Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.242
1.
Acta Neuropathol Commun ; 12(1): 100, 2024 06 17.
Article En | MEDLINE | ID: mdl-38886854

A link between chronic stress and Parkinson's disease (PD) pathogenesis is emerging. Ample evidence demonstrates that the presynaptic neuronal protein alpha-synuclein (asyn) is closely tied to PD pathogenesis. However, it is not known whether stress system dysfunction is present in PD, if asyn is involved, and if, together, they contribute to neurodegeneration. To address these questions, we assess stress axis function in transgenic rats overexpressing full-length wildtype human asyn (asyn BAC rats) and perform multi-level stress and PD phenotyping following chronic corticosterone administration. Stress signaling, namely corticotropin-releasing factor, glucocorticoid and mineralocorticoid receptor gene expression, is also examined in post-mortem PD patient brains. Overexpression of human wildtype asyn leads to HPA axis dysregulation in rats, while chronic corticosterone administration significantly aggravates nigrostriatal degeneration, serine129 phosphorylated asyn (pS129) expression and neuroinflammation, leading to phenoconversion from a prodromal to an overt motor PD phenotype. Interestingly, chronic corticosterone in asyn BAC rats induces a robust, twofold increase in pS129 expression in the hypothalamus, the master regulator of the stress response, while the hippocampus, both a regulator and a target of the stress response, also demonstrates elevated pS129 asyn levels and altered markers of stress signalling. Finally, defective hippocampal stress signalling is mirrored in human PD brains and correlates with asyn expression levels. Taken together, our results link brain stress system dysregulation with asyn and provide evidence that elevated circulating glucocorticoids can contribute to asyn-induced neurodegeneration, ultimately triggering phenoconversion from prodromal to overt PD.


Corticosterone , Parkinson Disease , Rats, Transgenic , Stress, Psychological , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Animals , Parkinson Disease/metabolism , Parkinson Disease/pathology , Humans , Rats , Stress, Psychological/metabolism , Stress, Psychological/pathology , Male , Corticosterone/blood , Brain/metabolism , Brain/pathology , Hypothalamo-Hypophyseal System/metabolism , Female , Pituitary-Adrenal System/metabolism
2.
In Vivo ; 38(4): 1677-1689, 2024.
Article En | MEDLINE | ID: mdl-38936893

BACKGROUND/AIM: Depression is associated with metabolic disorders, including non-alcoholic fatty liver disease (NAFLD). However, the mechanisms underlying the interaction between them are still poorly known. MATERIALS AND METHODS: In this study, mice on a choline deficiency, L-amino acid-defined, high-fat diet (CDAHFD) developing steatosis were challenged with chronic restraint stress (CRS), a protocol widely used to induce depression. The development of depression and steatosis was evaluated using histopathology analysis, ELISA, q-PCR and Western Blot. RESULTS: The contribution of the activated HPA axis to hepatic steatosis progress was fully established, which was validated using a hepatocyte model. Histopathological and biochemical analysis indicated that steatosis was exacerbated by CRS challenge, and behavioral tests indicated that the mice developed depression. Among the screened endocrinal pathways, the hypothalamic-pituitary-adrenal (HPA) axis was significantly activated and the synergistic effect of CDAHFD and CRS in activating the HPA axis was observed. In the hypothalamus, expression of corticotropin-releasing hormone (CRH) was increased by 86% and the protein levels of hypothalamic CRH were upregulated by 25% to 33% by CRS treatment. Plasma CRH levels were elevated by 45-56% and plasma adrenocorticotropic hormone (ACTH) levels were elevated by 29-58% by CRS treatment. In the liver, target genes of the HPA axis were activated, accompanied by disruption of the lipid metabolism and progression of steatohepatitis. The lipid metabolism in the Hepa1-6 cell line treated with endogenous corticosterone (CORT) was in accordance with the aforementioned in vivo responses. CONCLUSION: Depression aggravated hepatic steatosis in CDAHFD-fed mice by activating the HPA axis. The risk of NAFLD development should be fully considered in depressive patients and improvement of psychotic disorders could be an etiological treatment strategy for them.


Depression , Disease Models, Animal , Hypothalamo-Hypophyseal System , Non-alcoholic Fatty Liver Disease , Pituitary-Adrenal System , Animals , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Mice , Depression/metabolism , Depression/etiology , Depression/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Male , Mice, Inbred C57BL , Corticotropin-Releasing Hormone/metabolism , Corticotropin-Releasing Hormone/genetics , Diet, High-Fat/adverse effects , Adrenocorticotropic Hormone/blood , Liver/metabolism , Liver/pathology , Fatty Liver/metabolism , Fatty Liver/etiology , Fatty Liver/pathology , Corticosterone/blood
3.
Front Endocrinol (Lausanne) ; 15: 1272270, 2024.
Article En | MEDLINE | ID: mdl-38689729

During parturition and the immediate post-partum period there are two opposite, yet interdependent and intertwined systems that are highly active and play a role in determining lifelong health and behaviour in both the mother and her infant: the stress and the anti-stress (oxytocin) system. Before attempting to understand how the environment around birth determines long-term health trajectories, it is essential to understand how these two systems operate and how they interact. Here, we discuss together the hormonal and neuronal arms of both the hypothalamic-pituitary-adrenal (HPA) axis and the oxytocinergic systems and how they interact. Although the HPA axis and glucocorticoid stress axis are well studied, the role of oxytocin as an extremely powerful anti-stress hormone deserves more attention. It is clear that these anti-stress effects depend on oxytocinergic nerves emanating from the supraoptic nucleus (SON) and paraventricular nucleus (PVN), and project to multiple sites at which the stress system is regulated. These, include projections to corticotropin releasing hormone (CRH) neurons within the PVN, to the anterior pituitary, to areas involved in sympathetic and parasympathetic nervous control, to NA neurons in the locus coeruleus (LC), and to CRH neurons in the amygdala. In the context of the interaction between the HPA axis and the oxytocin system birth is a particularly interesting period as, for both the mother and the infant, both systems are very strongly activated within the same narrow time window. Data suggest that the HPA axis and the oxytocin system appear to interact in this early-life period, with effects lasting many years. If mother-child skin-to-skin contact occurs almost immediately postpartum, the effects of the anti-stress (oxytocin) system become more prominent, moderating lifelong health trajectories. There is clear evidence that HPA axis activity during this time is dependent on the balance between the HPA axis and the oxytocin system, the latter being reinforced by specific somatosensory inputs, and this has long-term consequences for stress reactivity.


Hypothalamo-Hypophyseal System , Oxytocin , Pituitary-Adrenal System , Animals , Female , Humans , Pregnancy , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Oxytocin/metabolism , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Stress, Physiological/physiology , Stress, Psychological/metabolism , Yin-Yang
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732064

In recent years, there has been a marked increase in interest in the role of the kynurenine pathway (KP) in mechanisms associated with addictive behavior. Numerous reports implicate KP metabolism in influencing the immune system, hypothalamic-pituitary-adrenal (HPA) axis, and neurotransmission, which underlie the behavioral patterns characteristic of addiction. An in-depth analysis of the results of these new studies highlights interesting patterns of relationships, and approaching alcohol use disorder (AUD) from a broader neuroendocrine-immune system perspective may be crucial to better understanding this complex phenomenon. In this review, we provide an up-to-date summary of information indicating the relationship between AUD and the KP, both in terms of changes in the activity of this pathway and modulation of this pathway as a possible pharmacological approach for the treatment of AUD.


Alcoholism , Hypothalamo-Hypophyseal System , Immune System , Kynurenine , Pituitary-Adrenal System , Synaptic Transmission , Humans , Kynurenine/metabolism , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Alcoholism/metabolism , Alcoholism/immunology , Animals , Immune System/metabolism , Immune System/immunology , Signal Transduction
5.
Int J Mol Sci ; 25(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38791468

Maternal type 2 diabetes mellitus (T2DM) has been shown to result in foetal programming of the hypothalamic-pituitary-adrenal (HPA) axis, leading to adverse foetal outcomes. T2DM is preceded by prediabetes and shares similar pathophysiological complications. However, no studies have investigated the effects of maternal prediabetes on foetal HPA axis function and postnatal offspring development. Hence, this study investigated the effects of pregestational prediabetes on maternal HPA axis function and postnatal offspring development. Pre-diabetic (PD) and non-pre-diabetic (NPD) female Sprague Dawley rats were mated with non-prediabetic males. After gestation, male pups born from the PD and NPD groups were collected. Markers of HPA axis function, adrenocorticotropin hormone (ACTH) and corticosterone, were measured in all dams and pups. Glucose tolerance, insulin and gene expressions of mineralocorticoid (MR) and glucocorticoid (GR) receptors were further measured in all pups at birth and their developmental milestones. The results demonstrated increased basal concentrations of ACTH and corticosterone in the dams from the PD group by comparison to NPD. Furthermore, the results show an increase basal ACTH and corticosterone concentrations, disturbed MR and GR gene expression, glucose intolerance and insulin resistance assessed via the Homeostasis Model Assessment (HOMA) indices in the pups born from the PD group compared to NPD group at all developmental milestones. These observations reveal that pregestational prediabetes is associated with maternal dysregulation of the HPA axis, impacting offspring HPA axis development along with impaired glucose handling.


Adrenocorticotropic Hormone , Corticosterone , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Prediabetic State , Rats, Sprague-Dawley , Animals , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Female , Pregnancy , Prediabetic State/metabolism , Rats , Adrenocorticotropic Hormone/blood , Adrenocorticotropic Hormone/metabolism , Corticosterone/blood , Corticosterone/metabolism , Male , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Receptors, Mineralocorticoid/genetics , Prenatal Exposure Delayed Effects/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance
6.
Dev Psychobiol ; 66(5): e22491, 2024 Jul.
Article En | MEDLINE | ID: mdl-38698633

Developmental plasticity is particularly important for humans and other primates because of our extended period of growth and maturation, during which our phenotypes adaptively respond to environmental cues. The hypothalamus-pituitary-gonadal (HPG) and hypothalamus-pituitary-adrenal (HPA) axes are likely to be principal targets of developmental "programming" given their roles in coordinating fitness-relevant aspects of the phenotype, including sexual development, adult reproductive and social strategies, and internal responses to the external environment. In social animals, including humans, the social environment is believed to be an important source of cues to which these axes may adaptively respond. The effects of early social environments on the HPA axis have been widely studied in humans, and to some extent, in other primates, but there are still major gaps in knowledge specifically relating to males. There has also been relatively little research examining the role that social environments play in developmental programming of the HPG axis or the HPA/HPG interface, and what does exist disproportionately focuses on females. These topics are likely understudied in males in part due to the difficulty of identifying developmental milestones in males relative to females and the general quiescence of the HPG axis prior to maturation. However, there are clear indicators that early life social environments matter for both sexes. In this review, we examine what is known about the impact of social environments on HPG and HPA axis programming during male development in humans and nonhuman primates, including the role that epigenetic mechanisms may play in this programming. We conclude by highlighting important next steps in this research area.


Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Primates , Social Environment , Animals , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Male , Primates/physiology , Humans , Female
7.
Dev Psychobiol ; 66(5): e22494, 2024 Jul.
Article En | MEDLINE | ID: mdl-38698641

Though considerable work supports the Dimensional Model of Adversity and Psychopathology, prior research has not tested whether the dimensions-threat (e.g., abuse) and deprivation (e.g., neglect)-are uniquely related to salivary trait indicators of hypothalamic pituitary adrenal (HPA) axis activity. We examined the unique and interactive effects of threat and deprivation on latent trait cortisol (LTC)-and whether these effects were modified by co-occurring adversities. Emerging adults (n = 90; Mage = 19.36 years; 99.88% cisgender women) provided salivary cortisol samples four times a day (waking, 30 min and 45 min postwaking, bedtime) over three 3-day measurement waves over 13 weeks. Contextual life stress interviews assessed early adversity. Though the effects varied according to the conceptualization of early adversity, overall, threat-but not deprivation, nor other co-occurring adversities-was uniquely associated with the across-wave LTC. Specifically, the incidence and frequency of threat were each negatively related to the across-wave LTC. Threat severity was also associated with the across-wave LTC, but only among those with no deprivation. Finally, the effects of threat were modified by other co-occurring adversities. Findings suggest that threat has unique implications for individual differences in HPA axis activity among emerging adults, and that co-occurring adversities modify such effects.


Hydrocortisone , Hypothalamo-Hypophyseal System , Saliva , Humans , Female , Male , Hydrocortisone/metabolism , Young Adult , Adult , Saliva/metabolism , Saliva/chemistry , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Adolescent , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Adverse Childhood Experiences , Psychosocial Deprivation
8.
Psychoneuroendocrinology ; 166: 107059, 2024 Aug.
Article En | MEDLINE | ID: mdl-38692096

Infants' hypothalamic-pituitary-adrenocortical (HPA) axis responses to acute stressors are theorized to be shaped by parents' sensitive responsiveness to infants' cues. The strength and direction of the association between maternal sensitivity and infants' HPA responses may depend on the context in which maternal sensitivity is observed and on broader environmental sources of stress and support. In this preregistered study, we used data from 105 mothers and their 7-month-old infants to examine whether two empirically identified forms of contextual stress-poor maternal psychosocial wellbeing and family socioeconomic hardship-moderate the association between maternal sensitivity and infants' cortisol responses to the Still-Face Paradigm (SFP). Results indicated that maternal sensitivity during the free play and family socioeconomic hardship interacted to predict infants' cortisol responses to the SFP. Specifically, maternal sensitivity during this non-distressing interaction was negatively associated with cortisol responses only among infants whose mothers were experiencing relatively high socioeconomic hardship. Exploratory analyses revealed that poor maternal psychosocial wellbeing was positively associated with overall infant cortisol production during the SFP. Altogether, these findings suggest that experiences within early parent-infant attachment relationships and sources of contextual stress work together to shape infant HPA axis activity.


Hydrocortisone , Hypothalamo-Hypophyseal System , Mother-Child Relations , Mothers , Pituitary-Adrenal System , Saliva , Stress, Psychological , Humans , Hydrocortisone/metabolism , Hydrocortisone/analysis , Female , Infant , Stress, Psychological/metabolism , Stress, Psychological/psychology , Mother-Child Relations/psychology , Hypothalamo-Hypophyseal System/metabolism , Adult , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Male , Mothers/psychology , Saliva/chemistry , Saliva/metabolism , Maternal Behavior/physiology , Maternal Behavior/psychology , Object Attachment
9.
Gen Comp Endocrinol ; 355: 114545, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38701975

In birds, patterns of development of the adrenocortical response to stressors vary among individuals, types of stressors, and species. Since there are benefits and costs of exposure to elevated glucocorticoids, this variation is presumably a product of selection such that animals modulate glucocorticoid secretion in contexts where doing so increases their fitness. In this study, we evaluated hypothalamo-pituitary-adrenal (HPA) activity in first-hatched free-living seabird nestlings that engage in intense sibling competition and facultative siblicide (black-legged kittiwakes, Rissa tridactyla). We sampled 5 day old chicks (of the ∼45 day nestling period), a critical early age when food availability drives establishment of important parent-offspring and intra-brood dynamics. We experimentally supplemented parents with food ("supplemented") and measured chick baseline corticosterone secretion and capacity to rapidly increase corticosterone in response to an acute challenge (handling and 15 min of restraint in a bag). We also used topical administration of corticosterone to evaluate the ability of chicks to downregulate physiologically relevant corticosterone levels on a short time scale (minutes). We found that 5 day old chicks are not hypo-responsive but release corticosterone in proportion to the magnitude of the challenge, showing differences in baseline between parental feeding treatments (supplemented vs non-supplemented), moderate increases in response to handling, and a larger response to restraint (comparable to adults) that also differed between chicks from supplemented and control nests. Topical application of exogenous corticosterone increased circulating levels nearly to restraint-induced levels and induced downregulation of HPA responsiveness to the acute challenge of handling. Parental supplemental feeding did not affect absorbance/clearance or negative feedback. Thus, while endogenous secretion of corticosterone in young chicks is sensitive to environmental context, other aspects of the HPA function, such as rapid negative feedback and/or the ability to clear acute elevations in corticosterone, are not. We conclude that 5 day old kittiwake chicks are capable of robust adrenocortical responses to novel challenges, and are sensitive to parental food availability, which may be transduced behaviorally, nutritionally, or via maternal effects. Questions remain about the function of such rapid, large acute stress-induced increases in corticosterone in very young chicks.


Charadriiformes , Corticosterone , Animals , Corticosterone/metabolism , Corticosterone/blood , Charadriiformes/physiology , Charadriiformes/metabolism , Hypothalamo-Hypophyseal System/metabolism , Stress, Physiological , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/drug effects , Female , Male
10.
Neurosci Biobehav Rev ; 162: 105730, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763179

Stress is known to impair reproduction through interactions between the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes. However, while it is well accepted that stress can alter estrous cycle regularity, a key indicator of female's HPG axis function, effects of different types of psychological stress have been inconsistent. This systematic review evaluated the impact of rodent models of psychological stress on estrous cyclicity, while reporting biological parameters pertaining to HPA or HPG axis function assessed within these studies. We performed a systematic database search and included articles that implemented a psychological stress model in rodents and reported estrous cyclicity for at least two cycles after initiation of stress. Of the 32 studies included, 62.5% reported post-stress alterations to estrous cyclicity, with Chronic Mild Stress (CMS) models showing the most conclusive effects. Twenty-five studies measured HPG or HPA axis markers, with cycle disruptions being commonly observed in parallel with altered estradiol and increased corticosterone levels. Our review highlights gaps in reporting estrous cyclicity assessments and makes recommendations to improve comparability between studies.


Disease Models, Animal , Estrous Cycle , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Stress, Psychological , Animals , Female , Estrous Cycle/physiology , Hypothalamo-Hypophyseal System/physiopathology , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/physiopathology , Pituitary-Adrenal System/metabolism , Rodentia , Stress, Psychological/physiopathology
11.
Mol Cell Endocrinol ; 590: 112266, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38718853

This paper provides a summary of the role of nitric oxide (NO) and hormones in the development of chronic stress, anxiety, depression, and post-traumatic stress disorder (PTSD). These mental health conditions are prevalent globally and involve complex molecular interactions. Although there is a significant amount of research and therapeutic options available, the underlying mechanisms of these disorders are still not fully understood. The primary pathophysiologic processes involved in chronic stress, anxiety, depression, and PTSD include dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, the intracellular influence of neuronal nitric oxide synthase (nNOS) on transcription factors, an inflammatory response with the formation of nitrergic oxidative species, and reduced serotonergic transmission in the dorsal raphe nucleus. Despite the extensive literature on this topic, there is a great need for further research to clarify the complexities inherent in these pathways, with the primary aim of improving psychiatric care.


Anxiety , Depression , Nitric Oxide , Signal Transduction , Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/metabolism , Stress Disorders, Post-Traumatic/physiopathology , Nitric Oxide/metabolism , Depression/metabolism , Depression/physiopathology , Animals , Anxiety/metabolism , Anxiety/physiopathology , Stress, Psychological/metabolism , Hypothalamo-Hypophyseal System/metabolism , Hormones/metabolism , Pituitary-Adrenal System/metabolism
12.
Pharmacol Res Perspect ; 12(3): e1205, 2024 Jun.
Article En | MEDLINE | ID: mdl-38764237

This study aimed to examine the effect of acute exogenous melatonin administration on salivary cortisol and alpha-amylase (sCort and sAA) as representatives of the HPA axis and the sympathetic nervous system, respectively. A single-dose prolonged-release melatonin (2 mg) or a placebo tablet was given to healthy volunteers (n = 64) at 20:00 h in a crossover design. The saliva was collected at six time points (20:00, 21:00, awakening, 30 min after awakening, 10:00, and 12:00 h) and was measured for sCort, sAA, and salivary melatonin (sMT) levels. Pulse rates and sleep parameters were also collected. Melatonin was effective in improving sleep onset latency by 7:04 min (p = .037) and increasing total sleep time by 24 min (p = .006). Participants with poor baseline sleep quality responded more strongly to melatonin than participants with normal baseline sleep quality as they reported more satisfaction in having adequate sleep (p = .017). Melatonin administration resulted in higher sCort levels at awakening time point (p = .023) and a tendency of lower sAA levels but these were not significant. Melatonin ingestion at 20:00 h resulted in a marked increase in sMT levels at 21:00 h and remained higher than baseline up to at least 10:00 h (p < .001). Melatonin increases sCort levels at certain time point with a tendency to lower sAA levels. These opposing effects of melatonin suggested a complex interplay between melatonin and these biomarkers. Also, the results confirmed the positive acute effect of a single-dose melatonin on sleep quality.


Cross-Over Studies , Hydrocortisone , Melatonin , Saliva , Humans , Melatonin/administration & dosage , Melatonin/pharmacology , Saliva/chemistry , Saliva/metabolism , Hydrocortisone/metabolism , Male , Adult , Female , Young Adult , alpha-Amylases/metabolism , Sleep/drug effects , Sleep Quality , Double-Blind Method , Healthy Volunteers , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Delayed-Action Preparations
13.
Ann Med ; 56(1): 2356667, 2024 Dec.
Article En | MEDLINE | ID: mdl-38776237

BACKGROUND: The lack of association between serum testosterone levels and symptoms suggestive of hypogonadism is a significant barrier in the determination of late-onset hypogonadism (LOH) in men. This study explored whether testosterone levels increase after morning awakening, likewise the cortisol awakening response (CAR) in the hypothalamic-pituitary-adrenal (HPA) axis, and whether testosterone levels during the post-awakening period are associated with age and symptoms suggestive of late-onset hypogonadism (LOH) in men. METHODS: Testosterone and cortisol levels were determined in saliva samples collected immediately upon awakening and 30 and 60 min after awakening, and scores of the Aging Males' Symptoms (AMS) questionnaire were obtained from 225 healthy adult men. RESULTS: A typical CAR (an increase in cortisol level ≥ 2.5 nmol/L above individual baseline) was observed in 155 participants (the subgroup exhibiting typical CAR). In the subgroup exhibiting CAR, testosterone levels sharply increased during the post-awakening period, showing a significant negative correlation with age, total AMS score, and the scores of 11 items on the somatic, psychological, and sexual AMS subscales. Of these items, three sexual items (AMS items #15-17) were correlated with age. Meanwhile, there was no notable increase in testosterone levels and no significant correlation of testosterone levels with age and AMS score in the subgroup exhibiting no typical CAR (n = 70). CONCLUSIONS: The results indicate that the hypothalamus-pituitary-gonad (HPG) axis responds to morning awakening, and determining testosterone levels during the post-awakening period in men with typical CAR may be useful for assessing HPG axis function and LOH.


The present study found that the HPG axis in healthy adult men responds to the morning awakening, characterized by increased salivary testosterone levels after the awakening period.The levels of salivary testosterone during the first hour after awakening are negatively associated with age and the severity of symptoms suggestive of LOH in adult men with typical CAR.


Hydrocortisone , Hypogonadism , Hypothalamo-Hypophyseal System , Saliva , Testosterone , Humans , Male , Testosterone/analysis , Testosterone/blood , Testosterone/metabolism , Saliva/chemistry , Saliva/metabolism , Hypogonadism/metabolism , Hypogonadism/blood , Hypogonadism/diagnosis , Middle Aged , Adult , Hydrocortisone/metabolism , Hydrocortisone/blood , Hydrocortisone/analysis , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Aged , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Aging/metabolism , Aging/physiology , Surveys and Questionnaires , Age Factors , Young Adult , Wakefulness/physiology
14.
J Recept Signal Transduct Res ; 44(1): 19-26, 2024 Feb.
Article En | MEDLINE | ID: mdl-38647103

Kisspeptin is an important hormone involved in the stimulation of the hypothalamo-pituitary gonadal (HPG) axis. The HPG axis can be suppressed in certain conditions such as stress, which gives rise to the activation of the hypothalamo-pituitary-adrenal (HPA) axis. However, the physiological role of kisspeptin in the interaction of HPG and HPA axis is not fully understood yet. This study was conducted to investigate the possible effects of central kisspeptin injection on HPG axis as well as HPA axis activity. Adult male Wistar rats were randomly divided into seven groups as followed: sham (control), kisspeptin (50 pmol), P234 (1 nmol), kisspeptin + p234, kisspeptin + antalarmin (0.1 µg), kisspeptin + astressin 2B (1 µg), and kisspeptin + atosiban (300 ng/rat) (n = 10 each group). At the end of the experiments, the hypothalamus, pituitary, and serum samples of the rats were collected. There was no significant difference in corticotropic-releasing hormone immunoreactivity in the paraventricular nucleus of the hypothalamus, serum adrenocorticotropic hormone, and corticosterone levels among all groups. Moreover, no significant difference was detected in pituitary oxytocin level. Serum follicle-stimulating hormone and luteinizing hormone levels of the kisspeptin, kisspeptin + antalarmin, and kisspeptin + astressin 2B groups were significantly higher than the control group. Serum testosterone levels were significantly higher in the kisspeptin kisspeptin + antalarmin, kisspeptin + astressin 2B, and kisspeptin + atosiban groups compared to the control group. Our findings suggest that central kisspeptin injection causes activation in the HPG axis, but not the HPA axis in male rats.


Hypothalamo-Hypophyseal System , Kisspeptins , Pituitary-Adrenal System , Rats, Wistar , Animals , Male , Kisspeptins/administration & dosage , Kisspeptins/pharmacology , Kisspeptins/metabolism , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Rats , Peptide Fragments/administration & dosage , Luteinizing Hormone/blood , Luteinizing Hormone/metabolism , Corticosterone/blood , Vasotocin/pharmacology , Vasotocin/administration & dosage , Testosterone/blood , Injections, Intraventricular , Gonads/metabolism , Gonads/drug effects , Pituitary Gland/metabolism , Pituitary Gland/drug effects , Gonadotropin-Releasing Hormone/metabolism , Adrenocorticotropic Hormone/blood , Corticotropin-Releasing Hormone , Oligopeptides
15.
Horm Behav ; 162: 105538, 2024 Jun.
Article En | MEDLINE | ID: mdl-38574447

Environmental enrichment (EE) is a paradigm that offers the animal a plethora of stimuli, including physical, cognitive, sensory, and social enrichment. Exposure to EE can modulate both anxiety responses and plasma corticosterone. In this study, our objective was to explore how chronic unpredictable stress (CUS) impacts anxiety-related behaviors in male Swiss mice raised in EE conditions. Additionally, we investigated corticosterone and adrenocorticotropic hormone (ACTH) levels to assess the involvement of the hypothalamic-pituitary-adrenal (HPA) axis in mediating these responses. Mice were housed under either EE or standard housing conditions for 21 days. Afterward, they were exposed to 11 days of CUS while still reared in their distinct housing conditions, with half of the mice receiving daily pretreatment with the vehicle and the other half receiving daily metyrapone (MET) injections, an inhibitor of steroid synthesis, 30 mins before CUS exposure. Blood samples were obtained to assess plasma corticosterone and ACTH levels. The 11-day CUS protocol induced anxiety-like phenotype and elevated ACTH levels in EE mice. Chronic MET pretreatment prevented anxiety-like behavior in the EE-CUS groups, by mechanisms involving increased plasma corticosterone levels and decreased ACTH. These results suggest a role of the HPA axis in the mechanism underlying the anxiogenic phenotype induced by CUS in EE mice and shed light on the complex interplay between environmental factors, stress, and the HPA axis in anxiety regulation.


Adrenocorticotropic Hormone , Anxiety , Corticosterone , Environment , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Stress, Psychological , Animals , Male , Hypothalamo-Hypophyseal System/metabolism , Mice , Pituitary-Adrenal System/metabolism , Stress, Psychological/metabolism , Adrenocorticotropic Hormone/blood , Corticosterone/blood , Metyrapone/pharmacology , Behavior, Animal/physiology , Housing, Animal , Maze Learning/physiology
16.
Psychoneuroendocrinology ; 165: 107039, 2024 Jul.
Article En | MEDLINE | ID: mdl-38581748

OBJECTIVE: Childhood trauma may contribute to poor lifelong health in part through programming of the HPA-axis response to future life stressors. To date, empirical evidence shows an association of childhood trauma with dysregulation of the HPA-axis and blunted cortisol reactivity to acute stressors. Here, we conduct an initial examination of childhood trauma as a moderator of changes over time in perceived stress levels and HPA-axis response to a major chronic stressor in adulthood. METHODS: Participants were 83 maternal caregivers of children newly diagnosed with cancer who completed the Childhood Trauma Questionnaire (CTQ), and who, over the year following their child's cancer diagnosis, had hair samples collected up to 7 times for the assessment of cortisol and completed monthly measures of perceived stress. RESULTS: CTQ scores were in the expected range for a community sample and associated with changes in perceived stress and cortisol concentration over time (γ =.003, p =.002; γ = -.0004, p =.008, respectively) independently of age, education, treatment intensity and randomization to stress management intervention. Maternal caregivers who endorsed lower childhood trauma showed a steeper decline in perceived stress and a larger increase in cortisol levels across the year than caregivers who recalled more childhood trauma. CONCLUSIONS: Findings extend animal models and studies that examine cortisol reactivity to acute stressors and suggest that childhood trauma may program a phenotype that is more psychologically reactive but shows a blunted HPA-axis response to chronic stress. While adaptive in the short-term, this early life programming may incur long-term costs for health. Further work is warranted to examine this possibility.


Adverse Childhood Experiences , Hair , Hydrocortisone , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Stress, Psychological , Humans , Hair/chemistry , Hair/metabolism , Hydrocortisone/metabolism , Hydrocortisone/analysis , Female , Stress, Psychological/metabolism , Adult , Hypothalamo-Hypophyseal System/metabolism , Male , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Life Change Events , Middle Aged , Child , Surveys and Questionnaires , Caregivers/psychology , Mothers/psychology
17.
J Therm Biol ; 121: 103850, 2024 Apr.
Article En | MEDLINE | ID: mdl-38608548

Assessing the physiological stress responses of wild animals opens a window for understanding how organisms cope with environmental challenges. Since stress response is associated with changes in body temperature, the use of body surface temperature through thermal imaging could help to measure acute and chronic stress responses non-invasively. We used thermal imaging, acute handling-stress protocol and an experimental manipulation of corticosterone (the main glucocorticoid hormone in birds) levels in breeding king penguins (Aptenodytes patagonicus), to assess: 1. The potential contribution of the Hypothalamo-Pituitary-Adrenal (HPA) axis in mediating chronic and acute stress-induced changes in adult surface temperature, 2. The influence of HPA axis manipulation on parental investment through thermal imaging of eggs and brooded chicks, and 3. The impact of parental treatment on offspring thermal's response to acute handling. Maximum eye temperature (Teye) increased and minimum beak temperature (Tbeak) decreased in response to handling stress in adults, but neither basal nor stress-induced surface temperatures were significantly affected by corticosterone implant. While egg temperature was not significantly influenced by parental treatment, we found a surprising pattern for chicks: chicks brooded by the (non-implanted) partner of corticosterone-implanted individuals exhibited higher surface temperature (both Teye and Tbeak) than those brooded by glucocorticoid-implanted or control parents. Chick's response to handling in terms of surface temperature was characterized by a drop in both Teye and Tbeak independently of parental treatment. We conclude that the HPA axis seems unlikely to play a major role in determining chronic or acute changes in surface temperature in king penguins. Changes in surface temperature may primarily be mediated by the Sympathetic-Adrenal-Medullary (SAM) axis in response to stressful situations. Our experiment did not reveal a direct impact of parental HPA axis manipulation on parental investment (egg or chick temperature), but a potential influence on the partner's brooding behaviour.


Corticosterone , Hypothalamo-Hypophyseal System , Spheniscidae , Stress, Physiological , Animals , Spheniscidae/physiology , Spheniscidae/blood , Corticosterone/blood , Hypothalamo-Hypophyseal System/physiology , Hypothalamo-Hypophyseal System/metabolism , Female , Male , Pituitary-Adrenal System/physiology , Pituitary-Adrenal System/metabolism , Body Temperature
18.
Psychoneuroendocrinology ; 165: 107041, 2024 Jul.
Article En | MEDLINE | ID: mdl-38581747

BACKGROUND: The risk of preterm birth (PTB) increases when experiencing stress during pregnancy. Chronic stress has been associated with a dysregulation of the hypothalamic-pituitary-adrenal axis, for which hair cortisol concentration (HCC) is a promising biomarker. However, previous studies on the association between HCC and PTB yielded inconsistent results. This systematic review and meta-analysis synthesized previous studies on the association between maternal HCC before and during pregnancy and spontaneous PTB. METHODS: Data was extracted from N = 11 studies with k = 19 effect sizes retrieved from PubMed, Embase, Web of Science, CINAHL and citation searching by hand in June 2023 and updated in October 2023. Standardized mean differences were calculated, and a random-effects three-level meta-analysis was conducted. Effect heterogeneity was assessed using Q and I2. RESULTS: HCC during pregnancy was higher among PTB than term groups, but effects were not statistically significant (z = 0.11, 95% CI: - 0.28, 0.51, p = .54) and total heterogeneity was high (Q16 = 60.01, p < .001, I2Total = 92.30%). After leaving out two possible outlier studies in sensitivity analyses, HCC was lower among preterm compared to term delivering groups, although not statistically significant (z = - 0.06, 95% CI: - 0.20, 0.08, p = .39) but with a substantially reduced total heterogeneity (Q12 = 16.45, p = .17, I2Total = 42.15%). No moderators affected the estimates significantly, but an effect of trimester and gestational age at delivery is likely. CONCLUSION: There is currently no evidence of prenatal HCC differences between PTB and term groups as effects were small, imprecise, and not significant. Low statistical power and methodological weaknesses of the small-scale studies challenge possible biological inferences from the small effects, but further research on HCC during pregnancy is highly encouraged.


Hair , Hydrocortisone , Premature Birth , Humans , Pregnancy , Female , Hair/chemistry , Premature Birth/metabolism , Hydrocortisone/analysis , Hydrocortisone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Infant, Newborn , Stress, Psychological/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Adult
19.
Neurobiol Dis ; 195: 106499, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38588753

The gut-brain axis is a bidirectional communication network linking the gut and the brain, overseeing digestive functions, emotional responses, body immunity, brain development, and overall health. Substantial research highlights a connection between disruptions of the gut-brain axis and various psychiatric and neurological conditions, including depression and Alzheimer's disease. Given the impact of the gut-brain axis on behavior, cognition, and brain diseases, some studies have started to pay attention to the role of the axis in sepsis-associated encephalopathy (SAE), where cognitive impairment is the primary manifestation. SAE emerges as the primary and earliest form of organ dysfunction following sepsis, potentially leading to acute cognitive impairment and long-term cognitive decline in patients. Notably, the neuronal damage in SAE does not stem directly from the central nervous system (CNS) infection but rather from an infection occurring outside the brain. The gut-brain axis is posited as a pivotal factor in this process. This review will delve into the gut-brain axis, exploring four crucial pathways through which inflammatory signals are transmitted and elevate the incidence of SAE. These pathways encompass the vagus nerve pathway, the neuroendocrine pathway involving the hypothalamic-pituitary-adrenal (HPA) axis and serotonin (5-HT) regulation, the neuroimmune pathway, and the microbial regulation. These pathways can operate independently or collaboratively on the CNS to modulate brain activity. Understanding how the gut affects and regulates the CNS could offer the potential to identify novel targets for preventing and treating this condition, ultimately enhancing the prognosis for individuals with SAE.


Brain-Gut Axis , Brain , Sepsis-Associated Encephalopathy , Humans , Brain-Gut Axis/physiology , Sepsis-Associated Encephalopathy/physiopathology , Sepsis-Associated Encephalopathy/metabolism , Animals , Brain/physiopathology , Brain/metabolism , Gastrointestinal Microbiome/physiology , Hypothalamo-Hypophyseal System/physiopathology , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/physiopathology , Pituitary-Adrenal System/metabolism , Sepsis/physiopathology , Sepsis/complications
20.
Psychoneuroendocrinology ; 165: 107037, 2024 Jul.
Article En | MEDLINE | ID: mdl-38613946

The present pilot study assessed the effects of multi-session intermittent theta-burst stimulation (iTBS) applied to the left dorsolateral prefrontal cortex in 17 treatment resistant depressed inpatients (TRDs) showing cortisol non-suppression to the overnight dexamethasone suppression test (DST) at baseline (i.e., maximum post-DST cortisol [CORmax] level > 130 nmol/L). After 20 iTBS sessions, the DST was repeated in all TRDs. At baseline, post-DST CORmax levels were higher in TRDs compared to healthy control subjects (HCs; n = 17) (p < 0.0001). After 20 iTBS sessions, post-DST CORmax levels decreased from baseline (p < 0.03) and were comparable to HCs. Decreases in post-DST CORmax levels were related to decreases in 17-item Hamilton Depression Rating Scale (HAMD-17) scores (ρ = 0.53; p < 0.03). At endpoint, 10 TRDs showed DST normalization (among them 7 were responders [i.e., HAMD-17 total score > 50% decrease from baseline]), and 7 did not normalize their DST (among them 6 were non-responders) (p < 0.05). Our results suggest that successful iTBS treatment may restore normal glucocorticoid receptor feedback inhibition at the pituitary level.


Depressive Disorder, Treatment-Resistant , Dexamethasone , Hydrocortisone , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Transcranial Magnetic Stimulation , Humans , Male , Female , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Adult , Hydrocortisone/metabolism , Hydrocortisone/analysis , Transcranial Magnetic Stimulation/methods , Middle Aged , Depressive Disorder, Treatment-Resistant/therapy , Depressive Disorder, Treatment-Resistant/physiopathology , Depressive Disorder, Treatment-Resistant/metabolism , Pilot Projects , Dorsolateral Prefrontal Cortex/metabolism , Dorsolateral Prefrontal Cortex/physiology , Theta Rhythm/physiology , Treatment Outcome
...