Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.747
Filtrar
1.
J Environ Sci (China) ; 150: 54-65, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306427

RESUMEN

In this study, supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate (PMS) which successfully degrade bisphenol F (BPF). Among the supported catalysts (i.e., Pd/SiO2, Pd/CeO2, Pd/TiO2 and Pd/Al2O3), Pd/TiO2 exhibited the highest catalytic activity due to the high isoelectric point and high Pd0 content. Pd/TiO2 prepared by the deposition method leads to high Pd dispersion, which are the key factors for efficient BPF degradation. The influencing factors were investigated during the reaction process and two possible degradation pathways were proposed. Density functional theory (DFT) calculations demonstrate that stronger BPF adsorption and BPF degradation with lower reaction barrier occurs on smaller Pd particles. The catalytic activities are strongly dependent on the structural features of the catalysts. Both experiments and theoretical calculations prove that the reaction is actuated by electron transfer rather than radicals.


Asunto(s)
Compuestos de Bencidrilo , Paladio , Peróxidos , Fenoles , Paladio/química , Fenoles/química , Catálisis , Compuestos de Bencidrilo/química , Peróxidos/química , Modelos Químicos , Contaminantes Químicos del Agua/química , Adsorción
2.
J Environ Sci (China) ; 148: 515-528, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095185

RESUMEN

The reduction of nitrobenzene to aniline is very important for both pollution control and chemical synthesis. Nevertheless, difficulties still remain in developing a catalytic system having high efficiency and selectivity for the production of aniline. Herein, it was found that PdO nanoparticles highly dispersed on TiO2 support (PdO/TiO2) functioned as a highly efficient catalyst for the reduction of nitrobenzene in the presence of NaBH4. Under favorable conditions, 95% of the added nitrobenzene (1 mmol/L) was reduced within 1 min with an ultra-low apparent activation energy of 10.8 kJ/mol by using 0.5%PdO/TiO2 as catalysts and 2 mmol/L of NaBH4 as reductants, and the selectivity to aniline even reached up to 98%. The active hydrogen species were perceived as dominant species during the hydrogenation of nitrobenzene by the results of isotope labeling experiments and ESR spectroscopic. A mechanism was proposed as follows: PdO activates the nitro groups and leads to in-situ generation of Pd, and the generated Pd acts as the reduction sites to produce active hydrogen species. In this catalytic system, nitrobenzene prefers to be adsorbed on the PdO nanoparticles of the PdO/TiO2 composite. Subsequently, the addition of NaBH4 results in in-situ generation of a Pd/PdO/TiO2 composite from the PdO/TiO2 composite, and the Pd nanoclusters would activate NaBH4 to generate active hydrogen species to attack the adsorbed nitro groups. This work will open up a new approach for the catalytic transfer hydrogenation of nitrobenzene to aniline in green chemistry.


Asunto(s)
Compuestos de Anilina , Nitrobencenos , Paladio , Titanio , Nitrobencenos/química , Compuestos de Anilina/química , Titanio/química , Hidrogenación , Catálisis , Paladio/química , Modelos Químicos
3.
J Environ Sci (China) ; 148: 614-624, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095194

RESUMEN

The overuse of antibiotics and antitumor drugs has resulted in more and more extensive pollution of water bodies with organic drugs, causing detrimental ecological effects, which have attracted attention towards effective and sustainable methods for antibiotics and antitumor drug degradation. Here, the hybrid nanomaterial (g-C3N4@Fe/Pd) was synthesized and used to remove a kind of both an antibiotic and antitumor drug named mitoxantrone (MTX) with 92.0% removal efficiency, and the MTX removal capacity is 450 mg/g. After exposing to the hybrid material the MTX aqueous solution changed color from dark blue to lighter progressively, and LC-UV results of residual solutions show that a new peak at 3.0 min (MTX: 13.2 min) after removal by g-C3N4@Fe/Pd appears, with the simultaneous detection of intermediate products indicating that g-C3N4@Fe/Pd indeed degrades MTX. Detailed mass spectrometric analysis suggests that the nuclear mass ratio decreased from 445.2 (M+1H) to 126.0 (M+1H), 169.1 (M+1H), 239.2 (M+1H), 267.3 (M+1H), 285.2 (M+1H), 371.4 (M+1H) and 415.2 (M+1H), and the maximum proportion (5.63%) substance of all degradation products (126.0 (M+1H)) is 40-100 times less toxic than MTX. A mechanism for the removal and degradation of mitoxantrone was proposed. Besides, actual water experiments confirmed that the maximum removal capacity of MTX by g-C3N4@Fe/Pd is up to 492.4 mg/g (0.02 g/L, 10 ppm).


Asunto(s)
Grafito , Nanopartículas del Metal , Mitoxantrona , Paladio , Contaminantes Químicos del Agua , Mitoxantrona/química , Contaminantes Químicos del Agua/química , Grafito/química , Nanopartículas del Metal/química , Paladio/química , Hierro/química , Catálisis , Compuestos de Nitrógeno/química , Antineoplásicos/química
4.
J Environ Sci (China) ; 149: 221-233, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181637

RESUMEN

Catalytic reduction of nitrate over bimetallic catalysts has emerged as a technology for sustainable treatment of nitrate-containing groundwater. However, the structure of bimetallic has been much less investigated for catalyst optimization. Herein, two main types of Pd-Cu bimetallic nanocrystal structures, heterostructure and intermetallic, were prepared and characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results show that two individual Pd and Cu nanocrystals with a mixed interface exist in the heterostructure nanocrystals, while Pd and Cu atoms are uniformly distributed across the intermetallic Pd-Cu nanocrystals. The catalytic nitrate reduction experiments were carried out in a semibatch reactor under constant hydrogen flow. The nitrate conversion rate of the heterostructure Pd-Cu nanocrystals supported on α-Al2O3, γ-Al2O3, SBA-15, and XC-72R exhibited 3.82-, 6.76-, 4.28-, 2.44-fold enhancements relative to the intermetallic nanocrystals, and the nitrogen and nitrite were the main products for the heterostructure and intermetallic Pd-Cu nanocrystals, respectively. This indicates that the catalytic nitrate reduction over Pd-Cu catalyst is sensitive to the bimetallic structures of the catalysts, and heterostructure bimetallic nanocrystals exhibit better catalytic performances on both the activity and selectivity, which may provide new insights into the design and optimization of catalysts to improve catalytic activity and selectivity for nitrate reduction in water.


Asunto(s)
Cobre , Nitratos , Oxidación-Reducción , Paladio , Catálisis , Cobre/química , Paladio/química , Nitratos/química , Nanopartículas del Metal/química , Nanopartículas/química , Contaminantes Químicos del Agua/química , Modelos Químicos
5.
J Environ Sci (China) ; 149: 288-300, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181643

RESUMEN

Structural regulation of Pd-based electrocatalytic hydrodechlorination (EHDC) catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging. Herein, a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam (NF), which can inductive regulation of Pd for improving the EHDC performance. The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound, respectively. The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface, which optimizied the binding of EHDC intermediates. Additionally, the Mn-doped interlayer acted as a promoter for generating H* and accelerating the EHDC reaction. This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.


Asunto(s)
Manganeso , Níquel , Paladio , Catálisis , Paladio/química , Manganeso/química , Níquel/química , Técnicas Electroquímicas/métodos , Electrodos , Clorofenoles/química , Halogenación
6.
Nat Commun ; 15(1): 8346, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333142

RESUMEN

Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt1), several Pt atoms (Ptn) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (Kcat/Km) of 1.50 × 109 mM-1 min-1, about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder.


Asunto(s)
Biocatálisis , Catalasa , Oro , Platino (Metal) , Platino (Metal)/química , Oro/química , Humanos , Catalasa/química , Catalasa/metabolismo , Paladio/química , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Catálisis , Teoría Funcional de la Densidad , Nanopartículas del Metal/química
7.
Int J Mol Sci ; 25(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39337616

RESUMEN

A library of C-3 functionalized flavones was successfully provided via palladium-catalyzed amino- and aryloxycarbonylation reactions of 3-iodoflavone (1), under mild conditions. This methodology showed good functional group tolerance using a variety of amines and phenols, under an atmospheric pressure of carbon monoxide as a carbonyl source. While the flavone-3-carboxamides (2a-t) were produced in 22-79%, the flavone-3-carboxylates (4a'-l') were obtained in excellent yields (up to 88%), under identical reaction conditions, just by switching N-nucleophiles to O-nucleophiles. The convenient availability of the involved starting materials confers simplicity to this approach to design new C-3-substituted flavones of biological relevance. The solid-state structures of flavone-3-carboxamide (2r) and flavone-3-ester (4f') were further studied by single-crystal XRD analysis.


Asunto(s)
Flavonas , Paladio , Paladio/química , Catálisis , Flavonas/química , Ácidos Carboxílicos/química , Estructura Molecular , Amidas/química , Aminas/química
8.
Mikrochim Acta ; 191(10): 594, 2024 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264373

RESUMEN

A sandwich electrochemical sensor was fabricated based on multi-walled carbon nanotubes/ordered mesoporous carbon/AuNP (MWCNTs/CMK-3/AuNP) nanocomposites and porous core-shell nanoparticles Au@PdNPs to achieve rapid and sensitive detection of AFB1 in complex matrices. MWCNTs/CMK-3/AuNP nanocomposite, which was prepared by self-assembly method, served as a substrate material to increase the aptamer loading and improve the conductivity and electrocatalytic activity of the electrode for the first signal amplification. Then, Au@PdNPs, which were synthesized by one-pot aqueous phase method, were applied as nanocarriers loaded with plenty of capture probe antibody (Ab) and signal molecule toluidine blue (Tb) to form the Au@PdNPs-Ab-Tb bioconjugates for secondary signal amplification. The sensing system could still significantly improve the signal output intensity even in the presence of ultra-low concentration target compound due to the dual signal amplification of MWCNTs/CMK-3/AuNP nanocomposites and Au@PdNPs-Ab-Tb. The method exhibited high selectivity, low detection limit (9.13 fg/mL), and strong stability to differentiate AFB1 from other mycotoxins. Furthermore, the sensor has been successfully applied to the quantitative determination of AFB1 in corn, malt, and six herbs, which has potential applications in food safety, quality control, and environmental monitoring.


Asunto(s)
Aflatoxina B1 , Técnicas Electroquímicas , Oro , Límite de Detección , Nanopartículas del Metal , Nanotubos de Carbono , Paladio , Oro/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Paladio/química , Aflatoxina B1/análisis , Aflatoxina B1/inmunología , Nanotubos de Carbono/química , Técnicas Biosensibles/métodos , Anticuerpos Inmovilizados/inmunología , Nanocompuestos/química , Aptámeros de Nucleótidos/química , Contaminación de Alimentos/análisis , Zea mays/química , Electrodos
9.
J Transl Med ; 22(1): 814, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223625

RESUMEN

BACKGROUND: Breast cancer, with its high morbidity and mortality rates, is a significant global health burden. Traditional treatments-surgery, chemotherapy, and radiotherapy-are widely used but come with drawbacks such as recurrence, metastasis, and significant side effects, including damage to healthy tissues. To address these limitations, new therapeutic strategies are being developed. Peroxidases (POD) can catalyze excess H2O2 in the tumor microenvironment to generate reactive oxygen species (ROS), which induce cancer cell apoptosis by disrupting redox homeostasis and modulating apoptosis-related proteins. However, natural enzymes face challenges like poor stability, high cost, and sensitivity to environmental conditions, limiting their application in breast cancer treatment. Nanozymes, nanomaterials with enzyme-like activity, offer a promising alternative by overcoming these limitations. METHODS: In this study, we successfully prepared Au@Pd nanozymes with peroxidase activity by depositing metallic Pd on Au nanoparticles (Au NPs) synthesized using a trisodium citrate reduction method and ascorbic acid reduction. The in vitro validation was conducted through a series of experiments, including ROS detection, flow cytometry, CCK-8 assay, DNA damage assessment, live/dead cell staining, Western blot (WB), and qPCR. Tumor treatment was performed via tail vein injection of the drug, followed by HE staining of the treated tissues and biochemical analysis of the blood. RESULTS: Au@Pd nanozymes can effectively accumulate at the tumor site through the EPR effect and exert peroxidase-like activity, catalyzing the excess H2O2 in the tumor microenvironment to produce ROS. This triggers apoptosis pathways and DNA damage, leading to the downregulation of the anti-apoptotic protein Bcl-2, upregulation of the pro-apoptotic protein Bax, and induction of apoptosis-related genes, demonstrating strong anti-tumor effects. CONCLUSIONS: This study developed an efficient nanozyme-mediated catalytic therapy strategy targeting the tumor microenvironment for the treatment of breast cancer cells.


Asunto(s)
Apoptosis , Oro , Nanopartículas del Metal , Paladio , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Oro/química , Humanos , Catálisis , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Femenino , Paladio/uso terapéutico , Paladio/química , Paladio/farmacología , Animales , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Peróxido de Hidrógeno/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ratones Desnudos
10.
J Med Chem ; 67(18): 16296-16310, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39238096

RESUMEN

To targeted overcome the multidrug resistance (MDR) and metastasis of liver tumors, we proposed to develop a palladium (Pd) agent based on a specific residue of human serum albumin (HSA) for multiacting on tumor cell and other components in the tumor microenvironment. To this end, a series of Pd(II) 2-acetylpyridine thiosemicarbazone compounds were optimized to obtain a Pd(II) compound (5b) with significant cytotoxicity against HepG2/ADM cells. Subsequently, we constructed a HSA-5b complex delivery system and revealed the structural mechanism of HSA delivering 5b. Importantly, 5b/HSA-5b effectively inhibited the growth and metastasis of multidrug resistant liver tumors, and HSA enhanced the targeting ability of 5b and reduced its side effects in vivo. Furthermore, we confirmed the mechanisms of 5b/HSA-5b integrating to overcome MDR and metastasis of liver tumors: multiacting on cancer cell, activating immune response, and inactivating cancer-associated fibroblasts.


Asunto(s)
Antineoplásicos , Fibroblastos Asociados al Cáncer , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Neoplasias Hepáticas , Paladio , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Paladio/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Ratones , Células Hep G2 , Ratones Desnudos , Ratones Endogámicos BALB C , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Metástasis de la Neoplasia , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/uso terapéutico
11.
Anal Chem ; 96(39): 15780-15788, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39303167

RESUMEN

A smartphone-mediated self-powered biosensor is fabricated for miRNA-141 detection based on the CRISPR/Cas12a cross-cutting technique and a highly efficient nanozyme. As a novel nanozyme and a signal-amplified coreaction accelerator, the AuPtPd@GDY nanozyme exhibits an excellent ability to catalyze cascade color reactions and high conductivity to enhance the electrochemical signal for miRNA-141 assays. After CRISPR/Cas12a cross-cutting of S2-glucose oxidase (S2-GOD), the electrochemical signal is weakened, and miRNA-141 is detected by monitoring the decrease in the signal. On the other hand, a cascade reaction among glucose, H2O2, and TMB is catalyzed by GOD and AuPtPd@GDY, respectively, resulting in a color change of the solution, which senses miRNA-141. The self-powered biosensor enables value-assisted and visual detection of miRNA-141 with limits of detection of 3.1 and 15 aM, respectively. Based on the dual-modal self-powered sensing system, a smartphone-mediated "all-in-one" biosensing chip is designed to achieve the real-time and intelligent monitoring of miRNA-141. This work provides a new approach to design multifunctional biosensors to realize the visualization and portable detection of tumor biomarkers.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Teléfono Inteligente , MicroARNs/análisis , Humanos , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Oro/química , Límite de Detección , Paladio/química , Sistemas CRISPR-Cas
12.
Org Lett ; 26(40): 8453-8456, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39327256

RESUMEN

We report the stereoselective total synthesis of rhodocoranes I and J in 10 steps and 16.4% overall yield from (S)-limonene. The synthesis was accomplished through the convergent assembly of a highly substituted chiral cyclopentanone and a lithiated furanyl silyl ketene acetal. The requisite cyclopentanone framework was strategically constructed from the chiral pool, (S)-limonene, through a sequence of steps that included a hydroboration/oxidation, ozonolysis, aldol condensation, reduction, and palladium-catalyzed diastereoselective allylic transposition. This study provides a general approach to the synthesis of the rhodocorane family, known for their antibacterial, antifungal, and cytotoxic properties.


Asunto(s)
Ciclopentanos , Estereoisomerismo , Estructura Molecular , Catálisis , Ciclopentanos/química , Ciclopentanos/síntesis química , Terpenos/química , Terpenos/síntesis química , Terpenos/farmacología , Limoneno/química , Limoneno/farmacología , Limoneno/síntesis química , Ciclohexenos/química , Ciclohexenos/síntesis química , Paladio/química
13.
Int J Biol Macromol ; 279(Pt 4): 135386, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39245122

RESUMEN

Because of eco-friendliness, biodegradability and ease of modification, cellulose is deemed as alternative to unrenewable petroleum resources. Nonetheless, it is more indispensable to exploit corn cob cellulose produced from agricultural waste residue as supportive materials in green catalysis. In this study, a new magnetically benzimidazole functionalized cellulose/Fe3O4 derived from corn cob cellulose as a stabilizer agent (Fe3O4@CL-NHC) was prepared, and palladium was immobilized on this stabilizer (Fe3O4@CL-NHC-Pd). The catalyst was fully characterized by different techniques including TEM, SEM, and XPS analyses, etc. The abundant hydroxyl groups of cellulose provided uniform dispersion and high stability of palladium, while Fe3O4 as a support offered simple magnetic separation. High efficiency (up to 99 %) was demonstrated by this biocatalyst under green conditions in relatively short reaction times towards Suzuki reactions. Due to collaborative interactions of N-heterocyclic carbene and hydroxyl groups with palladium, the synthesized complex prevented metal leaching effectively (<1 %). Moreover, the magnetic property of this catalyst (43.0 emu g-1) provides facile recovery of this composite from the reaction mixture with great ease for several times, which overcomes issues of complicated work-up separation. This work offers a promising avenue to enriching the application of biopolymer from agricultural residue in the potential organic transformations.


Asunto(s)
Celulosa , Metano , Paladio , Zea mays , Paladio/química , Catálisis , Zea mays/química , Celulosa/química , Metano/química , Metano/análogos & derivados , Agricultura , Compuestos Heterocíclicos/química , Fenómenos Magnéticos
14.
Int J Biol Macromol ; 279(Pt 4): 135460, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39260635

RESUMEN

In this study, novel chitosan/polyethylene oxide/Ti3C2Tx 2D MXene nanosheets (CS/PEO/Ti3C2Tx) nanofibers were successfully prepared by a continuous electrospinning process. During the electrospinning process, induced by the syringe tip capillary effects and electric field force, the Ti3C2Tx nanosheets were aligned along the direction of the nanofiber formation to occur a highly oriented structure. This well-ordered arrangement of the inorganic Ti3C2Tx nanosheets within the organic polymer matrix nanofiber was similar with nacre-like 'brick-and-motar' structure to some extent, resulting in a marked increase in thermal stability and mechanical properties of the resultant CS/PEO/Ti3C2Tx nanofiber. As 4 wt% of Ti3C2Tx nanosheets loaded, the highest tensile strength of the CS/PEO/Ti3C2Tx nanofiber mats was achieved as 31.7 MPa, about two times that of neat CS/PEO nanofibers. Uniformly dispersed Pd nanoparticles in size of about 1.6 nm have been successfully immobilized on the composite nanofiber with a solution impregnation process. With a loading as low as 0.2 mol% of Pd, the resultant Pd@CS/PEO/Ti3C2Tx composite nanofiber catalysts were highly active for both Heck and Sonogashira coupling reactions with broad reactants application scope, and could be recycled 15 runs without significant loss of activities.


Asunto(s)
Quitosano , Nanofibras , Paladio , Polietilenglicoles , Quitosano/química , Nanofibras/química , Catálisis , Polietilenglicoles/química , Paladio/química , Titanio/química , Resistencia a la Tracción , Nanocompuestos/química
15.
Int J Biol Macromol ; 279(Pt 4): 135348, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39270913

RESUMEN

In this study, we successfully prepared palladium/agarose/copper foam (Pd/AG/CF) composite electrodes by utilizing the three-dimensional network structure agarose (AG), a green material derived from biomass, and homogeneously immobilizing palladium (Pd) atoms on a copper foam (CF) substrate through a facile route. The electrode showed excellent performance in the electrocatalytic degradation of doxycycline (DOX), with a high DOX degradation rate of 92.19 % in 60 min. In-depth studies revealed that palladium can form metal-metal interactions with the CF substrates, which enhances the electron transfer on the catalyst surface. In addition, the introduction of agarose effectively prevented the agglomeration of palladium nanoparticles. In addition, the hydroxyl functional groups in the molecular structure of agarose facilitate interactions between water molecules and the electrode interface through the formation of hydrogen bonds, thereby further enhancing the efficiency of the electrocatalytic reaction. In addition to good stability and reusability. Microbial toxicity test results show that the degraded wastewater has minimal impact on the environment. Also, possible degradation pathways of DOX were explored in this study. Finally, a novel continuous flow reactor was designed, featuring a unique design that ensures full contact between wastewater and the composite electrodes, thereby achieving continuous and efficient treatment of antibiotic wastewater.


Asunto(s)
Cobre , Doxiciclina , Electrodos , Nanopartículas del Metal , Paladio , Sefarosa , Paladio/química , Cobre/química , Sefarosa/química , Catálisis , Nanopartículas del Metal/química , Doxiciclina/química , Contaminantes Químicos del Agua/química , Técnicas Electroquímicas
16.
Sensors (Basel) ; 24(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39275613

RESUMEN

The detection of dopamine is of great significance for human health. Herein, Pd nanoparticles were loaded on Cu nanoplates (Pd/Cu NPTs) by a novel liquid phase reduction method. A novel dopamine (DA) electrochemical sensor based on the Pd NPs/Cu/glass carbon electrode (Pd/Cu NPTs/GCE) was constructed. This sensor showed a wide linear range of 0.047 mM to 1.122 mM and a low limit of detection (LOD) of 0.1045 µM (S/N = 3) for DA. The improved performance of this sensor is attributed to the obtained tiny Pd nanoparticles which increase the catalytic active sites and electrochemical active surface areas (ECSAs). Moreover, the larger surface area of two-dimensional Cu nanoplates can load more Pd nanoparticles, which is another reason to improve performance. The Pd/Cu NPTs/GCE sensor also showed a good reproducibility, stability, and excellent anti-interference ability.


Asunto(s)
Cobre , Dopamina , Técnicas Electroquímicas , Límite de Detección , Nanopartículas del Metal , Paladio , Dopamina/análisis , Cobre/química , Nanopartículas del Metal/química , Paladio/química , Técnicas Electroquímicas/métodos , Electrodos , Técnicas Biosensibles/métodos , Humanos , Reproducibilidad de los Resultados
17.
World J Microbiol Biotechnol ; 40(10): 310, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190163

RESUMEN

Dyes are the coloured substances that are applied on different substrates such as textiles, leather and paper products, etc. Azo dyes release from the industries are toxic and recalcitrant wastewater pollutants, therefore it is necessary to degrade these pollutants from water. In this study, the palladium (0) nanoparticles (PdNPs) were generated through the biological process and exhibited for the catalytic degradation of azo dye. The palladium nanoparticles (PdNPs) were synthesized by using the cell-free approach i.e. extract of fungal strain Rhizopus sp. (SG-01), which significantly degrade the azo dye (methyl orange). The amount of catalyst was optimized by varying the concentration of PdNPs (1 mg/mL to 4 mg/mL) for 10 mL of 50 ppm methyl orange (MO) dye separately. The time dependent study demonstrates the biogenic PdNPs could effectively degrade the methyl orange dye up to 98.7% with minimum concentration (3 mg/mL) of PdNPs within 24 h of reaction. The long-term stability and effective catalytic potential up to five repeated cycles of biogenic PdNPs have good significance for acceleration the degradation of azo dyes. Thus, the use of biogenic palladium nanoparticles for dye degradation as outlined in the present study can provide an alternative and economical method for the synthesis of PdNPs as well as degradation of azo dyes present in wastewater and is helpful to efficiently remediate textile effluent.


Asunto(s)
Compuestos Azo , Biodegradación Ambiental , Colorantes , Paladio , Rhizopus , Aguas Residuales , Contaminantes Químicos del Agua , Compuestos Azo/metabolismo , Compuestos Azo/química , Paladio/química , Paladio/metabolismo , Colorantes/metabolismo , Colorantes/química , Catálisis , Contaminantes Químicos del Agua/metabolismo , Aguas Residuales/química , Aguas Residuales/microbiología , Rhizopus/metabolismo , Nanopartículas del Metal/química
18.
Chem Pharm Bull (Tokyo) ; 72(8): 772-774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39198182

RESUMEN

We report chemoselective hydrogenation of α,ß-unsaturated anilides catalyzed by the palladium-polymethylhydrosiloxane (hydrosilane) system. Under this condition, C-C double bonds are selectively reduced while other reducible groups such as acetyl groups, nitro groups, nitriles, benzyl ethers, and halogens are largely tolerated. This chemoselective hydrogenation is promising for the development of efficient synthetic routes for multi-functional compounds.


Asunto(s)
Paladio , Hidrogenación , Paladio/química , Catálisis , Estructura Molecular , Silanos/química
19.
Int J Biol Macromol ; 278(Pt 3): 134573, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39214840

RESUMEN

The utilization efficiency of palladium-based catalysts has sharply increased in many catalytic reactions. However, numerous studies have shown that preparing alloys of palladium with other metals has superior catalytic activity than pure palladium. Additionally, hierarchical porous carbon has gradually developed into an excellent carrier for loading bimetallic nanoparticles. In this study, we firstly pyrolyzed chitosan, sodium bicarbonate and nickel nitrate to create highly dispersed porous carbon materials doped with Ni NPs. The carbon materials were then grafted with silane coupling agent (APTMS) to afford them with amino groups on the surface. Taking advantage of the fact that Pd2+ can react with Ni in spontaneous reduction reaction, Pd was deposited on the surface of Ni to produce PdNi bimetallic-loaded carbon catalysts containing amino groups. The resulting catalysts were examined by a series of characterizations and were found to have a hierarchically porous structure and large specific surface area, which increased the number of active sites of the catalysts. In comparison to other Pd catalysts, the PdNi/HPCS-NH2 catalysts displayed remarkable activity for Suzuki coupling reaction and hydro reduction of nitroaromatics, which exhibited a high turnover frequency value (TOF) of 37,857 h-1 and 680.9 h-1, respectively. These were mainly due to the high dispersion of the PdNi NPs and the superior structure of the carriers. Moreover, the catalysts did not experience a significant decline in activity after ten cycles. All in all, this investigation has created a new approach for the fabrication of novel carriers for Pd catalysts, which is in line with the concept of green chemistry and recyclable.


Asunto(s)
Carbono , Quitosano , Níquel , Paladio , Quitosano/química , Catálisis , Porosidad , Paladio/química , Níquel/química , Carbono/química , Nanopartículas del Metal/química
20.
J Mol Graph Model ; 132: 108847, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39163731

RESUMEN

Hydrogen peroxide (H2O2), a versatile green compound, is increasingly in demand. The electrochemical two-electron oxygen reduction reaction (2e- ORR) is a simple and environmentally friendly substitute method to the traditional anthraquinone oxidation method for H2O2 production. This study systematically investigates the 2e- ORR process on single transition metal atom-loaded boron fullerene (M - B40) using density functional theory calculations. In evaluating the stability of the catalysts, we found that Au, Pd, Pt, Rh, and Ir atoms adsorbed on hexagonal or heptagonal sites of B40 exhibit good stability. Among these, Pd-modified B40 heptagonal cavity (Pd-B40-heptagonal) demonstrates an ideal Gibbs free energy change for OOH* (4.49 eV) and efficiently catalyzes H2O2 production at a low overpotential (0.27 V). Electronic structure analysis reveals that electron transfer between Pd-B40-heptagonal and adsorbed O2 facilitates O2 activation. Additionally, the high 2e- ORR activity of Pd-B40-heptagonal is attributed to electron transfer from the Pd-d orbitals to the π* anti-bonding of p orbitals of OOH*, moderately activating the O-O bond. This study offers valuable understanding designing high-performance electrocatalysts for 2e- ORR.


Asunto(s)
Peróxido de Hidrógeno , Oxidación-Reducción , Catálisis , Peróxido de Hidrógeno/química , Paladio/química , Fulerenos/química , Técnicas Electroquímicas/métodos , Modelos Moleculares , Teoría Funcional de la Densidad , Oxígeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA