Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.503
Filtrar
1.
BMC Complement Med Ther ; 24(1): 294, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090617

RESUMEN

BACKGROUND: cultivated and wild plants are used to treat different ailments. The Astragalus genus is found in temperate and dry climates; thus, it is found in Egypt and the arab world. Astragalus caprinus has a good amount of bioactive chemicals, which may help explain its therapeutic effects in reducing the risk of consequences from disease. METHOD: The phytochemical investigation of the herb and roots of Astragalus caprinus L. included the analytical characterization for the petroleum ether components by GC/MS, unsaponifiable matter (unsap. fraction), and fatty acids (FAME) investigation by GLC analysis. Main flavonoids were chromatographically isolated from ethyl acetate and n-butanol extracts. In vitro antimicrobial activity has been tested against the Gram-positive bacteria Staphylococcus aureus and Streptococcus mutans for different plant extracts, the Gram-negative bacteria Pseudomonas aeruginosa and Klebsiella pneumonia, the fungus Candida albicans and Aspergillus niger, and the Escherichia coli bacterium. Metabolite cytotoxicity was examined using the MTT assay against HepG-2 (human liver carcinoma) and MCF-7 (breast carcinoma). RESULTS: Identifying the important components of the herb and root petroleum ether extracts was achieved. Using column chromatography, luteolin, cosmosiin (apigenin-7-O-glucoside), and cynaroside (luteolin-7-O-glucoside) were separated and identified using UV, NMR, and Mass Spectroscopy. Root extracts displayed potential antimicrobial activity against most of the tested pathogens. Both extracts (herb and roots) were active against the MCF-7 cell line and HepG-2 cell line with IC50 62.5 ± 0.64 and 72.4 ± 2.3 µg/ml, and 75.9 ± 2.5 and 96.8 ± 4.2 µg/ml, respectively. CONCLUSION: Astragalus caprinus seems to be a promising source of bioactive compounds that could potentially aid in preventing disease complications and address common health issues in developing countries. Moreover, the various parts of this plant could be utilized as natural raw materials for producing health-boosting products that could address common health issues in developing countries.


Asunto(s)
Planta del Astrágalo , Fitoquímicos , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Planta del Astrágalo/química , Fitoquímicos/farmacología , Fitoquímicos/química , Pruebas de Sensibilidad Microbiana , Células MCF-7 , Antiinfecciosos/farmacología , Antiinfecciosos/química , Raíces de Plantas/química , Egipto , Células Hep G2 , Flavonoides/farmacología
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000210

RESUMEN

Neurodegeneration diseases (NDs) are a group of complex diseases primarily characterized by progressive loss of neurons affecting mental function and movement. Oxidative stress is one of the factors contributing to the pathogenesis of NDs, including Alzheimer's disease (AD). These reactive species disturb mitochondrial function and accelerate other undesirable conditions including tau phosphorylation, inflammation, and cell death. Therefore, preventing oxidative stress is one of the imperative methods in the treatment of NDs. To accomplish this, we prepared hexane and ethyl acetate extracts of Anethum graveolens (dill) and identified the major phyto-components (apiol, carvone, and dihydrocarvone) by GC-MS. The extracts and major bioactives were assessed for neuroprotective potential and mechanism in hydrogen peroxide-induced oxidative stress in the SH-SY5Y neuroblastoma cell model and other biochemical assays. The dill (extracts and bioactives) provided statistically significant neuroprotection from 0.1 to 30 µg/mL by mitigating ROS levels, restoring mitochondrial membrane potential, reducing lipid peroxidation, and reviving the glutathione ratio. They moderately inhibited acetylcholine esterase (IC50 dill extracts 400-500 µg/mL; carvone 275.7 µg/mL; apiole 388.3 µg/mL), displayed mild anti-Aß1-42 fibrilization (DHC 26.6%) and good anti-oligomerization activity (>40% by dill-EA, carvone, and apiole). Such multifactorial neuroprotective displayed by dill and bioactives would help develop a safe, low-cost, and small-molecule drug for NDs.


Asunto(s)
Anethum graveolens , Neuroblastoma , Fármacos Neuroprotectores , Estrés Oxidativo , Extractos Vegetales , Semillas , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Línea Celular Tumoral , Extractos Vegetales/farmacología , Extractos Vegetales/química , Neuroblastoma/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Estrés Oxidativo/efectos de los fármacos , Anethum graveolens/química , Semillas/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno , Fitoquímicos/farmacología , Fitoquímicos/química , Supervivencia Celular/efectos de los fármacos , Acetilcolinesterasa/metabolismo
3.
ScientificWorldJournal ; 2024: 3607396, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050386

RESUMEN

Syzygium polyanthum is known for its capacity to regulate blood glucose levels in individuals with diabetes, while Muntingia calabura leaves have a traditional history as an alternative therapy due to their antidiabetic compounds. The combination of these two plants is expected to yield more optimized antidiabetic agents. This study aims to assess the antidiabetic activity of the combined ethanolic extract of S. polyanthum and M. calabura leaves by measuring the in vitro inhibition of the α-glucosidase enzyme and the blood glucose level in streptozotocin-induced rats and to determine the phytochemical contents of total phenolics, total flavonoids, and quercetine as marker compounds. Acute oral toxicity test was also evaluated. Both plants were extracted by maceration using 96% ethanol. Various combinations of S. polyanthum and M. calabura leaves extracts (1 : 1, 2 : 1, 3 : 1, 1 : 3, and 1 : 2) were prepared. The in vitro test, along with the total phenolic and total flavonoid content, were measured by using UV-Vis spectrophotometry, while quercetine levels were quantified through high-performance liquid chromatography (HPLC). The in vivo and acute toxicity tests were performed on rats as an animal model. The findings demonstrated that the 1 : 1 combination of S. polyanthum and M. calabura leaves ethanolic extract displayed the highest enzyme inhibitory activity with IC50 value of 36.43 µg/mL. Moreover, the combination index (CI) was found <1 that indicates the synergism effect. This combination also decreases the blood glucose level in rats after 28 days of treatments without significant difference with positive control glibenclamide (p > 0.005), and it had medium lethal doses (LD50) higher than 2000 mg/kg BW. Phytochemical analysis showed that the levels of total phenolics, total flavonoids, and quercetine were 30.81% w/w, 1.37% w/w, and 3.25 mg/g, respectively. These findings suggest the potential of combined ethanolic extracts of S. polyanthum and M. calabura leaves (1 : 1) as raw materials for herbal antidiabetic medication.


Asunto(s)
Diabetes Mellitus Experimental , Etanol , Hipoglucemiantes , Fitoquímicos , Extractos Vegetales , Hojas de la Planta , Syzygium , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidad , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/toxicidad , Hojas de la Planta/química , Ratas , Syzygium/química , Fitoquímicos/química , Fitoquímicos/análisis , Fitoquímicos/toxicidad , Etanol/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Masculino , Glucemia/efectos de los fármacos , Flavonoides/análisis , Pruebas de Toxicidad Aguda , Ratas Wistar
4.
PeerJ ; 12: e17681, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011385

RESUMEN

Background: This research aims to explore the phenolics identification, phenolics quantification, antioxidant and potential biofunctional properties of lesser-known Thai fruits and their potency to treat type 2 diabetes mellitus (T2DM). Including, Antidesma puncticulatum, Dillenia indica, Diospyros decandra, Elaeagnus latifolia, Flacourtia indica, Garcinia dulcis, Lepisanthes fruticose, Mimusops elengi, Muntingia calabura, Phyllanthus reticulatus, Streblus asper, Syzygium cumini, Syzygium malaccense, Willughbeia edulis and Schleichera oleosa were analyzed by their phenolic and flavonoid content. These fruits have received limited scientific attention, prompting an investigation into their health benefits, particularly their relevance to diabetes management. Methods: The study utilized methanolic crude extracts to measure phenolic and flavonoid levels. Additionally, UHPLC-DAD was utilized to identify and quantify phenolics. The methanolic extracts were assessed for antioxidant and antidiabetic abilities, including α-glucosidase and α-amylase inhibition. Results and Conclusion: The study highlighted S. cumini as a rich source of phenolic (980.42 ± 0.89 mg GAE/g and flavonoid (3.55 ± 0.02 mg QE/g) compounds with strong antioxidant activity (IC50 by DPPH; 3.00 ± 0.01 µg/ml, IC50 by ABTS; 40 ± 0.01 µg/ml, FRAP; 898.63 ± 0.02 mg TE/ml). Additionally, S. cumini exhibited promising antidiabetic effects (S. cumini IC50; 0.13 ± 0.01 mg/ml for α-glucosidase inhibition, 3.91 ± 0.05 mg/ml for α-amylase inhibition), compared to Acarbose (IC50; 0.86 ± 0.01 mg/ml for α-glucosidase inhibition, 0.39 ± 0.05 mg/ml for α-amylase inhibition). Remarkably, compounds like catechins, gallic acid, kaempferol, and ellagic acid were identified in various quantities.This study suggests that these fruits, packed with phenolics, hold the potential to be included in an anti-diabetic diet and even pharmaceutical applications due to their health-promoting properties.


Asunto(s)
Antioxidantes , Frutas , Hipoglucemiantes , Fenoles , Extractos Vegetales , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Antioxidantes/farmacología , Antioxidantes/química , Frutas/química , Tailandia , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fenoles/análisis , Fenoles/farmacología , Flavonoides/análisis , Flavonoides/farmacología , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/análisis , Diabetes Mellitus Tipo 2/tratamiento farmacológico , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Pueblos del Sudeste Asiático
5.
Molecules ; 29(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998918

RESUMEN

The Brassicaceae family, commonly referred to as cruciferous plants, is globally cultivated and consumed, with the Brassica genus being particularly renowned for its functional components. These vegetables are rich sources of nutrients and health-promoting phytochemicals, garnering increased attention in recent years. This study presents a comprehensive microscopic, chromatographic, and spectroscopic characterization of Brassica napus L. seeds from Kazakhstan aimed at elucidating their morphological features and chemical composition. Microscopic analysis revealed distinct localization of flavonoids, total lipids, and alkaloids. High-performance thin-layer chromatography (HPTLC) analysis of seed extracts demonstrated a complex chemical profile with significant quantities of non-polar compounds in the hexane extracts. Additionally, methanolic extracts revealed the presence of diverse chemical compounds, including alkaloids, flavonoids, and glucosinolates. The chemical composition exhibited varietal differences across different Brassica species, with B. napus L. seeds showing higher concentrations of bioactive compounds. Furthermore, liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QToF-MS) analysis provided insights into the chemical composition, with sinapine isomers, feruloyl, and sinapoyl choline derivatives as major compounds in the seeds. This study contributes to a better understanding of the chemical diversity and quality control methods' approximations of B. napus L. seeds, highlighting their importance in functional food and nutraceutical applications.


Asunto(s)
Brassica napus , Semillas , Brassica napus/química , Semillas/química , Extractos Vegetales/química , Extractos Vegetales/análisis , Fitoquímicos/análisis , Fitoquímicos/química , Cromatografía en Capa Delgada/métodos , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Flavonoides/química , Alcaloides/análisis , Alcaloides/química , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Glucosinolatos/análisis , Glucosinolatos/química
6.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999009

RESUMEN

Skin aging is an inevitable and intricate process instigated, among others, by oxidative stress. The search for natural sources that inhibit this mechanism is a promising approach to preventing skin aging. The purpose of our study was to evaluate the composition of phenolic compounds in the micellar extract of Phaseolus vulgaris sprouts. The results of a liquid chromatography-mass spectrometry (LC-MS) analysis revealed the presence of thirty-two constituents, including phenolic acids, flavanols, flavan-3-ols, flavanones, isoflavones, and other compounds. Subsequently, the extract was assessed for its antioxidant, anti-inflammatory, anti-collagenase, anti-elastase, anti-tyrosinase, and cytotoxic properties, as well as for the evaluation of collagen synthesis. It was demonstrated that micellar extract from common bean sprouts has strong anti-aging properties. The performed WST-8 (a water-soluble tetrazolium salt) assay revealed that selected concentrations of extract significantly increased proliferation of human dermal fibroblasts compared to the control cells in a dose-dependent manner. A similar tendency was observed with respect to collagen synthesis. Our results suggest that micellar extract from Phaseolus vulgaris sprouts can be considered a promising anti-aging compound for applications in cosmetic formulations.


Asunto(s)
Antioxidantes , Fibroblastos , Phaseolus , Fitoquímicos , Extractos Vegetales , Phaseolus/química , Humanos , Fitoquímicos/farmacología , Fitoquímicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Fibroblastos/efectos de los fármacos , Envejecimiento de la Piel/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/química
7.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999027

RESUMEN

The whole Hypericum patulum Thunb. plant is utilized in traditional medicine for its properties of clearing heat, detoxifying, soothing meridians, relaxing the liver, and stopping bleeding. In folk medicine, it is frequently used to treat hepatitis, colds, tonsillitis, and bruises. Phytochemical investigation of a 30% ethanol extract of the fresh ripe fruits of H. patulum has resulted in the isolation of two new pinane-type monoterpenoid glycosides 1-2, named patulumside E-F, and three new chain-shaped monoterpenoid glycosides 3-5, named patulumside G-H, J. Their structures were determined using extensive spectroscopic techniques, such as HR-ESI-MS, 1D and 2D NMR spectroscopy, and electronic circular dichroism (ECD) calculation. The anti-inflammatory activities of these compounds were evaluated in the LPS-induced RAW264.7 cells. This research represents the inaugural comprehensive phytochemical study of H. patulum, paving the way for further exploration of monoterpenoid glycosides.


Asunto(s)
Frutas , Glicósidos , Hypericum , Monoterpenos , Extractos Vegetales , Hypericum/química , Glicósidos/química , Glicósidos/farmacología , Glicósidos/aislamiento & purificación , Ratones , Animales , Células RAW 264.7 , Frutas/química , Monoterpenos/química , Monoterpenos/farmacología , Monoterpenos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Estructura Molecular , Lipopolisacáridos/farmacología , Espectroscopía de Resonancia Magnética , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación
8.
Molecules ; 29(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999032

RESUMEN

Most research on saffron has focused on its composition and beneficial effects, while the culinary perspective to enhance its gastronomic potential remains unexplored. This study aims to define the transfer of the main compounds responsible for color, flavor, and aromatic properties, evaluating three critical variables: temperature (60 °C, 80 °C and 100 °C), infusion time (ranging from 10 to 30 min), and the composition of the medium (water, oil, and water/oil). Samples were analyzed using the LC-QTOF MS/MS and ISO 3632-1:2011 methods. The major compounds were crocins, including trans-crocin and picrocrocin. Among the flavonoids, kaempferol 3-O-sophoroside stands out. Regarding extraction conditions, crocins, glycoside flavonoids, and picrocrocin were enhanced in water, the former in 100% water and at low temperatures, while picrocrocin proved to be the most stable compound with extraction favored at high temperatures. The variable with the greatest incidence of picrocrocin isolation seemed to be the concentration of water since water/oil compositions reported higher concentrations. Safranal and kaempferol were enriched in the oil phase and at lower temperatures. This study provides a chemical interpretation for the appropriate gastronomic use of saffron according to its versatility. Finally, the determination of safranal using the ISO method did not correlate with that obtained using chromatography.


Asunto(s)
Carotenoides , Crocus , Extractos Vegetales , Temperatura , Agua , Crocus/química , Agua/química , Carotenoides/análisis , Carotenoides/química , Extractos Vegetales/química , Glucósidos/análisis , Glucósidos/química , Espectrometría de Masas en Tándem/métodos , Terpenos/análisis , Terpenos/química , Flavonoides/análisis , Flavonoides/química , Ciclohexenos/análisis , Fitoquímicos/química , Fitoquímicos/análisis , Quempferoles/análisis , Quempferoles/química , Cromatografía Liquida/métodos
9.
Molecules ; 29(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38999097

RESUMEN

This study delves into the chemical and genetic determinants of petal color and fragrance in Rosa canina L., a wild rose species prized for its pharmacological and cosmetic uses. Comparative analysis of white and dark pink R. canina flowers revealed that the former harbors significantly higher levels of total phenolics (TPC) and flavonoids (TFC), while the latter is distinguished by elevated total anthocyanins (TAC). Essential oils in the petals were predominantly composed of aliphatic hydrocarbons, with phenolic content chiefly constituted by flavonols and anthocyanins. Notably, gene expression analysis showed an upregulation in most genes associated with petal color and scent biosynthesis in white buds compared to dark pink open flowers. However, anthocyanin synthase (ANS) and its regulatory gene RhMYB1 exhibited comparable expression levels across both flower hues. LC-MS profiling identified Rutin, kaempferol, quercetin, and their derivatives as key flavonoid constituents, alongside cyanidin and delphinidin as the primary anthocyanin compounds. The findings suggest a potential feedback inhibition of anthocyanin biosynthesis in white flowers. These insights pave the way for the targeted enhancement of R. canina floral traits through metabolic and genetic engineering strategies.


Asunto(s)
Antocianinas , Flavonoides , Flores , Regulación de la Expresión Génica de las Plantas , Fitoquímicos , Rosa , Rosa/química , Rosa/genética , Rosa/metabolismo , Flores/química , Flores/metabolismo , Flores/genética , Fitoquímicos/química , Flavonoides/análisis , Flavonoides/metabolismo , Flavonoides/química , Aceites Volátiles/química , Aceites Volátiles/metabolismo , Pigmentación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenoles/metabolismo , Fenoles/análisis , Fenoles/química , Odorantes/análisis
10.
Molecules ; 29(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38999158

RESUMEN

Quercetin, a bioactive plant flavonoid, is an antioxidant, and as such it exhibits numerous beneficial properties including anti-inflammatory, antiallergic, antibacterial and antiviral activity. It occurs naturally in fruit and vegetables such as apples, blueberries, cranberries, lettuce, and is present in plant waste such as onion peel or grape pomace which constitute good sources of quercetin for technological or pharmaceutical purposes. The presented study focuses on the role of quercetin in prevention and treatment of dermatological diseases analyzing its effect at a molecular level, its signal transduction and metabolism. Presented aspects of quercetin potential for skin treatment include protection against aging and UV radiation, stimulation of wound healing, reduction in melanogenesis, and prevention of skin oxidation. The article discusses quercetin sources (plant waste products included), methods of its medical administration, and perspectives for its further use in dermatology and diet therapy.


Asunto(s)
Quercetina , Enfermedades de la Piel , Quercetina/farmacología , Quercetina/uso terapéutico , Quercetina/química , Humanos , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/prevención & control , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Medicina Preventiva , Animales , Fitoquímicos/uso terapéutico , Fitoquímicos/química , Fitoquímicos/farmacología , Cicatrización de Heridas/efectos de los fármacos
11.
Molecules ; 29(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38999178

RESUMEN

Wild edible species are usually collected from the wild, and they have been included in the human diet beyond the advent of agriculture, as confirmed by several ethnobotanical surveys [...].


Asunto(s)
Plantas Comestibles , Plantas Comestibles/química , Humanos , Fitoquímicos/química , Fitoquímicos/análisis , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Etnobotánica
12.
Molecules ; 29(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38999188

RESUMEN

The leaves of Ilex paraguariensis (known as Yerba mate), used as a popular beverage, are a very well-recognized plant material with various biological activities, including analeptic (because of caffeine), anti-obesity (phenolics, saponins), antimicrobial, and antiviral (phenolics, saponins). Here, the chemical compositions of the leaves of two European Ilex species (× meserveae and aquifolium) with three varieties each were investigated. The terpenoid, saponin, and polyphenolic fractions were submitted for LC-MS or GC-MS analysis against a standard Mate leaf. In addition, the aroma profiles of all the species were analysed using HS-SPME-Arrow prior to GC-MS analysis. All fractions were subjected to antiviral and cytotoxic assays. We found 86 compounds in all accessions, with limonene, linalool, and p-cymene being predominant. There were minor similarities between the volatile compositions of the European and South American species. We found ursolic and oleanolic acid to be the main compounds in the terpenoid fraction. Mono-caffeoylquinic acids and di-caffeoylquinic acids were the main constituents of the polar fractions. About 180 compounds from the saponin group were tentatively identified, of which 9 and 3 were selected as distinctive markers for I. meserveae and I. aquifolium, respectively. Based on chemical screening, I. aquifolium Silver Queen was chosen as the source of terpenoid and saponin fractions and polyphenol extracts. The most substantial inhibition of cancer cell growth was observed with saponin in the case of the MCF7 (human breast cancer) cell line, while for LoVo and L929 cell lines (human colorectal cancer and reference mouse fibroblasts), it was slightly weaker. These results should be analysed further as a promising chemoprevention of colorectal and gastrointestinal cancers. Saponin and polyphenolic extracts exhibited similar activities against HSV-1 and HAdV-5, with 4-log reduction in virus titres. This study focuses our attention on a field of potential antiviral formulations derived from European holly.


Asunto(s)
Antivirales , Ilex , Extractos Vegetales , Hojas de la Planta , Saponinas , Ilex/química , Antivirales/farmacología , Antivirales/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Saponinas/farmacología , Saponinas/química , Saponinas/análisis , Animales , Polifenoles/farmacología , Polifenoles/análisis , Polifenoles/química , Terpenos/farmacología , Terpenos/análisis , Terpenos/química , Línea Celular Tumoral , Cromatografía de Gases y Espectrometría de Masas , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/análisis , Ilex paraguariensis/química
13.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000038

RESUMEN

The aim of our study was the detailed polyphenol profiling of Juglans nigra and the characterization of the membrane permeability and antiproliferative properties of its main phenolics. A total of 161 compounds were tentatively identified in J. nigra bark, leaf, and pericarp extracts by ultrahigh-performance liquid chromatography-high-resolution tandem mass spectrometry (UHPLC-HR-MS/MS). Eight compounds including myricetin-3-O-rhamnoside (86), quercetin-3-O-rhamnoside (106), quercetin-3-O-xyloside (74), juglone (141), 1,2,3,4-tetrahydro-7,8-dihydroxy-4-oxonaphthalen-1-yl-6-O-galloyl-glucoside (92), ellagic acid (143), gallic acid (14), and ethyl gallate (58) were isolated from J. nigra pericarp. The in vitro antiproliferative activity of the isolated compounds was investigated against three human cancer cell lines, confirming that juglone (141) inhibits cell proliferation in all of them, and has similar activity as the clinical standards. The permeability of the isolated compounds across biological membranes was evaluated by the parallel artificial membrane permeability assay (PAMPA). Both juglone (141) and ethyl-gallate (58) showed positive results in the blood-brain-barrier-specific PAMPA-BBB study. Juglone (141) also possesses logPe values which indicates that it may be able to cross both the GI and BBB membranes via passive diffusion.


Asunto(s)
Permeabilidad de la Membrana Celular , Proliferación Celular , Juglans , Fitoquímicos , Polifenoles , Juglans/química , Humanos , Polifenoles/farmacología , Polifenoles/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fitoquímicos/farmacología , Fitoquímicos/química , Línea Celular Tumoral , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem/métodos
14.
PLoS One ; 19(7): e0305667, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028725

RESUMEN

In eastern India, the tubers of Pueraria tuberosa (Willd.) DC. are used by the ethnic communities for its wide range of medicinal and nutritional value, especially to rejuvenate livestock health and to treat helminthiasis. The study is aimed to evaluate the ethnoveterinary medicinal importance of P. tuberosa as anthelmintic, to verify its nontoxic nature and identify the most potent phytoconstituents aided by in silico molecular docking technique. Ethnomedicinal data collected from 185 informants were quantitatively analyzed employing eight quantitative indices to highlight the use diversity and most frequently used part of the plant. High scores of certain indices employed, such as Use Value (UV = 0.52), Fidelity Level (FL = 68.42%) and Tissue Importance Value (TIV = 1) clearly illustrate an ethnomedicinal lead regarding medico-nutritional benefits of the tuber part used against intestinal helminthic diseases of veterinary animals. Based on this ethno-guided lead, root tuber has been investigated for its chemical profiling by the estimation of total phenolics, flavonoids, tannins and alkaloids, along with HPLC and GC-MS analyses. Anthelmintic property was evaluated with the tuber extracts by in vitro studies on some helminths of livestock and poultry birds, and it showed promising results against the tested parasites namely Cotylophoron cotylophorum, Raillietina tetragona and Setaria cervi. Toxicity assessments of tuber extract through in vitro and in vivo methods were performed using Vero cells and BALB/c mice. Nontoxic nature of the studied tuber extract was observed even in higher experimental doses. Out of 12 phytocompounds identified by GC-MS analysis, one compound [Morphinan-4,5-epoxy-3,6-di-ol,6- (7-nitrobenzofurazan-4-yl) amino-] exhibited the best binding conformations in cost of the lowest binding energy values with six target proteins that include one anti-inflammatory, one antioxidant, and four anthelmintic proteins. The findings of our study are found very encouraging to evaluate this tuber drug furthermore intensively towards the development of anthelmintic veterinary medicine.


Asunto(s)
Ganado , Extractos Vegetales , Pueraria , Animales , Pueraria/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ganado/parasitología , Ratones , Tubérculos de la Planta/química , Simulación del Acoplamiento Molecular , Etnofarmacología , Humanos , Antihelmínticos/farmacología , Chlorocebus aethiops , Células Vero , Antiparasitarios/farmacología , Fitoquímicos/farmacología , Fitoquímicos/análisis , Fitoquímicos/química , Femenino , Masculino , India
15.
Compr Rev Food Sci Food Saf ; 23(4): e13400, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39030813

RESUMEN

During food production, food processing, and supply chain, large amounts of food byproducts are generated and thrown away as waste, which to a great extent brings about adverse consequences on the environment and economic development. The sweet potato (Ipomoea batatas L.) is cultivated and consumed in many countries. Sweet potato peels (SPPs) are the main byproducts generated by the tuber processing. These residues contain abundant nutrition elements, bioactive compounds, and other high value-added substances; therefore, the reutilization of SPP holds significance in improving their overall added value. SPPs contain abundant phenolic compounds and carotenoids, which might contribute significantly to their nutraceutical properties, including antioxidant, antimicrobial, anticancer, prebiotic, anti-inflammatory, wound-healing, and lipid-lowering effects. It has been demonstrated that SPP could be promisingly revalorized into food industry, including: (1) applications in diverse food products; (2) applications in food packaging; and (3) applications in the recovery of pectin and cellulose nanocrystals. Furthermore, SPP could be used as promising feedstocks for the bioconversion of diverse value-added bioproducts through biological processing.


Asunto(s)
Suplementos Dietéticos , Ipomoea batatas , Valor Nutritivo , Fitoquímicos , Ipomoea batatas/química , Suplementos Dietéticos/análisis , Fitoquímicos/química , Fitoquímicos/análisis , Manipulación de Alimentos/métodos , Tubérculos de la Planta/química
16.
Arch Biochem Biophys ; 758: 110079, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969195

RESUMEN

Streptococcus oralis an opportunistic bacterium has been reported to be involved in various blood borne infections like subacute bacterial endocarditis, septicemia, bacterial meningitis and in some cases dental caries too. Among various targets the peptide deformylase, of S.oralis appears to be most potent druggable target as it is involved in protein synthesis is opted for the current study. Due to unavailability of PDB structure of peptide deformylase from S. oralis the study initiates with homology modelling of the protein and 6OW2 of S pneumoniae is considered as the template. Thereafter, Molecular docking, Molecular dynamic simulation, ADME analysis, and MMPBSA analysis was carried out to explore the inhibitory potential of phyto-constituents as potential inhibitors for Peptide deformylase from S.oralis. Actinonin was considered as reference drug. Among 2370 phyto compounds the best observations were recorded for A1-Barrigenol (IMPHY010984) with binding affinity of -8.5 kcal/mol. Calculated RMSD, RMSF, Binding Free Energy for IMPHY010984 averaged at about 0.10 ± 0.03 nm, 0.08 ± 0.05 nm, 131 ± 21 kJ/mol respectively whereas the RMSD, RMSF, Binding Free Energy recorded for reference drug averaged at about 0.19 ± 0.04 nm, 0.11 ± 0.08 nm, -94 ± 18 kJ/mol respectively. Based on in silico observations IMPHY010984 is proved out as superior candidate over reference drug. The study reflects the potential of IMPHY010984 as prophylactic therapeutics for S.oralis.


Asunto(s)
Amidohidrolasas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Streptococcus oralis , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Amidohidrolasas/química , Streptococcus oralis/enzimología , Streptococcus oralis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Fitoquímicos/química , Fitoquímicos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Ácidos Hidroxámicos
17.
Sci Rep ; 14(1): 15381, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965294

RESUMEN

The antiviral properties of the flowering aerial extracts of Ruellia tuberosa and Ruellia patula were investigated through phytochemical profiling via LC-MS/MS and HPLC techniques. Qualitative LC-MS/MS analyses identified seventy-seven metabolites from both Ruellia species. R. tuberosa had the highest phenolic content (49.3%), whereas R. patula had the highest flavonoid content (57.8%). Additionally, quantitative HPLC investigations of the compounds identified by LC-MS/MS were performed using the available standard compounds. The main constituents in the R. tuberosa extract was found to be catechin (5321.63 µg/g), gallic acid (2878.71 µg/g), and ellagic acid (2530.79 µg/g), whereas the major compounds in the R. patula extract was found to be rutin (11,074.19 µg/g) and chlorogenic acid (3157.35 µg/g). Furthermore, the antiviral activities of both Ruellia species against HAdV-40, herpes simplex type 2 and H1N1 were evaluated. These findings demonstrated that R. tuberosa was more active than R. patula against all tested viruses, except for the HSV-2 virus, against which R. patula showed greater activity than R. tuberosa, with IC50 values of 20, 65, 22.59, and 13.13 µg/ml for R. tuberosa flowering aerial parts and 32.26, 11.66, and 23.03 µg/ml for R. patula flowering aerial parts, respectively for HAdV-40, herpes simplex type 2, and H1N1. Additionally, computational docking and molecular dynamics simulations were used to assess the molecular interactions between the bioactive compounds and specific viral targets. The combined findings from the in-vitro and in-silico experiments comprehensively evaluated the antiviral activities of both Ruellia species extracts.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Fitoquímicos , Extractos Vegetales , Antivirales/farmacología , Antivirales/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/química , Fitoquímicos/farmacología , Apiaceae/química , Espectrometría de Masas en Tándem , Simulación de Dinámica Molecular , Cromatografía Líquida de Alta Presión , Fenoles/química , Fenoles/farmacología , Flavonoides/química , Flavonoides/farmacología
18.
BMC Complement Med Ther ; 24(1): 274, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030504

RESUMEN

BACKGROUND: The high virulence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVID-19), has triggered global health and economic concerns. The absence of specific antiviral treatments and the side effects of repurposed drugs present persistent challenges. This study explored a promising antiviral herbal extract against SARS-CoV-2 from selected Thai medicinal plants based on in vitro efficacy and evaluated its antiviral lead compounds by molecular docking. METHODS: Twenty-two different ethanolic-aqueous crude extracts (CEs) were rapidly screened for their potential activity against porcine epidemic diarrhea virus (PEDV) as a surrogate using a plaque reduction assay. Extracts achieving ≥ 70% anti-PEDV efficacy proceeded to the anti-SARS-CoV-2 activity test using a 50% tissue culture infectious dose method in Vero E6 cells. Molnupiravir and extract-free media served as positive and negative controls, respectively. Potent CEs underwent water/ethyl acetate fractionation to enhance antiviral efficacy, and the fractions were tested for anti-SARS-CoV-2 performance. The fraction with the highest antiviral potency was identified using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Molecular docking analyses of these compounds against the main protease (Mpro) of SARS-CoV-2 (6LU7) were performed to identify antiviral lead molecules. The top three hits were further evaluated for their conformational stability in the docked complex using molecular dynamics (MD) simulation. RESULTS: The water fraction of mulberry (Morus alba Linn.) leaf CE (WF-MLCE) exhibited the most potent anti-SARS-CoV-2 efficacy with low cytotoxicity profile (CC50 of ~ 0.7 mg/mL), achieving 99.92% in pre-entry mode and 99.88% in postinfection treatment mode at 0.25 mg/mL. Flavonoids and conjugates were the predominant compounds identified in WF-MLCE. Molecular docking scores of several flavonoids against SARS-CoV-2 Mpro demonstrated their superior antiviral potency compared to molnupiravir. Remarkably, myricetin-3-O-ß-D-galactopyranoside, maragrol B, and quercetin 3-O-robinobioside exhibited binding energies of ~ - 9 kcal/mol. The stability of each ligand-protein complex of these compounds with the Mpro system showed stability during MD simulation. These three molecules were pronounced as antiviral leads of WF-MLCE. Given the low cytotoxicity and high antiviral potency of WF-MLCE, it holds promise as a candidate for future therapeutic development for COVID-19 treatment, especially considering its economic and pharmacological advantages.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Extractos Vegetales , Plantas Medicinales , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , SARS-CoV-2/efectos de los fármacos , Plantas Medicinales/química , Chlorocebus aethiops , Células Vero , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Tailandia , Tratamiento Farmacológico de COVID-19 , Fitoquímicos/farmacología , Fitoquímicos/química , Humanos , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Virus de la Diarrea Epidémica Porcina/efectos de los fármacos , COVID-19 , Pueblos del Sudeste Asiático
19.
Molecules ; 29(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39064822

RESUMEN

Chysobalanus icaco L. (C. icaco) is a plant that is native to tropical America and Africa. It is also found in the southeast region of Mexico, where it is used as food and to treat certain diseases. This study aimed to carry out a phytochemical analysis of an aqueous extract of C. icaco seed (AECS), including its total phenol content (TPC), total flavonoid content (TFC), and condensed tannins (CT). It also aimed to examine the antioxidant and metal-ion-reducing potential of the AECS in vitro, as well as its toxicity and anti-inflammatory effect in mice. Antioxidant and metal-ion-reducing potential was examined by inhibiting DPPH, ABTS, and FRAP. The acute toxicity test involved a single administration of different doses of the AECS (0.5, 1, and 2 g/kg body weight). Finally, a single administration at doses of 150, 300, and 600 mg/kg of the AECS was used in the carrageenan-induced model of subplantar acute edema. The results showed that the AECS contained 124.14 ± 0.32 mg GAE, 1.65 ± 0.02 mg EQ, and 0.910 ± 0.01 mg of catechin equivalents/g dried extract (mg EC/g de extract) for TPC, TFC and CT, respectively. In the antioxidant potential assays, the values of the median inhibition concentration (IC50) of the AECS were determined with DPPH (0.050 mg/mL), ABTS (0.074 mg/mL), and FRAP (0.49 mg/mL). Acute toxicity testing of the AECS revealed no lethality, with a median lethal dose (LD50) value of >2 g/kg by the intragastric route. Finally, for inhibition of acute edema, the AECS decreased inflammation by 55%, similar to indomethacin (59%, p > 0.05). These results demonstrated that C. icaco seed could be considered a source of bioactive molecules for therapeutic purposes due to its antioxidant potential and anti-inflammatory activity derived from TPC, with no lethal effect from a single intragastric administration in mice.


Asunto(s)
Antiinflamatorios , Antioxidantes , Edema , Extractos Vegetales , Semillas , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/química , Ratones , Antioxidantes/farmacología , Antioxidantes/química , Semillas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Edema/tratamiento farmacológico , Edema/inducido químicamente , Carragenina/toxicidad , Flavonoides/farmacología , Flavonoides/química , Modelos Animales de Enfermedad , Pruebas de Toxicidad Aguda , Fitoquímicos/farmacología , Fitoquímicos/química , Masculino , Fenoles/química , Fenoles/farmacología
20.
Molecules ; 29(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39064831

RESUMEN

Notopterygium, a plant genus belonging to the Apiaceae family, is utilized in traditional Chinese medicine for its medicinal properties. Specifically, the roots and rhizomes of these plants are employed in phytotherapy to alleviate inflammatory conditions and headaches. This review provides a concise overview of the existing information regarding the botanical description, phytochemistry, pharmacology, and molecular mechanisms of the two Notopterygium species: Notopterygium incisum and N. franchetii. More than 500 distinct compounds have been derived from these plants, with the root being the primary source. These components include volatile oils, coumarins, enynes, sesquiterpenes, organic acids and esters, flavonoids, and various other compounds. Research suggests that Notopterygium incisum and N. franchetii exhibit a diverse array of pharmacological effects, encompassing antipyretic, analgesic, anti-inflammatory, antiarrhythmic, anticoagulant, antibacterial, antioxidant, and anticancer properties on various organs such as the brain, heart, digestive system, and respiratory system. Building activity screening models based on the pharmacological effects of Notopterygium species, as well as discovering and studying the pharmacological mechanisms of novel active ingredients, will constitute the primary development focus of Notopterygium medicinal research in the future.


Asunto(s)
Apiaceae , Fitoquímicos , Apiaceae/química , Humanos , Fitoquímicos/química , Fitoquímicos/farmacología , Medicina Tradicional China , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA