Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.435
Filtrar
1.
Brain Behav ; 14(7): e3608, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38956886

RESUMEN

INTRODUCTION: Cerebral ischemia reperfusion injury (CIRI) often leads to deleterious complications after stroke patients receive reperfusion therapy. Exercise preconditioning (EP) has been reported to facilitate brain function recovery. We aim to explore the specific mechanism of EP in CIRI. METHODS: Sprague-Dawley rats were randomized into Sham, middle cerebral artery occlusion (MCAO), and EP groups (n = 11). The rats in the EP group received adaptive training for 3 days (10 m/min, 20 min/day, with a 0° incline) and formal training for 3 weeks (6 days/week, 25 m/min, 30 min/day, with a 0° incline). Then, rats underwent MCAO surgery to establish CIRI models. After 48 h, neurological deficits and cerebral infarction of the rats were measured. Neuronal death and apoptosis in the cerebral cortices were detected. Furthermore, RNA sequencing was conducted to investigate the specific mechanism of EP on CIRI, and qPCR and Western blotting were further applied to confirm RNA sequencing results. RESULTS: EP improved neurological deficit scores and reduced cerebral infarction in MCAO rats. Additionally, pre-ischemic exercise also alleviated neuronal death and apoptosis of the cerebral cortices in MCAO rats. Importantly, 17 differentially expressed genes (DEGs) were identified through RNA sequencing, and these DEGs were mainly enriched in the HIF-1 pathway, cellular senescence, proteoglycans in cancer, and so on. qPCR and Western blotting further confirmed that EP could suppress TIMP1, SOCS3, ANGPTL4, CDO1, and SERPINE1 expressions in MCAO rats. CONCLUSION: EP can improve CIRI in vivo, the mechanism may relate to TIMP1 expression and HIF-1 pathway, which provided novel targets for CIRI treatment.


Asunto(s)
Infarto de la Arteria Cerebral Media , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/terapia , Ratas , Masculino , Condicionamiento Físico Animal/fisiología , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Análisis de Secuencia de ARN , Modelos Animales de Enfermedad , Apoptosis , Precondicionamiento Isquémico/métodos
2.
Braz J Med Biol Res ; 57: e13452, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38958368

RESUMEN

The misuse of anabolic androgenic steroid associated or not with physical workouts disrupts gastrointestinal (GI) function homeostasis. Our goal was to investigate the effects of nandrolone decanoate (ND) and moderate swimming on the GI transit of solid meals, GI motor contractility, and intestinal histology in rats. Male Wistar rats were allocated to four groups that received intramuscular injections of ND (5.0 mg/kg) or vehicle (60.0 µL) and were submitted or not to swimming sessions (60 min, 5% body weight overload) for 4 weeks. Gastric emptying, intestinal transit, in vitro GI contractility, intestinal morphometry, and duodenal mucosal mast cells were evaluated in all experimental groups. ND treatment accelerated gastric emptying, slowed small intestine transit time, enhanced gastric carbachol-mediated reactivity, decreased crypt depth and villus height, reduced mucosal thickness, and increased the circular and longitudinal muscle layer thickness of the duodenum in sedentary rats. Moderate exercise accelerated intestinal transit time and reduced submucosa thickness. In vehicle-treated animals, a strong negative correlation was found between intestinal transit and mucosal mast cells, which was reversed by ND treatment. Combining ND treatment and swimming accelerated gastric emptying, increased duodenal cholinergic reactivity, inhibited the sodium nitroprusside relaxing response, increased the number of duodenal mast cells, decreased villus height, and increased the thickness of all muscle layers. ND changed the morphological and functional properties of the GI tract over time, with intense dysmotility, especially in sedentary animals, but moderate exercise seemed to have played a compensatory role in these harmful effects in the gut.


Asunto(s)
Anabolizantes , Duodeno , Motilidad Gastrointestinal , Nandrolona Decanoato , Nandrolona , Condicionamiento Físico Animal , Ratas Wistar , Animales , Masculino , Nandrolona Decanoato/farmacología , Duodeno/efectos de los fármacos , Motilidad Gastrointestinal/efectos de los fármacos , Anabolizantes/farmacología , Nandrolona/farmacología , Nandrolona/análogos & derivados , Mastocitos/efectos de los fármacos , Ratas , Natación , Vaciamiento Gástrico/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Tránsito Gastrointestinal/efectos de los fármacos
3.
FASEB J ; 38(14): e23770, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38995817

RESUMEN

Repeated bouts of high-intensity interval training (HIIT) induce an improvement in metabolism via plasticity of melanocortin circuits and attenuated hypothalamic inflammation. HIF-1α, which plays a vital role in hypothalamus-mediated regulation of peripheral metabolism, is enhanced in the hypothalamus by HIIT. This study aimed to investigate the effects of HIIT on hypothalamic HIF-1α expression and peripheral metabolism in obese mice and the underlying molecular mechanisms. By using a high-fat diet (HFD)-induced obesity mouse model, we determined the effect of HIIT on energy balance and the expression of the hypothalamic appetite-regulating neuropeptides, POMC and NPY. Moreover, hypothalamic HIF-1α signaling and its downstream glycolytic enzymes were explored after HIIT intervention. The state of microglia and microglial NF-κB signaling in the hypothalamus were also examined in vivo. In vitro by using an adenovirus carrying shRNA-HIF1ß, we explored the impact of HIF-1 signaling on glycolysis and NF-κB inflammatory signaling in BV2 cells. Food intake was suppressed and whole-body metabolism was improved in exercised DIO mice, accompanied by changes in the expression of POMC and NPY. Moreover, total and microglial HIF-1α signaling were obviously attenuated in the hypothalamus, consistent with the decreased levels of glycolytic enzymes. Both HFD-induced microglial activation and hypothalamic NF-κB signaling were significantly suppressed following HIIT in vivo. In BV2 cells, after HIF-1 complex knockdown, glycolysis and NF-κB inflammatory signaling were significantly attenuated. The data indicate that HIIT improves peripheral metabolism probably via attenuated HFD-induced microglial activation and microglial NF-κB signaling in the hypothalamus, which could be mediated by suppressed microglial HIF-1α signaling.


Asunto(s)
Hipotálamo , Subunidad alfa del Factor 1 Inducible por Hipoxia , Inflamación , Ratones Endogámicos C57BL , Microglía , Transducción de Señal , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Microglía/metabolismo , Masculino , Ratones , Hipotálamo/metabolismo , Inflamación/metabolismo , Entrenamiento de Intervalos de Alta Intensidad , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Condicionamiento Físico Animal/fisiología , FN-kappa B/metabolismo , Proopiomelanocortina/metabolismo , Proopiomelanocortina/genética , Neuropéptido Y/metabolismo
4.
FASEB J ; 38(13): e23780, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38948938

RESUMEN

Aerobic training (AT), an effective form of cardiac rehabilitation, has been shown to be beneficial for cardiac repair and remodeling after myocardial infarction (MI). The p300/CBP-associated factor (PCAF) is one of the most important lysine acetyltransferases and is involved in various biological processes. However, the role of PCAF in AT and AT-mediated cardiac remodeling post-MI has not been determined. Here, we found that the PCAF protein level was significantly increased after MI, while AT blocked the increase in PCAF. AT markedly improved cardiac remodeling in mice after MI by reducing endoplasmic reticulum stress (ERS). In vivo, similar to AT, pharmacological inhibition of PCAF by Embelin improved cardiac recovery and attenuated ERS in MI mice. Furthermore, we observed that both IGF-1, a simulated exercise environment, and Embelin protected from H2O2-induced cardiomyocyte injury, while PCAF overexpression by viruses or the sirtuin inhibitor nicotinamide eliminated the protective effect of IGF-1 in H9C2 cells. Thus, our data indicate that maintaining low PCAF levels plays an essential role in AT-mediated cardiac protection, and PCAF inhibition represents a promising therapeutic target for attenuating cardiac remodeling after MI.


Asunto(s)
Infarto del Miocardio , Condicionamiento Físico Animal , Remodelación Ventricular , Factores de Transcripción p300-CBP , Animales , Factores de Transcripción p300-CBP/metabolismo , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Ratones , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/fisiología , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos
5.
BMC Vet Res ; 20(1): 299, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971722

RESUMEN

BACKGROUND: Research on the effects of physical exercise on canine body composition is limited. The aim of this study was to investigate the effects of a physical exercise programme on bodyweight, body condition score (BCS) and chest, abdominal and thigh circumferences in dogs. Twenty-one healthy dogs of different breeds exercised together with their owners during an eight-week programme consisting of jogging and strength exercises. Standardised measurements were performed in triplicates with a measuring tape on standing dogs. Chest circumference was measured at three anatomical locations, abdomen at two and thigh at one. Data on bodyweight, BCS (9-point scale) and circumferences were analysed with mixed model repeated measures analyses to evaluate changes after the programme and effects of target distance. RESULTS: Seven dog owners choose a target distance of 2 km and 14 owners choose 5-10 km. Mean BCS decreased (P = 0.007) after the programme (5.1 ± 0.9 vs. 4.7 ± 0.6) but there was no effect of target distance. Almost all chest and abdominal circumference measurements decreased (P ≤ 0.007) with the 2 km group driving the reduction in chest circumference and the 5-10 km group driving the reduction in abdominal circumference. In contrast, thigh circumference (28.8 ± 0.4 vs. 30.2 ± 0.4) increased (P = 0.007) while bodyweight was maintained. There were positive correlations between BCS and abdominal/chest ratios before and after the programme (Pearson correlation; R square ≤ 0.43, P ≤ 0.0012) but the mean ratio remained constant. CONCLUSIONS: Results indicated a redistribution between total body fat and muscle mass in body composition of normal weight to slightly overweight dogs after the physical exercise programme. The use of bodyweight alone was not a reliable evaluation method to complement the BCS assessment. However, repeated measurements of chest, abdominal and thigh circumference might aid in the assessment of body composition in dogs performing physical exercise. Further research should include a control group and objective evaluations of total body fat and lean mass, in order to investigate the effectiveness of physical exercise as a freestanding method for decreasing BCS and increasing muscle mass in overweight dogs.


Asunto(s)
Composición Corporal , Peso Corporal , Condicionamiento Físico Animal , Tórax , Animales , Perros/fisiología , Masculino , Femenino , Tórax/anatomía & histología , Abdomen/anatomía & histología , Muslo/anatomía & histología
6.
Sci Rep ; 14(1): 15554, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969654

RESUMEN

Human hallmarks of sarcopenia include muscle weakness and a blunted response to exercise. Nicotinamide N-methyltransferase inhibitors (NNMTis) increase strength and promote the regenerative capacity of aged muscle, thus offering a promising treatment for sarcopenia. Since human hallmarks of sarcopenia are recapitulated in aged (24-month-old) mice, we treated mice from 22 to 24 months of age with NNMTi, intensive exercise, or a combination of both, and compared skeletal muscle adaptations, including grip strength, longitudinal running capacity, plantarflexor peak torque, fatigue, and muscle mass, fiber type, cross-sectional area, and intramyocellular lipid (IMCL) content. Exhaustive proteome and metabolome analyses were completed to identify the molecular mechanisms underlying the measured changes in skeletal muscle pathophysiology. Remarkably, NNMTi-treated aged sedentary mice showed ~ 40% greater grip strength than sedentary controls, while aged exercised mice only showed a 20% increase relative to controls. Importantly, the grip strength improvements resulting from NNMTi treatment and exercise were additive, with NNMTi-treated exercised mice developing a 60% increase in grip strength relative to sedentary controls. NNMTi treatment also promoted quantifiable improvements in IMCL content and, in combination with exercise, significantly increased gastrocnemius fiber CSA. Detailed skeletal muscle proteome and metabolome analyses revealed unique molecular mechanisms associated with NNMTi treatment and distinct molecular mechanisms and cellular processes arising from a combination of NNMTi and exercise relative to those given a single intervention. These studies suggest that NNMTi-based drugs, either alone or combined with exercise, will be beneficial in treating sarcopenia and a wide range of age-related myopathies.


Asunto(s)
Envejecimiento , Músculo Esquelético , Nicotinamida N-Metiltransferasa , Condicionamiento Físico Animal , Sarcopenia , Animales , Nicotinamida N-Metiltransferasa/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Ratones , Envejecimiento/fisiología , Sarcopenia/metabolismo , Sarcopenia/tratamiento farmacológico , Masculino , Fuerza Muscular/efectos de los fármacos , Ratones Endogámicos C57BL , Inhibidores Enzimáticos/farmacología
7.
Nutrients ; 16(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38999769

RESUMEN

Caffeine is a well-described ergogenic aid used to enhance athletic performance. Using animal models can greatly increase our understanding of caffeine's mechanisms in performance. Here, we adapted an animal weight-lifting exercise model to demonstrate caffeine's ergogenic effect in rats. Male Wistar rats (315 ± 35 g) were randomly divided into two groups: one group received 5 mg·kg-1 of caffeine (0.5 mL; CEx; n = 5) and the other 0.9% NaCl (0.5 mL; PEx; n = 4) through an orogastric probe (gavage) one hour before exercise. Weight-lifting exercise sessions were performed over three subsequent days, and the number of complete squats performed was counted. Analyses of the area under the curve in all three experiments showed that the CEx group responded more to stimuli, performing more squats (1.7-, 2.0-, and 1.6-fold; p < 0.05) than the control group did. These three days' data were analyzed to better understand the cumulative effect of this exercise, and a hyperbolic curve was fitted to these data. Data fitting from the caffeine-supplemented group, CEx, also showed larger Smax and Kd (2.3-fold and 1.6-fold, respectively) than the PEx group did. Our study demonstrated an acute ergogenic effect of caffeine in an animal weight-lifting exercise model for the first time, suggesting potential avenues for future research.


Asunto(s)
Cafeína , Ratas Wistar , Levantamiento de Peso , Animales , Cafeína/farmacología , Cafeína/administración & dosificación , Masculino , Proyectos Piloto , Ratas , Levantamiento de Peso/fisiología , Condicionamiento Físico Animal/fisiología , Sustancias para Mejorar el Rendimiento/farmacología , Sustancias para Mejorar el Rendimiento/administración & dosificación
8.
Nutrients ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999787

RESUMEN

The ketogenic diet (KD) and regular exercise (EX) are both capable of orchestrating circadian metabolism homeostasis during losing weight. However, the combined effects of these two factors on circadian metabolism remain poorly understood. To determine if the combined treatment yields a superimposed physiological phenotype, we measured weight loss, white adipose, the respiratory exchange ratio (RER), heat production, and activity parameters in individual and combined treatment groups. Surprisingly, none of these metrics displayed a cumulative effect when administered in the combined treatment approach. Additionally, we investigated the impact of combination therapy on molecular homeostasis through using high-throughput liver transcriptomic approaches. The results revealed that individual and combined treatments can reprogram the circadian rhythm; yet, the combined group exhibited a minimum quantity of cyclic transcript genes. Noteworthy, the amplitude of 24 h circadian expression genes was not significantly increased in the combination treatment, indicating that the combined approach has non-overlapping effects on maintenance peripheral metabolism homeostasis. This may be due to the liver requiring less ketogenic and gluconeogenic potential during metabolic processes. This research suggests that combined treatment may have adverse effects on the body's homeostasis and provide crucial insights for the homeostatic health of athletes or individuals who wish to lose weight.


Asunto(s)
Ritmo Circadiano , Dieta Cetogénica , Homeostasis , Hígado , Hígado/metabolismo , Ritmo Circadiano/fisiología , Masculino , Animales , Pérdida de Peso , Condicionamiento Físico Animal/fisiología , Ratones Endogámicos C57BL , Transcriptoma
9.
Nutrients ; 16(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38999877

RESUMEN

BACKGROUND: Obesity is a multi-organ system disease, which is associated with, e.g., a higher prevalence of non-alcoholic fatty liver disease (NAFLD) and asthma. Little is known regarding the effect of obesity-related parameters (including liver integrity) and the respiratory phenotype after a combination of physical activity and diet. METHODS: Thirty-two C57BL/6 mice were, after 27 weeks of a high fat diet (HFD), randomly assigned to two dietary interventions for three weeks: a HFD or a normal chow diet (NCD). In both dietary groups, half of the animals were subjected to a sub-maximal exercise protocol. Lung function, lung inflammation, liver histology, and metabolic profile were determined. RESULTS: Mice with obesity did not show airway hyperreactivity after methacholine provocation. Sub-maximal exercise with diet (NCD/E) induced a significant reduction in forced expiratory volume in 0.1 s after methacholine provocation. NCD/E had significantly more neutrophils and inflammation (IFN-γ, TNF-α, IL-4, and IL-17F) in bronchoalveolar lavage compared to non-exercising mice on a HFD (HFD/NE). However, more epithelial injury (serum surfactant protein D and IL-33) was seen in HFD/NE. Additionally, hepatic steatosis and fibrosis were reduced by combined diet and sub-maximal exercise. CONCLUSIONS: Combining sub-maximal exercise with diet induced airway hyperreactivity and pulmonary inflammation, while body weight, hepatic steatosis, and fibrosis improved.


Asunto(s)
Dieta Alta en Grasa , Ratones Endogámicos C57BL , Obesidad , Condicionamiento Físico Animal , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/etiología , Hígado/metabolismo , Hígado/patología , Pulmón/patología , Pulmón/fisiopatología , Citocinas/metabolismo , Citocinas/sangre
10.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000297

RESUMEN

Obesity is a major public health concern that is associated with negative health outcomes. Exercise and dietary restriction are commonly recommended to prevent or combat obesity. This study investigates how voluntary exercise mitigates abnormal gene expression in the hypothalamic arcuate nucleus (ARC) of diet-induced obese (DIO) rats. Using a transcriptomic approach, novel genes in the ARC affected by voluntary wheel running were assessed alongside physiology, pharmacology, and bioinformatics analysis to evaluate the role of miR-211 in reversing obesity. Exercise curbed weight gain and fat mass, and restored ARC gene expression. High-fat diet (HFD) consumption can dysregulate satiety/hunger mechanisms in the ARC. Transcriptional clusters revealed that running altered gene expression patterns, including inflammation and cellular structure genes. To uncover regulatory mechanisms governing gene expression in DIO attenuation, we explored miR-211, which is implicated in systemic inflammation. Exercise ameliorated DIO overexpression of miR-211, demonstrating its pivotal role in regulating inflammation in the ARC. Further, in vivo central administration of miR-211-mimic affected the expression of immunity and cell cycle-related genes. By cross-referencing exercise-affected and miR-211-regulated genes, potential candidates for obesity reduction through exercise were identified. This research suggests that exercise may rescue obesity through gene expression changes mediated partially through miR-211.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Dieta Alta en Grasa , MicroARNs , Obesidad , Condicionamiento Físico Animal , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/genética , Obesidad/metabolismo , Ratas , Femenino , Dieta Alta en Grasa/efectos adversos , Regulación de la Expresión Génica , Inflamación/genética , Inflamación/metabolismo
11.
Physiol Rep ; 12(13): e16126, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39001594

RESUMEN

Molecular mechanisms associated to improvement of metabolic syndrome (MetS) during exercise are not fully elucidated. MetS was induced in 250 g male Wistar rats by 30% sucrose in drinking water. Control rats receiving tap water were controls, both groups received solid standard diet. After 14 weeks, an endurance exercised group, and a sedentary were formed for 8 weeks. The soleus and extensor digitorum longus (EDL) muscles were dissected to determine contractile performance, expression of myosin heavy chain isoforms, PGC1α, AMPKα2, NFATC1, MEF2a, SIX1, EYA1, FOXO1, key metabolic enzymes activities. Exercise mildly improved MetS features. MetS didn't alter the contractile performance of the muscles. Exercise didn't altered expression of PGC1α, NFATC1, SIX1 and EYA1 on MetS EDL whereas NFATC1 increased in soleus. Only citrate synthase was affected by MetS on the EDL and this was partially reverted by exercise. Soleus α-ketoglutarate dehydrogenase activity was increased by exercise but MetS rendered the muscle resistant to this effect. MetS affects mostly the EDL muscle, and endurance exercise only partially reverts this. Soleus muscle seems more resilient to MetS. We highlight the importance of studying both muscles during MetS, and their metabolic remodeling on the development and treatment of MetS by exercise.


Asunto(s)
Metabolismo Energético , Síndrome Metabólico , Condicionamiento Físico Animal , Ratas Wistar , Animales , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/fisiopatología , Ratas , Músculo Esquelético/metabolismo , Sacarosa/metabolismo , Sacarosa/administración & dosificación , Fibras Musculares Esqueléticas/metabolismo , Contracción Muscular , Fenotipo
12.
Int J Chron Obstruct Pulmon Dis ; 19: 1591-1601, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005647

RESUMEN

Background: Exercise is an indispensable component of pulmonary rehabilitation with strong anti-inflammatory effects. However, the mechanisms by which exercise prevents diaphragmatic atrophy in COPD (chronic obstructive pulmonary disease) remain unclear. Methods: Forty male C57BL/6 mice were assigned to the control (n=16) and smoke (n=24) groups. Mice in the smoke group were exposed to the cigarette smoke (CS) for six months. They were then divided into model and exercise training groups for 2 months. Histological changes were observed in lung and diaphragms. Subsequently, agonist U46639 and antagonist Y27632 of RhoA/ROCK were subjected to mechanical stretching in LPS-treated C2C12 myoblasts. The expression levels of Atrogin-1, MuRF-1, MyoD, Myf5, IL-1ß, TNF-α, and RhoA/ROCK were determined by Western blotting. Results: Diaphragmatic atrophy and increased RhoA/ROCK expression were observed in COPD mice. Exercise training attenuated diaphragmatic atrophy, decreased the expression of MuRF-1, and increased MyoD expression in COPD diaphragms. Exercise also affects the upregulation of RhoA/ROCK and inflammation-related proteins. In in vitro experiments with C2C12 myoblasts, LPS remarkably increased the level of inflammation and protein degradation, whereas Y27632 or combined with mechanical stretching prevented this phenomenon considerably. Conclusion: RhoA/ROCK plays an important role in the prevention of diaphragmatic atrophy in COPD.


Asunto(s)
Diafragma , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Atrofia Muscular , Enfermedad Pulmonar Obstructiva Crónica , Transducción de Señal , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA , Animales , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Quinasas Asociadas a rho/metabolismo , Masculino , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Atrofia Muscular/etiología , Proteína de Unión al GTP rhoA/metabolismo , Diafragma/metabolismo , Diafragma/fisiopatología , Diafragma/patología , Línea Celular , Proteínas de Unión al GTP rho/metabolismo , Terapia por Ejercicio/métodos , Ratones , Pulmón/patología , Pulmón/metabolismo , Pulmón/fisiopatología , Mediadores de Inflamación/metabolismo , Condicionamiento Físico Animal
13.
Free Radic Res ; 58(5): 311-322, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38946540

RESUMEN

It is well known that the adaptations of muscular antioxidant system to aerobic exercise depend on the frequency, intensity, duration, type of the exercise. Nonetheless, the timing of aerobic exercise, related to circadian rhythms or biological clock, may also affect the antioxidant defense system, but its impact remains uncertain. Bain and muscle ARNT-like 1 (BMAL1) is the core orchestrator of molecular clock, which can maintain cellular redox homeostasis by directly controlling the transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2). So, our research objective was to evaluate the impacts of aerobic exercise training at various time points of the day on BMAL1 and NRF2-mediated antioxidant system in skeletal muscle. C57BL/6J mice were assigned to the control group, the group exercising at Zeitgeber Time 12 (ZT12), and the group exercising at ZT24. Control mice were not intervened, while ZT12 and ZT24 mice were trained for four weeks at the early and late time point of their active phase, respectively. We observed that the skeletal muscle of ZT12 mice exhibited higher total antioxidant capacity and lower reactive oxygen species compared to ZT24 mice. Furthermore, ZT12 mice improved the colocalization of BMAL1 with nucleus, the protein expression of BMAL1, NRF2, NAD(P)H quinone oxidoreductase 1, heme oxygenase 1, glutamate-cysteine ligase modifier subunit and glutathione reductase in comparison to those of ZT24 mice. In conclusion, the 4-week aerobic training performed at ZT12 is more effective for enhancing NRF2-mediated antioxidant responses of skeletal muscle, which may be attributed to the specific activation of BMAL1.


Asunto(s)
Factores de Transcripción ARNTL , Antioxidantes , Ratones Endogámicos C57BL , Músculo Esquelético , Condicionamiento Físico Animal , Animales , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Músculo Esquelético/metabolismo , Ratones , Antioxidantes/metabolismo , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Especies Reactivas de Oxígeno/metabolismo
14.
Function (Oxf) ; 5(4)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38984994

RESUMEN

While regular physical activity is a cornerstone of health, wellness, and vitality, the impact of endurance exercise training on molecular signaling within and across tissues remains to be delineated. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) was established to characterize molecular networks underlying the adaptive response to exercise. Here, we describe the endurance exercise training studies undertaken by the Preclinical Animal Sites Studies component of MoTrPAC, in which we sought to develop and implement a standardized endurance exercise protocol in a large cohort of rats. To this end, Adult (6-mo) and Aged (18-mo) female (n = 151) and male (n = 143) Fischer 344 rats were subjected to progressive treadmill training (5 d/wk, ∼70%-75% VO2max) for 1, 2, 4, or 8 wk; sedentary rats were studied as the control group. A total of 18 solid tissues, as well as blood, plasma, and feces, were collected to establish a publicly accessible biorepository and for extensive omics-based analyses by MoTrPAC. Treadmill training was highly effective, with robust improvements in skeletal muscle citrate synthase activity in as little as 1-2 wk and improvements in maximum run speed and maximal oxygen uptake by 4-8 wk. For body mass and composition, notable age- and sex-dependent responses were observed. This work in mature, treadmill-trained rats represents the most comprehensive and publicly accessible tissue biorepository, to date, and provides an unprecedented resource for studying temporal-, sex-, and age-specific responses to endurance exercise training in a preclinical rat model.


Asunto(s)
Adaptación Fisiológica , Envejecimiento , Condicionamiento Físico Animal , Ratas Endogámicas F344 , Animales , Masculino , Femenino , Condicionamiento Físico Animal/fisiología , Adaptación Fisiológica/fisiología , Ratas , Envejecimiento/fisiología , Resistencia Física/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Entrenamiento Aeróbico
15.
Sci Rep ; 14(1): 15996, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987609

RESUMEN

Alzheimer's disease (AD) is a neurological condition that is connected with a decline in a person's memory as well as their cognitive ability. One of the key topics of AD research has been the exploration of metabolic causes. We investigated the effects of treadmill exercise and intranasal insulin on learning and memory impairment and the expression of IGF1, BDNF, and GLUT4 in hypothalamus. The animals were put into 9 groups at random. In this study, we examined the impact of insulin on spatial memory in male Wistar rats and analyzed the effects of a 4-week pretreatment of moderate treadmill exercise and insulin on the mechanisms of improved hypothalamic glucose metabolism through changes in gene and protein expression of IGF1, BDNF, and GLUT4. We discovered that rat given Aß25-35 had impaired spatial learning and memory, which was accompanied by higher levels of Aß plaque burden in the hippocampus and lower levels of IGF1, BDNF, and GLUT4 mRNA and protein expression in the hypothalamus. Additionally, the administration of exercise training and intranasal insulin results in the enhancement of spatial learning and memory impairments, the reduction of plaque burden in the hippocampus, and the enhancement of the expression of IGF1, BDNF, and GLUT4 in the hypothalamus of rats that were treated with Aß25-35. Our results show that the improvement of learning and spatial memory due to the improvement of metabolism and upregulation of the IGF1, BDNF, and GLUT4 pathways can be affected by pretreatment exercise and intranasal insulin.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Transportador de Glucosa de Tipo 4 , Hipotálamo , Factor I del Crecimiento Similar a la Insulina , Insulina , Condicionamiento Físico Animal , Ratas Wistar , Transducción de Señal , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/terapia , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Insulina/metabolismo , Ratas , Hipotálamo/metabolismo , Transducción de Señal/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Transportador de Glucosa de Tipo 4/genética , Péptidos beta-Amiloides/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Administración Intranasal , Fragmentos de Péptidos , Memoria Espacial/efectos de los fármacos , Aprendizaje Espacial/efectos de los fármacos
16.
Brain Behav ; 14(7): e3614, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38988101

RESUMEN

PURPOSE: Levothyroxine (LEV) monotherapy cannot completely improve cognitive and behavioral impairments induced by hypothyroidism, whereas a combination therapy of exercise and LEV may ameliorate these deficits. This study aimed to determine the effects of mild-intensity forced exercise and LEV treatment on the anxiety profile and cognitive functions in male offspring of hypothyroid dams. METHOD: Twenty-four female rats (mothers) were randomly divided into sham (healthy) and hypothyroidism groups and then placed with male rats to mate. The presence of vaginal plaque confirmed pregnancy (gestational day, GD 0). 6-propyl-2-thiouracil (PTU, 100 ppm) was added to the drinking water of the hypothyroidism group from GD 6 to the 21st postnatal day (PND). The sham group received tap water. On PND 21, serum T4 levels of mothers, and 10 pups were measured to confirm hypothyroidism. Sixty-four male pups were left undisturbed for 30 days and then were divided into eight groups that received saline or LEV (50 µg/kg, i.p.) with or without forced mild-intensity exercise. After 14 days of interventions, anxiety-like behaviors, spatial learning and memory, and hippocampal brain-derived neurotrophic factor (BDNF) levels were evaluated. FINDING: A pre and postnatal PTU-induced model of hypothyroidism increased anxiety-like behaviors, impaired spatial learning and memory, and decreased hippocampal BDNF levels in male offspring rats. LEV alone increased BDNF levels and improved spatial learning. Exercise alone increased BDNF levels, improved spatial learning and memory, and decreased anxiety-like behaviors. Exercise plus LEV more effectively improved anxiety-like behaviors and spatial learning than exercise or LEV alone. CONCLUSION: Practically, these pre-clinical findings highlight the importance of the combination of exercise and LEV regimen in treating patients with hyperthyroidism.


Asunto(s)
Ansiedad , Factor Neurotrófico Derivado del Encéfalo , Hipocampo , Hipotiroidismo , Condicionamiento Físico Animal , Tiroxina , Animales , Hipotiroidismo/tratamiento farmacológico , Hipotiroidismo/metabolismo , Hipotiroidismo/terapia , Hipotiroidismo/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Masculino , Tiroxina/farmacología , Tiroxina/administración & dosificación , Ratas , Ansiedad/terapia , Ansiedad/etiología , Ansiedad/tratamiento farmacológico , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Femenino , Condicionamiento Físico Animal/fisiología , Embarazo , Ratas Wistar , Efectos Tardíos de la Exposición Prenatal/terapia , Efectos Tardíos de la Exposición Prenatal/metabolismo , Aprendizaje Espacial/efectos de los fármacos , Aprendizaje Espacial/fisiología , Terapia Combinada , Propiltiouracilo/farmacología , Propiltiouracilo/administración & dosificación
17.
Clin Exp Hypertens ; 46(1): 2373467, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38963020

RESUMEN

BACKGROUND: Aortic endothelial diastolic dysfunction is an early complication of diabetes and the abnormal differentiation of Th17 cells is involved in the development of diabetes. However, the exact role of exercise on regulating the Th17 cells differentiation and the underlying molecular mechanisms remain to be elucidated in diabetic mice. METHODS: db/db and db/m+ mice were randomly divided into exercise and sedentary groups. Mice in exercise group were exercised daily, 6 days/week, for 6 weeks and mice in sedentary groups were placed on a nonmoving treadmill for 6 weeks. Vascular endothelial function was measured via wire myograph and the frequencies of Th17 from peripheral blood in mice were assessed via flow cytometry. RESULTS: Our data showed that exercise improved insulin resistance and aortic endothelial diastolic function in db/db mice. In addition, the proportion of Th17 cells and IL-17A level in peripheral blood of db/db mice were significantly increased, and exercise could promote Th17 cell differentiation and reduce IL-17A level. More importantly, STAT3 or ROR-γt inhibitors could promote Th17 cell differentiation in db/db mice, while exercise significantly down-regulated p-STAT3/ROR-γt signaling in db/db mice, suggesting that exercise regulated Th17 differentiation through STAT3/ROR-γt signaling. CONCLUSIONS: This study demonstrated that exercise improved vascular endothelial function in diabetic mice via reducing Th17 cell differentiation through p-STAT3/ROR-γt pathway, suggesting exercise may be an important non-pharmacological intervention strategy for the treatment of diabetes-related vascular complications.


Asunto(s)
Diferenciación Celular , Diabetes Mellitus Experimental , Interleucina-17 , Condicionamiento Físico Animal , Factor de Transcripción STAT3 , Células Th17 , Vasodilatación , Animales , Ratones , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/métodos , Vasodilatación/fisiología , Factor de Transcripción STAT3/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Experimental/terapia , Masculino , Interleucina-17/sangre , Interleucina-17/metabolismo , Endotelio Vascular/fisiopatología , Resistencia a la Insulina/fisiología , Transducción de Señal , Ratones Endogámicos C57BL , Aorta/fisiopatología
18.
Front Endocrinol (Lausanne) ; 15: 1422869, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948514

RESUMEN

Objectives: Obesity impairs bone marrow (BM) glucose metabolism. Adult BM constitutes mostly of adipocytes that respond to changes in energy metabolism by modulating their morphology and number. Here we evaluated whether diet or exercise intervention could improve the high-fat diet (HFD) associated impairment in BM glucose uptake (BMGU) and whether this associates with the morphology of BM adipocytes (BMAds) in rats. Methods: Eight-week-old male Sprague-Dawley rats were fed ad libitum either HFD or chow diet for 24 weeks. Additionally after 12 weeks, HFD-fed rats switched either to chow diet, voluntary intermittent running exercise, or both for another 12 weeks. BMAd morphology was assessed by perilipin-1 immunofluorescence staining in formalin-fixed paraffin-embedded tibial sections. Insulin-stimulated sternal and humeral BMGU were measured using [18F]FDG-PET/CT. Tibial microarchitecture and mineral density were measured with microCT. Results: HFD rats had significantly higher whole-body fat percentage compared to the chow group (17% vs 13%, respectively; p = 0.004) and larger median size of BMAds in the proximal tibia (815 µm2 vs 592 µm2, respectively; p = 0.03) but not in the distal tibia. Switch to chow diet combined with running exercise normalized whole-body fat percentage (p < 0.001) but not the BMAd size. At 32 weeks of age, there was no significant difference in insulin-stimulated BMGU between the study groups. However, BMGU was significantly higher in sternum compared to humerus (p < 0.001) and higher in 8-week-old compared to 32-week-old rats (p < 0.001). BMAd size in proximal tibia correlated positively with whole-body fat percentage (r = 0.48, p = 0.005) and negatively with humeral BMGU (r = -0.63, p = 0.02). HFD significantly reduced trabecular number (p < 0.001) compared to the chow group. Switch to chow diet reversed this as the trabecular number was significantly higher (p = 0.008) than in the HFD group. Conclusion: In this study we showed that insulin-stimulated BMGU is age- and site-dependent. BMGU was not affected by the study interventions. HFD increased whole-body fat percentage and the size of BMAds in proximal tibia. Switching from HFD to a chow diet and running exercise improved glucose homeostasis and normalized the HFD-induced increase in body fat but not the hypertrophy of BMAds.


Asunto(s)
Adiposidad , Médula Ósea , Dieta Alta en Grasa , Glucosa , Obesidad , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Dieta Alta en Grasa/efectos adversos , Médula Ósea/metabolismo , Glucosa/metabolismo , Obesidad/metabolismo , Adipocitos/metabolismo
19.
Physiol Res ; 73(3): 461-480, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-39012176

RESUMEN

Aging is an inevitable and complex biological process that is associated with a gradual decline in physiological functions and a higher disease susceptibility. Omega-3 fatty acids, particularly docosahexaenoic acid, play a crucial role in maintaining brain health and their deficiency is linked to age-related cognitive decline. Combining omega-3-rich diets with exercise may enhance cognitive function more effectively, as both share overlapping neurobiological and physiological effects. This study aimed to evaluate the effect of exercise and omega-3 fatty acid (FA) supplementation in two different doses (160 mg/kg and 320 mg/kg) on anxiety-like behavior and cognitive abilities in both adult and aged rats. Male Wistar rats (4-5- and 23-24-month-old) were randomly divided into seven groups: 3-week control supplemented with placebo without exercise, low-dose omega-3 FAs, high-dose omega-3 FAs, 7-week control supplemented with placebo without exercise, exercise-only, low-dose omega-3 FAs with exercise, and high-dose omega-3 FAs with exercise. The administered oil contained omega-3 FAs with DHA:EPA in a ratio of 1.5:1. Our results indicate that aging negatively impacts the locomotor and exploratory activity of rats. In adult rats, a low dose of omega-3 FAs reduces locomotor activity when combined with exercise while high dose of omega-3 FAs reduces anxiety-like behavior and improves recognition memory when combined with exercise. The combination of omega-3 FAs and exercise had varying impacts on behavior, suggesting a need for further research in this area to fully understand their therapeutic efficacy in the context of cognitive changes associated with aging.


Asunto(s)
Envejecimiento , Ansiedad , Suplementos Dietéticos , Conducta Exploratoria , Ácidos Grasos Omega-3 , Condicionamiento Físico Animal , Ratas Wistar , Animales , Masculino , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/farmacología , Ansiedad/prevención & control , Condicionamiento Físico Animal/fisiología , Envejecimiento/psicología , Envejecimiento/efectos de los fármacos , Ratas , Conducta Exploratoria/efectos de los fármacos , Locomoción/efectos de los fármacos , Locomoción/fisiología , Conducta Animal/efectos de los fármacos , Cognición/efectos de los fármacos
20.
J Physiol Sci ; 74(1): 36, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014320

RESUMEN

Exercise increases the pain threshold in healthy people. However, the pain threshold modulation effect of exercise and hawthorn is unclear because of its potential benefits in people with persistent pain, including those with Alzheimer's disease. Accordingly, after the induction of Alzheimer's disease by trimethyl chloride, male rats with Alzheimer's disease were subjected to a 12-week training regimen consisting of resistance training, swimming endurance exercises, and combined exercises. In addition, hawthorn extract was orally administered to the rats. Then, their pain threshold was evaluated using three Tail-flick, Hot-plate, and Formalin tests. Our results showed that Alzheimer's decreased the pain threshold in all three behavioral tests. Combined exercise with hawthorn consumption had the most statistically significant effect on Alzheimer's male rats' pain threshold in all three experiments. A combination of swimming endurance and resistance exercises with hawthorn consumption may modulate hyperalgesia in Alzheimer's rats. Future studies need to determine the effects of these factors on the treatment and/or management of painful conditions.


Asunto(s)
Enfermedad de Alzheimer , Crataegus , Umbral del Dolor , Condicionamiento Físico Animal , Animales , Masculino , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/inducido químicamente , Ratas , Umbral del Dolor/efectos de los fármacos , Condicionamiento Físico Animal/fisiología , Extractos Vegetales/farmacología , Natación , Modelos Animales de Enfermedad , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...