Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
1.
Behav Pharmacol ; 35(5): 269-279, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38847447

RESUMEN

Excessive prescribing and misuse of prescription opioids, such as oxycodone, significantly contributed to the current opioid crisis. Although oxycodone is typically consumed orally by humans, parenteral routes of administration have primarily been used in preclinical models of oxycodone dependence. To address this issue, more recent studies have used oral self-administration procedures to study oxycodone seeking and withdrawal in rodents. Behavioral differences, however, following oral oxycodone intake versus parenteral oxycodone administration remain unclear. Thus, the goal of the current studies was to compare anxiety- and withdrawal-like behaviors using established opioid dependence models of either home cage oral intake of oxycodone (0.5 mg/ml) or repeated subcutaneous (s.c.) injections of oxycodone (10 mg/kg) in male and female mice. Here, mice received 10 days of oral or s.c. oxycodone administration, and following 72 h of forced abstinence, anxiety- and withdrawal-like behaviors were measured using elevated zero maze, open field, and naloxone-induced precipitated withdrawal procedures. Global withdrawal scores were increased to a similar degree following oral and s.c. oxycodone use, while both routes of oxycodone administration had minimal effects on anxiety-like behaviors. When examining individual withdrawal-like behaviors, mice receiving s.c. oxycodone exhibited more paw tremors and jumps during naloxone-induced precipitated withdrawal compared with oral oxycodone mice. These results indicate that both models of oxycodone administration are sufficient to elevate global withdrawal scores, but, when compared with oral consumption, s.c. oxycodone injections yielded more pronounced effects on some withdrawal-like behaviors.


Asunto(s)
Analgésicos Opioides , Ansiedad , Ratones Endogámicos C57BL , Oxicodona , Síndrome de Abstinencia a Sustancias , Animales , Oxicodona/farmacología , Oxicodona/administración & dosificación , Masculino , Femenino , Administración Oral , Inyecciones Subcutáneas , Ratones , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificación , Trastornos Relacionados con Opioides , Naloxona/farmacología , Naloxona/administración & dosificación , Conducta Animal/efectos de los fármacos , Antagonistas de Narcóticos/farmacología , Antagonistas de Narcóticos/administración & dosificación
2.
Science ; 384(6700): eadn0886, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38843332

RESUMEN

In addition to their intrinsic rewarding properties, opioids can also evoke aversive reactions that protect against misuse. Cellular mechanisms that govern the interplay between opioid reward and aversion are poorly understood. We used whole-brain activity mapping in mice to show that neurons in the dorsal peduncular nucleus (DPn) are highly responsive to the opioid oxycodone. Connectomic profiling revealed that DPn neurons innervate the parabrachial nucleus (PBn). Spatial and single-nuclei transcriptomics resolved a population of PBn-projecting pyramidal neurons in the DPn that express µ-opioid receptors (µORs). Disrupting µOR signaling in the DPn switched oxycodone from rewarding to aversive and exacerbated the severity of opioid withdrawal. These findings identify the DPn as a key substrate for the abuse liability of opioids.


Asunto(s)
Analgésicos Opioides , Reacción de Prevención , Trastornos Relacionados con Opioides , Oxicodona , Núcleos Parabraquiales , Corteza Prefrontal , Receptores Opioides mu , Recompensa , Animales , Masculino , Ratones , Analgésicos Opioides/farmacología , Conectoma , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/fisiología , Trastornos Relacionados con Opioides/metabolismo , Oxicodona/farmacología , Núcleos Parabraquiales/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Células Piramidales/metabolismo , Receptores Opioides mu/metabolismo , Receptores Opioides mu/genética , Síndrome de Abstinencia a Sustancias/metabolismo , Transcriptoma
3.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928357

RESUMEN

Cannabidiol (CBD), a phytocannabinoid, appeared to satisfy several criteria for a safe approach to preventing drug-taking behavior, including opioids. However, most successful preclinical and clinical results come from studies in adult males. We examined whether systemic injections of CBD (10 mg/kg, i.p.) during extinction of oxycodone (OXY, 3 mg/kg, i.p.) induced conditioned place preference (CPP) could attenuate the reinstatement of CPP brought about by OXY (1.5 mg/kg, i.p.) priming in adolescent rats of both sexes, and whether this effect is sex dependent. Accordingly, a priming dose of OXY produced reinstatement of the previously extinguished CPP in males and females. In both sexes, this effect was linked to locomotor sensitization that was blunted by CBD pretreatments. However, CBD was able to prevent the reinstatement of OXY-induced CPP only in adolescent males and this outcome was associated with an increased cannabinoid 1 receptor (CB1R) and a decreased mu opioid receptor (MOR) expression in the prefrontal cortex (PFC). The reinstatement of CCP in females was associated with a decreased MOR expression, but no changes were detected in CB1R in the hippocampus (HIP). Moreover, CBD administration during extinction significantly potentialized the reduced MOR expression in the PFC of males and showed a tendency to potentiate the reduced MOR in the HIP of females. Additionally, CBD reversed OXY-induced deficits of recognition memory only in males. These results suggest that CBD could reduce reinstatement to OXY seeking after a period of abstinence in adolescent male but not female rats. However, more investigation is required.


Asunto(s)
Cannabidiol , Oxicodona , Receptor Cannabinoide CB1 , Receptores Opioides mu , Animales , Cannabidiol/farmacología , Masculino , Femenino , Oxicodona/farmacología , Ratas , Receptor Cannabinoide CB1/metabolismo , Receptores Opioides mu/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Analgésicos Opioides/farmacología , Condicionamiento Psicológico/efectos de los fármacos
4.
Biomed Pharmacother ; 176: 116931, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870630

RESUMEN

The lysine-specific demethylase 1 (KDM1A) is reported to be a regulator in learning and memory. However, the effect of KDM1A in oxycodone rewarding memory has yet to be studied. In our study, rewarding memory was assessed by using conditioned place preference (CPP) in male mice. Next generation sequencing and chromatin immunoprecipitation-PCR were used to explore the molecular mechanisms. Oxycodone significantly decreased PP1α mRNA and protein levels in hippocampal neurons. Oxycodone significantly increased KDM1A and H3K4me1 levels, while significantly decreased H3K4me2 levels in a time- and dose-dependent manner. Behavioral data demonstrated that intraperitoneal injection of ORY-1001 (KDM1A inhibitor) or intra-hippocampal injection of KDM1A siRNA/shRNA blocked the acquisition and expression of oxycodone CPP and facilitated the extinction of oxycodone CPP. The decrease of PP1α was markedly blocked by the injection of ORY-1001 or KDM1A siRNA/shRNA. Oxycodone-induced enhanced binding of CoRest with KDM1A and binding of CoRest with the PP1α promoter was blocked by ORY-1001. The level of H3K4me2 demethylation was also decreased by the treatment. The results suggest that oxycodone-induced upregulation of KDM1A via demethylation of H3K4me2 promotes the binding of CoRest with the PP1α promoter, and the subsequent decrease in PP1α expression in hippocampal neurons may contribute to oxycodone reward.


Asunto(s)
Epigénesis Genética , Histona Demetilasas , Oxicodona , Animales , Masculino , Epigénesis Genética/efectos de los fármacos , Ratones , Oxicodona/farmacología , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Recompensa , Condicionamiento Psicológico/efectos de los fármacos , Ratones Endogámicos C57BL , Histonas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Memoria/efectos de los fármacos
5.
Psychopharmacology (Berl) ; 241(7): 1477-1490, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38710856

RESUMEN

RATIONALE: Medications are urgently needed to treat symptoms of drug withdrawal and mitigate dysphoria and psychiatric comorbidities that drive opioid abuse and relapse. ITI-333 is a novel molecule in development for treatment of substance use disorders, psychiatric comorbidities, and pain. OBJECTIVE: Characterize the preclinical profile of ITI-333 using pharmacological, behavioral, and physiological assays. METHODS: Cell-based assays were used to measure receptor binding and intrinsic efficacy of ITI-333; animal models were employed to assess effects on opioid reinstatement, precipitated oxycodone withdrawal, and drug abuse liability. RESULTS: In vitro, ITI-333 is a potent 5-HT2A receptor antagonist (Ki = 8 nM) and a biased, partial agonist at µ-opioid (MOP) receptors (Ki = 11 nM; lacking ß-arrestin agonism) with lesser antagonist activity at adrenergic α1A (Ki = 28 nM) and dopamine D1 (Ki = 50 nM) receptors. In vivo, ITI-333 blocks 5-HT2A receptor-mediated head twitch and MOP receptor-mediated effects on motor hyperactivity in mice. ITI-333 alone is a naloxone-sensitive analgesic (mice) which suppresses somatic signs of naloxone-precipitated oxycodone withdrawal (mice) and heroin cue-induced reinstatement responding without apparent tolerance or physical dependence after chronic dosing (rats). ITI-333 did not acutely impair gastrointestinal or pulmonary function (rats) and was not intravenously self-administered by heroin-maintained rats or rhesus monkeys. CONCLUSIONS: ITI-333 acts as a potent 5-HT2A receptor antagonist, as well a biased MOP receptor partial agonist with low intrinsic efficacy. ITI-333 mitigates opioid withdrawal/reinstatement, supporting its potential utility as a treatment for OUD.


Asunto(s)
Síndrome de Abstinencia a Sustancias , Animales , Ratones , Masculino , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Ratas , Humanos , Ratas Sprague-Dawley , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/administración & dosificación , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Trastornos Relacionados con Opioides/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Oxicodona/farmacología , Oxicodona/administración & dosificación , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificación , Autoadministración , Cricetulus , Células CHO
6.
Neuropharmacology ; 254: 109972, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710443

RESUMEN

Opioid use disorder (OUD) is a chronic condition associated with long-lasting molecular and behavioral changes. Animals with prolonged access to opioids develop behaviors similar to human OUD. Identifying associated molecular changes can provide insight to underpinnings that lead to or maintain OUD. In pilot studies, we identified several miRNA targets that are altered by the administration of oxycodone. We selected mir182 for follow up as it was recently shown to be dysregulated in plasma of men administered oxycodone. In addition, mir182 is increased in reward-related brain regions of male rats following exposure to various addictive substances. The present study utilizes a long-access oxycodone self-administration paradigm to examine changes in mir182 and its mRNA targets associated with neuroplasticity, which may be involved in the maintenance of OUD-like phenotype in rats. Male rats were trained to self-administer oxycodone (0.1 mg/kg/infusion, i. v.) for 6 h daily sessions for 12 days. Each animal had a yoked saline control that received matched saline infusions. Animals were then tested on a progressive ratio schedule to measure motivation to obtain a single infusion of oxycodone. Drug seeking was measured following 28 days of forced abstinence using a 90-min cued/test. RTqPCR was utilized to measure mir182 and mRNA targets related to neuroplasticity (wnt3, plppr4, pou3f3, tle4, cacna2d, and bdnf) from the nucleus accumbens. Data revealed that animals responded on a continuum for oxycodone. When divided into two groups termed high- and low responders, animals diverged during self-administration acquisition and maintained differences in behavior and gene expression throughout the study. mir182 was upregulated in the nucleus accumbens of both high and low responders and negatively correlated with tle4, which showed a strong negative correlation with reinstatement behavior. mRNA target levels were correlated with behaviors associated with increased severity of OUD behavior in male rats.


Asunto(s)
MicroARNs , Plasticidad Neuronal , Oxicodona , Autoadministración , Animales , Masculino , Oxicodona/administración & dosificación , Oxicodona/farmacología , Plasticidad Neuronal/efectos de los fármacos , Ratas , MicroARNs/metabolismo , MicroARNs/genética , Individualidad , Ratas Sprague-Dawley , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/farmacología , Trastornos Relacionados con Opioides/genética , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética
7.
Genes Brain Behav ; 23(2): e12894, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38597363

RESUMEN

Opioid use disorder (OUD) is an ongoing public health concern in the United States, and relatively little work has addressed how genetic background contributes to OUD. Understanding the genetic contributions to oxycodone-induced analgesia could provide insight into the early stages of OUD development. Here, we present findings from a behavioral phenotyping protocol using several inbred strains from the Hybrid Rat Diversity Panel. Our behavioral protocol included a modified "up-down" von Frey procedure to measure inherent strain differences in the sensitivity to a mechanical stimulus on the hindpaw. We also performed the tail immersion assay, which measures the latency to display tail withdrawal in response to a hot water bath. Initial withdrawal thresholds were taken in drug-naïve animals to record baseline thermal sensitivity across the strains. Oxycodone-induced analgesia was measured after administration of oxycodone over the course of 2 h. Both mechanical and thermal sensitivity are shaped by genetic factors and display moderate heritability (h2 = 0.23-0.40). All strains displayed oxycodone-induced analgesia that peaked at 15-30 min and returned to baseline by 2 h. There were significant differences between the strains in the magnitude and duration of their analgesic response to oxycodone, although the heritability estimates were quite modest (h2 = 0.10-0.15). These data demonstrate that genetic background confers differences in mechanical sensitivity, thermal sensitivity, and oxycodone-induced analgesia.


Asunto(s)
Analgesia , Trastornos Relacionados con Opioides , Ratas , Animales , Oxicodona/farmacología , Analgésicos Opioides/farmacología
8.
J Appl Physiol (1985) ; 136(5): 1097-1104, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38511209

RESUMEN

When contracting muscles are freely perfused, the acid-sensing ion channel 3 (ASIC3) on group IV afferents plays a minor role in evoking the exercise pressor reflex. We recently showed in isolated dorsal root ganglion neurons innervating the gastrocnemius muscles that two mu opioid receptor agonists, namely endomorphin 2 and oxycodone, potentiated the sustained inward ASIC3 current evoked by acidic solutions. This in vitro finding prompted us to determine whether endomorphin 2 and oxycodone, when infused into the arterial supply of freely perfused contracting hindlimb muscles, potentiated the exercise pressor reflex. We found that infusion of endomorphin 2 and naloxone in decerebrated rats potentiated the pressor responses to contraction of the triceps surae muscles. The endomorphin 2-induced potentiation of the pressor responses to contraction was prevented by infusion of APETx2, an ASIC3 antagonist. Specifically, the peak pressor response to contraction averaged 19.3 ± 5.6 mmHg for control (n = 10), 27.2 ± 8.1 mmHg after naloxone and endomorphin 2 infusion (n = 10), and 20 ± 8 mmHg after APETx2 and endomorphin 2 infusion (n = 10). Infusion of endomorphin 2 and naloxone did not potentiate the pressor responses to contraction in ASIC3 knockout rats (n = 6). Partly similar findings were observed when oxycodone was substituted for endomorphin 2. Oxycodone infusion significantly increased the exercise pressor reflex over its control level, but subsequent APETx2 infusion failed to restore the increase to its control level (n = 9). The peak pressor response averaged 23.1 ± 8.6 mmHg for control (n = 9), 33.2 ± 11 mmHg after naloxone and oxycodone were infused (n = 9), and 27 ± 8.6 mmHg after APETx2 and oxycodone were infused (n = 9). Our data suggest that after opioid receptor blockade, ASIC3 stimulation by the endogenous mu opioid, endomorphin 2, potentiated the exercise pressor reflex.NEW & NOTEWORTHY This paper provides the first in vivo evidence that endomorphin 2, an endogenous opioid peptide, can paradoxically increase the magnitude of the exercise pressor reflex by an ASIC3-dependent mechanism even when the contracting muscles are freely perfused.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Contracción Muscular , Músculo Esquelético , Naloxona , Oligopéptidos , Receptores Opioides mu , Reflejo , Animales , Masculino , Ratas , Canales Iónicos Sensibles al Ácido/metabolismo , Analgésicos Opioides/farmacología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Oligopéptidos/farmacología , Oxicodona/farmacología , Oxicodona/administración & dosificación , Condicionamiento Físico Animal/fisiología , Ratas Sprague-Dawley , Receptores Opioides mu/metabolismo , Reflejo/efectos de los fármacos , Reflejo/fisiología
9.
Neuroscience ; 539: 76-85, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38211933

RESUMEN

The use of mu-opioid receptor (MOP-r) agonists such as oxycodone together with cocaine is prevalent, and deaths attributed to using these combinations have increased. RATIONALE: It is unknown if functional single nucleotide polymorphisms (SNPs), such as the OPRM1 (MOP-r gene) SNP A118G, can predispose individuals to more dual opioid and psychostimulant intake. The dual self-administration (SA) of MOP-r agonists and cocaine has not been thoroughly examined, especially with regard to neurobiological changes. OBJECTIVES: We examined oxycodone SA and subsequent dual oxycodone and cocaine SA in male and female A112G (A/G and G/G, heterozygote and homozygote, respectively) mice, models of human A118G carriers, versus wild-type (A/A) mice. METHODS: Adult male and female A/G, G/G and A/A mice self-administered oxycodone (0.25 mg/kg/infusion, 4hr/session, FR 1.) for 10 consecutive days (sessions 1-10). Mice then self-administered cocaine (2 hr) following oxycodone SA (4 hr, as above) in each session for a further 10 consecutive days (sessions 11-20). Message RNA transcripts of 24 reward-related genes were examined in the dorsal striatum. RESULTS: Male and female A/G and G/G mice had greater oxycodone SA than A/A mice did in the initial 10 days and in the last 10 sessions. Further, A/G and G/G mice showed greater cocaine intake than A/A mice. Dorsal striatal mRNA levels of Pdyn, Fkbp5, Oprk1, and Oprm1 were altered following oxycodone and cocaine SA. CONCLUSIONS: These studies demonstrated that this functional genetic variation in Oprm1 affected dual opioid and cocaine SA and altered specific gene expression in the striatum.


Asunto(s)
Cocaína , Oxicodona , Adulto , Masculino , Femenino , Humanos , Ratones , Animales , Oxicodona/farmacología , Analgésicos Opioides , Polimorfismo de Nucleótido Simple , Cocaína/farmacología , Receptores Opioides , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo
10.
Brain Behav Immun ; 117: 100-111, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38199516

RESUMEN

Oxycodone is the most prescribed opioid for pain management and has been available in clinics for almost a century, but effects of chronic oxycodone have been studied less than morphine in preclinical and clinical studies. Newly developed depression has been coupled with chronic oxycodone use in a few clinical studies, but no preclinical studies have investigated the pathogenesis of oxycodone-induced depression. Gut microbiome changes following oxycodone use is an understudied area, and interleukin-17A (IL-17A) is linked to both the development of mood disorders and regulation of gut microbiome. The present study investigated effects of chronic oxycodone exposure on mood-related behaviors (depression and anxiety), pain hypersensitivity, physical dependence, immune markers, and the gut microbiome and tested the hypothesis that blocking IL-17A with a systemically administered monoclonal antibody reduces oxycodone-derived effects. Oxycodone (using an incremental dosing regimen) or saline was injected twice a day for 12 days. IL-17A Ab (200 µg/100 µl) or saline was administered every 3rd day during the 12-day interval. Chronic oxycodone induced a depression-like effect, but not anxiogenic- or anxiolytic-like effects; promoted hyperalgesia; increased IL-17A and IL-6 levels in the ventral tegmental area (VTA); and induced physical dependence. IL-17A Ab co-administration with oxycodone prevented the depression-like effect and hyperalgesia, reduced naloxone-precipitated withdrawal signs, and normalized the increase in cytokine levels. Chronic oxycodone exposure did not affect gut microbiome and integrity. Our results identify a role for IL-17A in oxycodone-related behavioral and neuroimmune effects and show that IL-17A Ab has potential therapeutic value in blocking these effects. Given that humanized IL-17A Ab is approved for treatment of psoriasis and psoriatic arthritis, our findings point toward studying it for use in the treatment of oxycodone use disorder.


Asunto(s)
Oxicodona , Trastornos Relacionados con Sustancias , Ratas , Animales , Oxicodona/farmacología , Área Tegmental Ventral , Interleucina-17/metabolismo , Interleucina-6/farmacología , Depresión/tratamiento farmacológico , Hiperalgesia/tratamiento farmacológico
11.
Psychopharmacology (Berl) ; 241(2): 359-377, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086926

RESUMEN

Abuse of opioids (mu-opioid agonists such as oxycodone) among parents during the gestation and early post-natal period is a concern for the long-term health of the offspring, beyond potential neonatal withdrawal symptoms. However, there is only limited information on such effects. OBJECTIVES: We examined how prenatal, and early-post natal oxycodone exposure affected opioid addiction behaviors. METHODS: Adult male and female C57BL/CJ mice housed separately were first injected with ascending doses of oxycodone 1 time/day (1 mg/kg × 10 days, 1.5 mg/kg × 10 days, 2 mg/kg × 10 days, s.c.) whereas control mice were injected with saline. Newly formed parental dyads were then housed together and continued to receive ascending doses of oxycodone (3 mg/kg × 10 days, 4 mg/kg × 10 days, 5 mg/kg × 10 days, 6 mg/kg × 10 days or saline, s.c.) or saline during mating and gestation until the birth of the litter. The dams continued to receive oxycodone or saline through lactation, until F1 offspring were weaned. Upon reaching adulthood (12 weeks of age), male and female F1 offspring were examined in intravenous self-administration (IVSA) of oxycodone, on oxycodone-induced conditioned place preference (CPP) and oxycodone-induced antinociception. RESULTS: Adult F1 male and female offspring of parental dyads exposed to oxycodone self-administered more oxycodone, compared to offspring of control parental dyads. Ventral and dorsal striatal mRNA levels of genes such as Fkbp5 and Oprm1 were altered following oxycodone self-administration. CONCLUSION: Prenatal and early post-natal oxycodone exposure enhanced oxycodone self-administration during adulthood in the C57BL/6 J mice.


Asunto(s)
Trastornos Relacionados con Opioides , Oxicodona , Embarazo , Masculino , Femenino , Ratones , Animales , Oxicodona/farmacología , Ratones Endogámicos C57BL , Analgésicos Opioides/farmacología , Condicionamiento Clásico
12.
Psychopharmacology (Berl) ; 241(2): 305-314, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37870564

RESUMEN

RATIONALE: Combinations of mu and kappa-opioid receptor (KOR) agonists have been proposed as analgesic formulations with reduced abuse potential. The feasibility of this approach has been increased by the development of KOR agonists with biased signaling profiles that produce KOR-typical antinociception with fewer KOR-typical side effects. OBJECTIVE: The present study determined if the biased KOR agonists, nalfurafine and triazole 1.1, could reduce choice for oxycodone in rhesus monkeys as effectively as the typical KOR agonist, salvinorin A. METHODS: Adult male rhesus monkeys (N = 5) responded under a concurrent schedule of food delivery and intravenous cocaine injections (0.018 mg/kg/injection). Once trained, cocaine (0.018 mg/kg/injection) or oxycodone (0.0056 mg/kg/injection) was tested alone or in combination with contingent injections of salvinorin A (0.1-3.2 µg/kg/injection), nalfurafine (0.0032-0.1 µg/kg/injection), triazole 1.1 (3.2-100.0 µg/kg/injection), or vehicle. In each condition, the cocaine or oxycodone dose, as well as the food amount, was held constant across choice components, while the dose of the KOR agonist was increased across choice components. RESULTS: Cocaine and oxycodone were chosen over food on more than 80% of trials when administered alone or contingently with vehicle. When KOR agonists were administered contingently with either cocaine or oxycodone, drug choice decreased in a dose-dependent manner. Salvinorin A and triazole 1.1 decreased drug-reinforcer choice without altering total trials completed (i.e., choice allocation shifted to food), while nalfurafine dose dependently decreased total trials completed. CONCLUSIONS: These results demonstrate that salvinorin A and triazole 1.1, but not nalfurafine, selectively reduce cocaine and oxycodone self-administration independent of nonspecific effects on behavior, suggesting that G-protein bias does not appear to be a moderating factor in this outcome. Triazole 1.1 represents an important prototypical compound for developing novel KOR agonists as deterrents for prescription opioid abuse.


Asunto(s)
Cocaína , Diterpenos de Tipo Clerodano , Morfinanos , Oxicodona , Compuestos de Espiro , Animales , Masculino , Oxicodona/farmacología , Analgésicos Opioides/farmacología , Macaca mulatta , Preparaciones Farmacéuticas , Autoadministración , Cocaína/farmacología , Triazoles , Receptores Opioides kappa/agonistas , Relación Dosis-Respuesta a Droga
13.
Neuropharmacology ; 242: 109773, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37865136

RESUMEN

Individuals with opioid use disorder (OUD) frequently use other substances, including cocaine. Opioid withdrawal is associated with increased likelihood of cocaine use, which may represent an attempt to ameliorate opioid withdrawal effects. Clinically, 30% of co-using individuals take opioids and cocaine exclusively in a sequential manner. Preclinical studies evaluating mechanisms of drug use typically study drugs in isolation. However, polysubstance use is a highly prevalent clinical issue and thus, we established a novel preclinical model of sequential oxycodone and cocaine self-administration (SA) whereby rats acquired oxycodone and cocaine SA in an A-B-A-B design. Somatic signs of withdrawal were evaluated at 0, 22, and 24h following oxycodone SA, with the 24h timepoint representing somatic signs immediately following cocaine SA. Preclinically, aberrant glutamate signaling within the nucleus accumbens core (NAcore) occurs following use of cocaine or opioids, whereby medium spiny neurons (MSNs) rest in a potentiated or depotentiated state, respectively. Further, NAcore glial glutamate transport via GLT-1 is downregulated following SA of either drug alone. However, it is not clear if cocaine can exacerbate opioid-induced changes in glutamate signaling. In this study, NAcore GLT-1 protein and glutamate plasticity were measured (via AMPA/NMDA ratio) following SA. Rats acquired SA of both oxycodone and cocaine regardless of sex, and the acute oxycodone-induced increase in somatic signs at 22h was positively correlated with cocaine consumption during the cocaine testing phase. Cocaine use following oxycodone SA downregulated GLT-1 and reduced AMPA/NMDA ratios compared to cocaine use following food SA. Further, oxycodone SA alone was associated with reduced AMPA/NMDA ratio. Together, behavioral signs of oxycodone withdrawal may drive cocaine use and further dysregulate NAcore glutamate signaling.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Ratas , Animales , Cocaína/farmacología , Oxicodona/farmacología , Ácido Glutámico/metabolismo , Ratas Sprague-Dawley , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Analgésicos Opioides/farmacología , N-Metilaspartato/farmacología , Trastornos Relacionados con Cocaína/metabolismo , Núcleo Accumbens , Autoadministración
14.
PeerJ ; 11: e16601, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089912

RESUMEN

This study aimed to investigate the interactions between icotinib/apatinib and oxycodone in rats and to unveil the underlying mechanism. An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to determine oxycodone and its demethylated metabolite simultaneously. In vivo, Sprague-Dawley (SD) male rats were administered oxycodone with or without icotinib or apatinib. Blood samples were collected and subjected to UPLC-MS/MS analysis. An enzyme incubation assay was performed to investigate the mechanism of drug-drug interaction using both rat and human liver microsomes (RLM and HLM). The results showed that icotinib markedly increased the AUC(0-t) and AUC(0-∞) of oxycodone but decreased the CLz/F. The Cmax of oxycodone increased significantly upon co-administration of apatinib. In vitro, the Km value of oxycodone metabolism was 101.7 ± 5.40 µM and 529.6 ± 19.60 µM in RLMs and HLMs, respectively. Icotinib and apatinib inhibited the disposition of oxycodone, with a mixed mechanism in RLM (IC50 = 3.29 ± 0.090 µM and 0.95 ± 0.88 µM, respectively) and a competitive and mixed mechanism in HLM (IC50 = 22.34 ± 0.81 µM and 0.48 ± 0.05 µM, respectively). In conclusion, both icotinib and apatinib inhibit the metabolism of oxycodone in vitro and in vivo. Therefore, the dose of oxycodone should be reconsidered when co-administered with icotinib or apatinib.


Asunto(s)
Oxicodona , Espectrometría de Masas en Tándem , Ratas , Masculino , Humanos , Animales , Ratas Sprague-Dawley , Cromatografía Liquida , Oxicodona/farmacología , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos
15.
Drug Alcohol Depend ; 253: 110987, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37864957

RESUMEN

Despite the thousands of lives lost during the ongoing opioid crisis, a scarcity of new and effective clinical treatments for opioid use disorder (OUD) remains. To address this unmet need, some researchers have turned to dissociative and psychedelic drugs to treat multiple psychiatric conditions. In particular, low doses of ketamine have been shown to attenuate opioid withdrawal and drug use in clinical and preclinical studies. However, ketamine has misuse liability and dissociative side effects that may limit its widespread application as a treatment for OUD. More recently, (2R,6R)-hydroxynorketamine (HNK), a ketamine metabolite that lacks misuse potential, has gained attention for its effectiveness in depression and stress models. To uncover its role in OUD, we tested the time-dependent effects of (2R,6R)-HNK on oxycodone withdrawal and reinstatement of oxycodone conditioned place preference (CPP). In male and female oxycodone-dependent mice, we found that 24h pretreatment with (2R,6R)-HNK (10 or 30mg/kg, s.c.) reduced the frequency of withdrawal-like behaviors and global withdrawal scores during naloxone-precipitated withdrawal, whereas 1h pretreatment with (2R,6R)-HNK only reduced paw tremors and the sum of global withdrawal scores but not GWS Z-scores. In other experiments, both 1h and 24h pretreatment with (2R,6R)-HNK (30mg/kg, s.c.) blocked drug-induced reinstatement of oxycodone CPP. Finally, we found (2R,6R)-HNK (30mg/kg, sc) had no effect on locomotor activity and thigmotaxis. Together, these results indicate that acute (2R,6R)-HNK has efficacy in some preclinical models of OUD without producing locomotor or anxiety-like side effects.


Asunto(s)
Alucinógenos , Ketamina , Humanos , Ratones , Masculino , Femenino , Animales , Ketamina/farmacología , Antidepresivos , Oxicodona/farmacología , Oxicodona/uso terapéutico
16.
Physiol Behav ; 272: 114372, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37805135

RESUMEN

During opioid use and abstinence, sleep disturbances are common and are thought to exacerbate drug craving. In this study, we tested the hypothesis that sleep restriction during abstinence from oxycodone self-administration would increase drug seeking during extinction and footshock reinstatement tests. We also performed behavioral phenotyping to determine if individual variation in responses to stressors and/or pain are associated with oxycodone seeking during abstinence, as stress, pain and sleep disturbance are often co-occurring phenomena. Sleep restriction during abstinence did not have selective effects on oxycodone seeking for either sex in extinction and footshock reinstatement tests. Some phenotypes were associated with drug seeking; these associations differed by sex and type of drug seeking assessment. In female rats, pain-related phenotypes were related to high levels of drug seeking during the initial extinction session. In male rats, lower anxiety-like behavior in the open field was associated with greater drug seeking, although this effect was lost when correcting for oxycodone intake. Adrenal sensitivity prior to oxycodone exposure was positively associated with footshock reinstatement in females. This work identifies sex-dependent relationships between HPA axis function and opioid seeking, indicating that HPA axis function could be a therapeutic target for the treatment of opioid use disorder, with tailored approaches based on sex. Sleep disturbance during abstinence did not appear to be a major contributing factor to opioid seeking.


Asunto(s)
Analgésicos Opioides , Oxicodona , Ratas , Masculino , Femenino , Animales , Oxicodona/farmacología , Analgésicos Opioides/farmacología , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Dolor , Autoadministración
17.
Neurosci Lett ; 815: 137479, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714288

RESUMEN

Dezocine is a partial mu opioid receptor agonist previously used as an analgesic for perioperative acute pain in the US and is now the most used perioperative analgesic in China. In general, dezocine is well-tolerated, with relatively minimal risk of fatal respiratory depression. To our knowledge, there are no reports of dezocine addiction, which suggests that the abuse liability of dezocine is low. The overarching goal of this study was to determine the efficacy of a novel formulation of dezocine (Cyc-dezocine), developed for intraperitoneal or intranasal administration, to reduce voluntary opioid taking in rats. One cohort of male rats self-administered intravenous oxycodone on a fixed-ratio 5 schedule of reinforcement. Once oxycodone taking stabilized, rats were pretreated with systemic injections of vehicle or Cyc-dezocine. Cyc-dezocine dose-dependently reduced intravenous oxycodone self-administration. A second cohort of male and female rats self-administered oral oxycodone from drinking water. Once oxycodone taking stabilized, rats were pretreated with intra-nasal Cyc-dezocine. Consistent with the effects of i.p. Cyc-dezocine in our intravenous oxycodone studies, intra-nasal Cyc-dezocine attenuated oral oxycodone self-administration. Together, these findings support the need for further studies investigating the therapeutic potential of Cyc-dezocine for treating opioid use disorder.


Asunto(s)
Analgésicos Opioides , Oxicodona , Humanos , Ratas , Masculino , Femenino , Animales , Oxicodona/farmacología , Oxicodona/uso terapéutico , Tetrahidronaftalenos/farmacología , Analgésicos/farmacología , Relación Dosis-Respuesta a Droga , Receptores Opioides mu/agonistas
19.
Drug Alcohol Depend ; 252: 110953, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734282

RESUMEN

BACKGROUND: Recent preclinical studies have investigated the atypical kappa-opioid receptor (KOR) agonist, nalfurafine, as a co-formulary with mu-opioid receptor (MOR) agonists as a potential deterrent for misuse. However, no study has investigated effects of nalfurafine combined with a MOR agonist using an oral route of administration. The objective of the current study was to measure behavioral effects of orally administered oxycodone and nalfurafine, alone and combined, in rhesus monkeys using a quantitative behavioral observation procedure. METHODS: Adult male rhesus monkeys (N=5) were orally administered vehicle, oxycodone (0.56-1.8mg/kg), nalfurafine (0.001-0.0056mg/kg), or mixtures (1.0mg/kg oxycodone/0.001-0.0056mg/kg nalfurafine) in a Jell-O vehicle at multiple timepoints (10-320min). Species-typical and drug-induced behaviors were recorded by observers blinded to conditions. RESULTS: Oxycodone alone significantly increased scratch and face-rub behaviors without affecting other behaviors. Nalfurafine decreased baseline levels of scratch without affecting other behaviors, and oxycodone-nalfurafine combinations resulted in reduced oxycodone-induced scratching at a dose (0.001mg/kg) that did not produce sedation-like effects. Oxycodone combined with larger nalfurafine doses (0.0032-0.0056mg/kg) also reduced oxycodone induced scratch that were accompanied with sedation-like effects (i.e., increased lip droop). CONCLUSIONS: Nalfurafine was orally active in rhesus monkeys, and it reduced oxycodone-induced pruritus at a dose that did not produce sedation-like effects that are commonly observed with prototypical KOR agonists. Combinations of low doses of nalfurafine with MOR agonists such as oxycodone may be well-tolerated by humans who are prescribed MOR agonists for the treatment of pain.


Asunto(s)
Oxicodona , Receptores Opioides kappa , Humanos , Animales , Masculino , Oxicodona/farmacología , Macaca mulatta , Receptores Opioides kappa/agonistas , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Administración Oral
20.
Viruses ; 15(9)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37766354

RESUMEN

In the 21st century, the effects of HIV-associated neurocognitive disorders (HAND) have been significantly reduced in individuals due to the development of antiretroviral therapies (ARTs). However, the growing epidemic of polysubstance use (PSU) has led to concern for the effects of PSU on HIV-seropositive individuals. To effectively treat individuals affected by HAND, it is critical to understand the biological mechanisms affected by PSU, including the identification of novel markers. To fill this important knowledge gap, we used an in vivo HIV-1 Transgenic (HIV-1 Tg) animal model to investigate the effects of the combined use of chronic methamphetamine (METH) and oxycodone (oxy). A RNA-Seq analysis on the striatum-a brain region that is primarily targeted by both HIV and drugs of abuse-identified key differentially expressed markers post-METH and oxy exposure. Furthermore, ClueGO analysis and Ingenuity Pathway Analysis (IPA) revealed crucial molecular and biological functions associated with ATP-activated adenosine receptors, neuropeptide hormone activity, and the oxytocin signaling pathway to be altered between the different treatment groups. The current study further reveals the harmful effects of chronic PSU and HIV infection that can subsequently impact neurological outcomes in polysubstance users with HAND.


Asunto(s)
Infecciones por VIH , VIH-1 , Metanfetamina , Animales , Humanos , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Oxicodona/farmacología , RNA-Seq , Trastornos Neurocognitivos , VIH-1/genética , Metanfetamina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...