and Fe absorption and distribution. These proteins ensure the balance of trace elements essential for plant growth, development, and metabolic activities. However, the role of the rice (Oryza sativa) OsZIP gene family in manganese (Mn) and selenium (Se) transport remains underexplored. This research conducted an all-sided analysis of the rice OsZIPs and identified 16 OsZIP sequences. Phylogenetic analysis categorized the OsZIPs predominantly within the three subfamilies. The expression levels of OsZIPs in rice root and leaf subjected to Mn and Se toxicity stress were examined through quantitative real-time PCR (qRT-PCR). The findings revealed significant differential expression of many OsZIPs under these conditions, indicating a potential regulating effect in the response of rice to Mn and Se toxicity. This work lays a foundation for further functional studies of OsZIPs, enhancing our understanding of the response mechanisms of rice to Mn and Se toxicity and their roles in growth, development, and environmental adaptation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Manganeso , Oryza , Filogenia , Proteínas de Plantas , Selenio , Estrés Fisiológico , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Selenio/metabolismo , Selenio/toxicidad , Manganeso/toxicidad , Manganeso/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Genoma de Planta , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos
9.
Genes (Basel) ; 15(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38927664

RESUMEN

Chilling stress is one of the main abiotic factors affecting rice growth and yield. In rice, chlorophyllide a oxygenase encoded by OsCAO1 is responsible for converting chlorophyllide a to chlorophyllide b, playing a crucial role in photosynthesis and thus rice growth. However, little is known about the function of OsCAO1 in chilling stress responses. The presence of the cis-acting element involved in low-temperature responsiveness (LTR) in the OsCAO1 promoter implied that OsCAO1 probably is a cold-responsive gene. The gene expression level of OsCAO1 was usually inhibited by low temperatures during the day and promoted by low temperatures at night. The OsCAO1 knockout mutants generated by the CRISPR-Cas9 technology in rice (Oryza sativa L.) exhibited significantly weakened chilling tolerance at the seedling stage. OsCAO1 dysfunction led to the accumulation of reactive oxygen species and malondialdehyde, an increase in relative electrolyte leakage, and a reduction in antioxidant gene expression under chilling stress. In addition, the functional deficiency of OsCAO1 resulted in more severe damage to chloroplast morphology, such as abnormal grana thylakoid stacking, caused by low temperatures. Moreover, the rice yield was reduced in OsCAO1 knockout mutants. Therefore, the elevated expression of OsCAO1 probably has the potential to increase both rice yield and chilling tolerance simultaneously, providing a strategy to cultivate chilling-tolerant rice varieties with high yields.


Asunto(s)
Frío , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Plantones , Oryza/genética , Oryza/crecimiento & desarrollo , Plantones/genética , Plantones/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Respuesta al Choque por Frío/genética , Técnicas de Inactivación de Genes , Especies Reactivas de Oxígeno/metabolismo , Clorofila/metabolismo , Fotosíntesis/genética
10.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928040

RESUMEN

Many lifestyle-related diseases such as cancer, dementia, myocardial infarction, and stroke are known to be caused by aging, and the WHO's ICD-11 (International Classification of Diseases, 11th edition) created the code "aging-related" in 2022. In other words, aging is irreversible but aging-related diseases are reversible, so taking measures to treat them is important for health longevity and preventing other diseases. Therefore, in this study, we used BioBran containing rice kefiran as an approach to improve aging. Rice kefiran has been reported to improve the intestinal microflora, regulate the intestines, and have anti-aging effects. BioBran has also been reported to have antioxidant effects and improve liver function, and human studies have shown that it affects the diversity of the intestinal microbiota. Quantitative measures of aging that correlate with disease risk are now available through the epigenetic clock test, which examines the entire gene sequence and determines biological age based on the methylation level. Horvath's Clock is the best known of many epigenetic clock tests and was published by Steve Horvath in 2013. In this study, we examine the effect of using Horvath's Clock to improve aging and report on the results, which show a certain effect.


Asunto(s)
Envejecimiento , Biomarcadores , Epigénesis Genética , Oryza , Oryza/genética , Envejecimiento/genética , Proyectos Piloto , Humanos , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Femenino , Metilación de ADN/efectos de los fármacos , Probióticos , Persona de Mediana Edad , Animales
11.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928180

RESUMEN

Cadmium (Cd) is a heavy metal element with a wide range of hazards and severe biotoxicity. Since Cd can be easily accumulated in the edible parts of plants, the exposure of humans to Cd is mainly through the intake of Cd-contaminated food. However, the intestinal responses to Cd exposure are not completely characterized. Herein, we simulated laboratory and environmental Cd exposure by feeding the piglets with CdCl2-added rice and Cd-contaminated rice (Cdcr) contained diet, as piglets show anatomical and physiological similarities to humans. Subsequent analysis of the metal element concentrations showed that exposure to the two types of Cd significantly increased Cd levels in piglets. After verifying the expression of major Cd transporters by Western blots, multi-omics further expanded the possible transporters of Cd and found Cd exposure causes wide alterations in the metabolism of piglets. Of significance, CdCl2 and Cdcr exhibited different body distribution and metabolic rewiring, and Cdcr had stronger carcinogenic and diabetes-inducing potential. Together, our results indicate that CdCl2 had a significant difference compared with Cdcr, which has important implications for a more intense study of Cd toxicity.


Asunto(s)
Cadmio , Proteómica , Animales , Porcinos , Cadmio/toxicidad , Proteómica/métodos , Transcriptoma/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/metabolismo , Perfilación de la Expresión Génica , Oryza/metabolismo , Oryza/genética
12.
Nat Plants ; 10(6): 954-970, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831046

RESUMEN

Hybrid rice has achieved high grain yield and greatly contributes to food security, but the manual-labour-intensive hybrid seed production process limits fully mechanized hybrid rice breeding. For next-generation hybrid seed production, the use of small-grain male sterile lines to mechanically separate small hybrid seeds from mixed harvest is promising. However, it is difficult to find ideal grain-size genes for breeding ideal small-grain male sterile lines without penalties in the number of hybrid seeds and hybrid rice yield. Here we report that the use of small-grain alleles of the ideal grain-size gene GSE3 in male sterile lines enables fully mechanized hybrid seed production and dramatically increases hybrid seed number in three-line and two-line hybrid rice systems. The GSE3 gene encodes a histone acetyltransferase that binds histones and influences histone acetylation levels. GSE3 is recruited by the transcription factor GS2 to the promoters of their co-regulated grain-size genes and influences the histone acetylation status of their co-regulated genes. Field trials demonstrate that genome editing of GSE3 can be used to immediately improve current elite male sterile lines of hybrid rice for fully mechanized hybrid rice breeding, providing a new perspective for mechanized hybrid breeding in other crops.


Asunto(s)
Histonas , Oryza , Fitomejoramiento , Oryza/genética , Oryza/metabolismo , Histonas/metabolismo , Histonas/genética , Acetilación , Fitomejoramiento/métodos , Semillas/genética , Semillas/metabolismo , Grano Comestible/genética , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hibridación Genética
13.
Nat Plants ; 10(6): 994-1004, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38834685

RESUMEN

Blast disease caused by the fungus Magnaporthe oryzae is one of the most devastating rice diseases. Disease resistance genes such as Pi-ta or Pi-ta2 are critical in protecting rice production from blast. Published work reports that Pi-ta codes for a nucleotide-binding and leucine-rich repeat domain protein (NLR) that recognizes the fungal protease-like effector AVR-Pita by direct binding. However, this model was challenged by the recent discovery that Pi-ta2 resistance, which also relies on AVR-Pita detection, is conferred by the unconventional resistance gene Ptr, which codes for a membrane protein with a cytoplasmic armadillo repeat domain. Here, using NLR Pi-ta and Ptr RNAi knockdown and CRISPR/Cas9 knockout mutant rice lines, we found that AVR-Pita recognition relies solely on Ptr and that the NLR Pi-ta has no role in it, indicating that it is not the Pi-ta resistance gene. Different alleles of Ptr confer different recognition specificities. The A allele of Ptr (PtrA) detects all natural sequence variants of the effector and confers Pi-ta2 resistance, while the B allele of Ptr (PtrB) recognizes a restricted set of AVR-Pita alleles and, thereby, confers Pi-ta resistance. Analysis of the natural diversity in AVR-Pita and of mutant and transgenic strains identified one specific polymorphism in the effector sequence that controls escape from PtrB-mediated resistance. Taken together, our work establishes that the M. oryzae effector AVR-Pita is detected in an allele-specific manner by the unconventional rice resistance protein Ptr and that the NLR Pi-ta has no function in Pi-ta resistance and the recognition of AVR-Pita.


Asunto(s)
Alelos , Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos , Magnaporthe
15.
Plant Mol Biol ; 114(3): 71, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856917

RESUMEN

Mitochondria and plastids, originated as ancestral endosymbiotic bacteria, contain their own DNA sequences. These organelle DNAs (orgDNAs) are, despite the limited genetic information they contain, an indispensable part of the genetic systems but exist as multiple copies, making up a substantial amount of total cellular DNA. Given this abundance, orgDNA is known to undergo tissue-specific degradation in plants. Previous studies have shown that the exonuclease DPD1, conserved among seed plants, degrades orgDNAs during pollen maturation and leaf senescence in Arabidopsis. However, tissue-specific orgDNA degradation was shown to differ among species. To extend our knowledge, we characterized DPD1 in rice in this study. We created a genome-edited (GE) mutant in which OsDPD1 and OsDPD1-like were inactivated. Characterization of this GE plant demonstrated that DPD1 was involved in pollen orgDNA degradation, whereas it had no significant effect on orgDNA degradation during leaf senescence. Comparison of transcriptomes from wild-type and GE plants with different phosphate supply levels indicated that orgDNA had little impact on the phosphate starvation response, but instead had a global impact in plant growth. In fact, the GE plant showed lower fitness with reduced grain filling rate and grain weight in natural light conditions. Taken together, the presented data reinforce the important physiological roles of orgDNA degradation mediated by DPD1.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Oryza/enzimología , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Exonucleasas/metabolismo , Exonucleasas/genética , Edición Génica , Regulación de la Expresión Génica de las Plantas , ADN de Plantas/genética , ADN de Plantas/metabolismo , Polen/genética , Polen/metabolismo , Polen/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Genoma de Planta , Mutación
16.
Nat Commun ; 15(1): 5012, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866764

RESUMEN

Ferroptosis is an iron-dependent cell death that was discovered recently. For beneficial microbes to establish mutualistic relationships with hosts, precisely controlled cell death in plant cells is necessary. However, whether ferroptosis is involved in the endophyte‒plant system is poorly understood. Here, we reported that endophytic Streptomyces hygroscopicus OsiSh-2, which established a sophisticated and beneficial interaction with host rice plants, caused ferroptotic cell death in rice characterized by ferroptosis- and immune-related markers. Treatments with ferroptosis inhibitors and inducers, different doses of OsiSh-2, and the siderophore synthesis-deficient mutant ΔcchH revealed that only moderate ferroptosis induced by endophytes is essential for the establishment of an optimal symbiont to enhance plant growth. Additionally, ferroptosis involved in a defence-primed state in rice, which contributed to improved resistance against rice blast disease. Overall, our study provides new insights into the mechanisms of endophyte‒plant interactions mediated by ferroptosis and suggests new directions for crop yield promotion.


Asunto(s)
Resistencia a la Enfermedad , Endófitos , Ferroptosis , Oryza , Enfermedades de las Plantas , Streptomyces , Simbiosis , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Ferroptosis/genética , Endófitos/fisiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Streptomyces/genética , Streptomyces/fisiología , Sideróforos/metabolismo , Hierro/metabolismo
17.
Sci Rep ; 14(1): 13591, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866808

RESUMEN

Thiamin is a vital nutrient that acts as a cofactor for several enzymes primarily localized in the mitochondria. These thiamin-dependent enzymes are involved in energy metabolism, nucleic acid biosynthesis, and antioxidant machinery. The enzyme HMP-P kinase/thiamin monophosphate synthase (TH1) holds a key position in thiamin biosynthesis, being responsible for the phosphorylation of HMP-P into HMP-PP and for the condensation of HMP-PP and HET-P to form TMP. Through mathematical kinetic model, we have identified TH1 as a critical player for thiamin biofortification in rice. We further focused on the functional characterization of OsTH1. Sequence and gene expression analysis, along with phylogenetic studies, provided insights into OsTH1 bifunctional features and evolution. The indispensable role of OsTH1 in thiamin biosynthesis was validated by heterologous expression of OsTH1 and successful complementation of yeast knock-out mutants impaired in thiamin production. We also proved that the sole OsTH1 overexpression in rice callus significantly improves B1 concentration, resulting in 50% increase in thiamin accumulation. Our study underscores the critical role of OsTH1 in thiamin biosynthesis, shedding light on its bifunctional nature and evolutionary significance. The significant enhancement of thiamin accumulation in rice callus upon OsTH1 overexpression constitutes evidence of its potential application in biofortification strategies.


Asunto(s)
Oryza , Proteínas de Plantas , Tiamina , Oryza/genética , Oryza/metabolismo , Tiamina/biosíntesis , Tiamina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Filogenia , Regulación de la Expresión Génica de las Plantas
18.
Plant Physiol Biochem ; 212: 108794, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850730

RESUMEN

With the increasing occurrence of global warming, drought is becoming a major constraint for plant growth and crop yield. Plant cell walls experience continuous changes during the growth, development, and in responding to stressful conditions. The plant WRKYs play pivotal roles in regulating the secondary cell wall (SCW) biosynthesis and helping plant defend against abiotic stresses. qRT-PCR evidence showed that OsWRKY12 was affected by drought and ABA treatments. Over-expression of OsWRKY12 decreased the drought tolerance of the rice transgenics at the germination stage and the seedling stage. The transcription levels of drought-stress-associated genes as well as those genes participating in the ABA biosynthesis and signaling were significantly different compared to the wild type (WT). Our results also showed that less lignin and cellulose were deposited in the OsWRKY12-overexpressors, and heterogenous expression of OsWRKY12 in atwrky12 could lower the increased lignin and cellulose contents, as well as the improved PEG-stress tolerance, to a similar level as the WT. qRT-PCR results indicated that the transcription levels of all the genes related to lignin and cellulose biosynthesis were significantly decreased in the rice transgenics than the WT. Further evidence from yeast one-hybrid assay and the dual-luciferase reporter system suggested that OsWRKY12 could bind to promoters of OsABI5 (the critical component of the ABA signaling pathway) and OsSWN3/OsSWN7 (the key positive regulators in the rice SCW thickening), and hence repressing their expression. In conclusion, OsWRKY12 mediates the crosstalk between SCW biosynthesis and plant stress tolerance by binding to the promoters of different downstream genes.


Asunto(s)
Pared Celular , Sequías , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Estrés Fisiológico , Factores de Transcripción , Oryza/genética , Oryza/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Lignina/biosíntesis , Lignina/metabolismo , Plantas Modificadas Genéticamente , Celulosa/biosíntesis , Celulosa/metabolismo , Ácido Abscísico/metabolismo
20.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928342

RESUMEN

Our study investigates the genetic mechanisms underlying the spotted leaf phenotype in rice, focusing on the spl43 mutant. This mutant is characterized by persistent reddish-brown leaf spots from the seedling stage to maturity, leading to extensive leaf necrosis. Using map-based cloning, we localized the responsible locus to a 330 Kb region on chromosome 2. We identified LOC_Os02g56000, named OsRPT5A, as the causative gene. A point mutation in OsRPT5A, substituting valine for glutamic acid, was identified as the critical factor for the phenotype. Functional complementation and the generation of CRISPR/Cas9-mediated knockout lines in the IR64 background confirmed the central role of OsRPT5A in controlling this trait. The qPCR results from different parts of the rice plant revealed that OsRPT5A is constitutively expressed across various tissues, with its subcellular localization unaffected by the mutation. Notably, we observed an abnormal accumulation of reactive oxygen species (ROS) in spl43 mutants by examining the physiological indexes of leaves, suggesting a disruption in the ROS system. Complementation studies indicated OsRPT5A's involvement in ROS homeostasis and catalase activity regulation. Moreover, the spl43 mutant exhibited enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo), highlighting OsRPT5A's role in rice pathogen resistance mechanisms. Overall, our results suggest that OsRPT5A plays a critical role in regulating ROS homeostasis and enhancing pathogen resistance in rice.


Asunto(s)
Mapeo Cromosómico , Oryza , Enfermedades de las Plantas , Hojas de la Planta , Proteínas de Plantas , Especies Reactivas de Oxígeno , Xanthomonas , Oryza/genética , Oryza/microbiología , Oryza/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Resistencia a la Enfermedad/genética , Mutación , Fenotipo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...