Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84.380
Filtrar
1.
Drug Des Devel Ther ; 18: 2531-2553, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952486

RESUMEN

The WHO Global Status Report on Oral Health 2022 reveals that oral diseases caused by infection with oral pathogenic microorganisms affect nearly 3.5 billion people worldwide. Oral health problems are caused by the presence of S. mutans, S. sanguinis, E. faecalis and C. albicans in the oral cavity. Synthetic anti-infective drugs have been widely used to treat oral infections, but have been reported to cause side effects and resistance. Various strategies have been implemented to overcome this problem. Synthetic anti-infective drugs have been widely used to treat oral infections, but they have been reported to cause side effects and resistance. Therefore, it is important to look for safe anti-infective alternatives. Ethnobotanical and ethnopharmacological studies suggest that Red Betel leaf (Piper crocatum Ruiz & Pav) could be a potential source of oral anti-infectives. This review aims to discuss the pathogenesis mechanism of several microorganisms that play an important role in causing health problems, the mechanism of action of synthetic oral anti-infective drugs in inhibiting microbial growth in the oral cavity, and the potential of red betel leaf (Piper crocatum Ruiz & Pav) as an herbal oral anti-infective drug. This study emphasises the importance of researching natural components as an alternative treatment for oral infections that is more effective and can meet global needs.


Asunto(s)
Piper , Humanos , Piper/química , Enfermedades de la Boca/tratamiento farmacológico , Enfermedades de la Boca/microbiología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Boca/microbiología
2.
PeerJ ; 12: e17471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952986

RESUMEN

The restoration of succulent thicket (the semi-arid components of the Albany Subtropical Thicket biome endemic to South Africa) has largely focused on the reintroduction of Portulacaria afra L. Jacq-a leaf- and stem-succulent shrub-through the planting of unrooted cuttings directly into field sites. However, there has been inconsistent establishment and survival rates, with low rates potentially due to a range of factors (e.g., post-planting drought, frost or herbivory), including the poor condition of source material used. Here we test the effect of parent-plant and harvesting site on the root development of P. afra cuttings in a common garden experiment. Ten sites were selected along a ∼110 km transect, with cuttings harvested from five parent-plants per site. Leaf moisture content was determined for each parent-plant at the time of harvesting as a proxy for plant condition. Root development-percentage of rooted cuttings and mean root dry weight-was recorded for a subset of cuttings from each parent-plant after 35, 42, 48, 56, and 103 days after planting in a common garden setting. We found evidence for cutting root development (rooting percentage and root dry mass) to be strongly associated with harvesting site across all sampling days (p < 0.005 for all tests). These differences are likely a consequence of underlying physiological factors; this was supported by the significant but weak correlation (r 2 = 0.10-0.26) between the leaf moisture content of the parent-plant (at the time of harvesting) and dry root mass of the cuttings (at each of the sampling days). Our findings demonstrate that varying plant condition across sites can significantly influence root development during dry phases (i.e., intra- and inter-annual droughts) and that this may be a critical component that needs to be understood as part of any restoration programme. Further work is required to identify the environmental conditions that promote or impede root development in P. afra cuttings.


Asunto(s)
Sequías , Raíces de Plantas , Sudáfrica , Raíces de Plantas/crecimiento & desarrollo , Conservación de los Recursos Naturales/métodos , Caryophyllales , Hojas de la Planta/crecimiento & desarrollo
3.
PeerJ ; 12: e17460, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952991

RESUMEN

A taxonomic revision of Rhizophora L. (Rhizophoraceae) in Thailand is presented. Two species, R. apiculata Blume and R. mucronata Poir., are enumerated with updated morphological descriptions, illustrations and a taxonomic identification key, together with notes on distributions, habitats and ecology, phenology, conservation assessments, etymology, vernacular names, uses, and specimens examined. Three names in Rhizophora, are lectotypified: R. apiculata and two associated synonyms of R. mucronata (i.e., R. latifolia Miq. and R. macrorrhiza Griff.). R. longissima Blanco, a synonym of R. mucronata, is neotypified. All two Rhizophora species have a conservation assessment of Least Concern (LC). Based on the morphological identification, these two species can be distinguished from one another by the shape and width of the leaf laminae and the length of a terminal stiff point of the leaf laminae; the type and position of the inflorescences and the number of flowers per inflorescence; the character and color of the bracteoles; the presence or absence of the flower pedicels; the shape of the mature flower buds; the shape, color, and texture of the sepals; the shape, character, and the presence or absence of hairs of the petals; the number of stamens per flower; the size of the fruits; the color and size of the hypocotyls; the color and diameter of the cotyledonous cylindrical tubes; and the color of the colleters and exudate. The thick cuticles, sunken stomata, large hypodermal cells, and cork warts are adaptive anatomical features of leaves in Rhizophora that live in the mangrove environments. The pollen grains of Thai Rhizophora species are tricolporate, prolate spheroidal or oblate spheroidal shapes, small-sized, and reticulate exine sculpturing.


Asunto(s)
Rhizophoraceae , Tailandia , Rhizophoraceae/anatomía & histología , Ecosistema , Hojas de la Planta/anatomía & histología
4.
Curr Microbiol ; 81(8): 256, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955831

RESUMEN

Antimicrobial resistance is a global health issue, in which microorganisms develop resistance to antimicrobial drugs, making infections more difficult to treat. This threatens the effectiveness of standard medical treatments and necessitates the urgent development of new strategies to combat resistant microbes. Studies have increasingly explored natural sources of new antimicrobial agents that harness the rich diversity of compounds found in plant species. This pursuit holds promise for the discovery of novel treatments for combating antimicrobial resistance. In this context, the chemical composition, antibacterial, and antibiofilm activities of the essential oil from Croton urticifolius Lam. leaves (CuEO) were evaluated. CuEO was extracted via hydrodistillation, and its chemical constituents were identified via gas chromatography-mass spectrometry (GC/MS). The antibacterial activity of CuEO was evaluated in a 96-well plate via the microdilution method, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined. The effect of CuEO on biofilm formation was assessed by quantifying the biomass using crystal violet staining and viable cell counting. In addition, alterations in the cellular morphology of biofilms treated with CuEO were examined using scanning electron microscopy (SEM) and laser confocal microscopy. GC/MS analysis identified 26 compounds, with elemicine (39.72%); eucalyptol (19.03%), E-caryophyllene (5.36%), and methyleugenol (4.12%) as the major compounds. In terms of antibacterial activity, CuEO showed bacteriostatic effects against Staphylococcus aureus ATCC 700698, S. aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, and Escherichia coli ATCC 11303, and bactericidal activity against S. aureus ATCC 700698. In addition, CuEO significantly inhibited bacterial biofilm formation. Microscopic analysis showed that CuEO damaged the bacterial membrane by leaching out the cytoplasmic content. Therefore, the results of this study show that the essential oil of C. urticifolius may be a promising natural alternative for preventing infections caused by bacterial biofilms. This study is the first to report the antibiofilm activity of C. urticifolius essential oil.


Asunto(s)
Antibacterianos , Biopelículas , Croton , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Hojas de la Planta , Biopelículas/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Croton/química , Antibacterianos/farmacología , Antibacterianos/química , Hojas de la Planta/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Cromatografía de Gases y Espectrometría de Masas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Membrana Celular/efectos de los fármacos
5.
BMC Plant Biol ; 24(1): 624, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951758

RESUMEN

Drought poses significant risks to maize cultivation by impairing plant growth, water uptake and yield; nano priming offers a promising avenue to mitigate these effects by enhancing plant water relations, stress tolerance and overall productivity. In the current experiment, we tested a hypothesis that seed priming with iron oxide nanoparticles (n-Fe2O3) can improve maize performance under water stress by improving its growth, water relations, yield and biochemical attributes. The experiment was conducted on a one main plot bisected into two subplots corresponding to the water and drought environments. Within each subplot, maize plants were raised from n-Fe2O3 primed seeds corresponding to 0 mg. L- 1 (as control treatment), 25, 50, 75, and 100 mg. L- 1 (as trial treatments). Seed priming with n-Fe2O3 at a concentration of 75 mg. L- 1 improved the leaf relative water content, water potential, photosynthetic water use efficiency, and leaf intrinsic water use efficiency of maize plants by 13%, 44%, 64% and 17%, respectively compared to control under drought stress. The same treatments improved plant biochemical attributes such as total chlorophyll content, total flavonoids and ascorbic acid by 37%, 22%, and 36%, respectively. Seed priming with n-Fe2O3 accelerated the functioning of antioxidant enzymes such as SOD and POD and depressed the levels of leaf malondialdehyde and hydrogen peroxide significantly. Seed priming with n-Fe2O3 at a concentration of 75 mg. L- 1 improved cob length, number of kernel rows per cob, and 100 kernel weight by 59%, 27% and 33%, respectively, under drought stress. Seed priming with n-Fe2O3 can be used to increase maize production under limited water scenarios.


Asunto(s)
Deshidratación , Semillas , Agua , Zea mays , Zea mays/efectos de los fármacos , Zea mays/fisiología , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/fisiología , Agua/metabolismo , Sequías , Fotosíntesis/efectos de los fármacos , Compuestos Férricos , Clorofila/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología
6.
Mol Plant Pathol ; 25(7): e13490, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952297

RESUMEN

Employing race-specific resistance genes remains an effective strategy to protect wheat from leaf rust caused by Puccinia triticina (Pt) worldwide, while the newly emerged Pt races, owing to rapid genetic evolution, frequently overcome the immune response delivered by race-specific resistance genes. The molecular mechanisms underlying the newly evolved virulence Pt pathogen remain unknown. Here, we identified an avirulence protein AvrLr15 from Pt that induced Lr15-dependent immune responses. Heterologously produced AvrLr15 triggered pronounced cell death in Lr15-isogenic wheat leaves. AvrLr15 contains a functional signal peptide, localized to the plant nucleus and cytosol and can suppress BAX-induced cell death. Evasion of Lr15-mediated resistance in wheat was associated with a deletion and point mutations of amino acids in AvrLr15 rather than AvrLr15 gene loss in the Lr15-breaking Pt races, implying that AvrLr15 is required for the virulence function of Pt. Our findings identified the first molecular determinant of wheat race-specific immunity and facilitated the identification of the first AVR/R gene pair in the Pt-wheat pathosystem, which will provide a molecular marker to monitor natural Pt populations and guide the deployment of Lr15-resistant wheat cultivars in the field.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Puccinia , Triticum , Triticum/microbiología , Triticum/genética , Triticum/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Puccinia/patogenicidad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes de Plantas , Virulencia/genética , Mutación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Basidiomycota/patogenicidad , Basidiomycota/genética , Hojas de la Planta/microbiología , Hojas de la Planta/inmunología , Muerte Celular , Eliminación de Secuencia/genética
7.
Proc Natl Acad Sci U S A ; 121(28): e2402514121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959034

RESUMEN

Leaves of flowering plants are characterized by diverse venation patterns. Patterning begins with the selection of vein-forming procambial initial cells from within the ground meristem of a developing leaf, a process which is considered to be auxin-dependent, and continues until veins are anatomically differentiated with functional xylem and phloem. At present, the mechanisms responsible for leaf venation patterning are primarily characterized in the model eudicot Arabidopsis thaliana which displays a reticulate venation network. However, evidence suggests that vein development may proceed via a different mechanism in monocot leaves where venation patterning is parallel. Here, we employed Molecular Cartography, a multiplexed in situ hybridization technique, to analyze the spatiotemporal localization of a subset of auxin-related genes and candidate regulators of vein patterning in maize leaves. We show how different combinations of auxin influx and efflux transporters are recruited during leaf and vein specification and how major and minor vein ranks develop with distinct identities. The localization of the procambial marker PIN1a and the spatial arrangement of procambial initial cells that give rise to major and minor vein ranks further suggests that vein spacing is prepatterned across the medio-lateral leaf axis prior to accumulation of the PIN1a auxin transporter. In contrast, patterning in the adaxial-abaxial axis occurs progressively, with markers of xylem and phloem gradually becoming polarized as differentiation proceeds. Collectively, our data suggest that both lineage- and position-based mechanisms may underpin vein patterning in maize leaves.


Asunto(s)
Hibridación in Situ , Ácidos Indolacéticos , Hojas de la Planta , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xilema/metabolismo , Xilema/crecimiento & desarrollo , Xilema/citología , Xilema/genética
8.
Georgian Med News ; (349): 126-136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38963216

RESUMEN

The present study was dealing with a Polyphenolic compound known as Phloretin. Phloretin (Ph), a dihydrochalcone, was determined qualitatively and quantitatively in different aerial parts for Iraqi Malus domestica (apple), cv." Ibrahimi" included leaves, petioles, stems, fruit pulp, and peels extracts. Leaves represented a rich source of Ph, which was separated and purified by preparative HPLC. The chemical structure of the isolated Phloretin (Ph2) was confirmed using various analytical characterization techniques: TLC, HPLC, FTIR, Melting point, CHN elemental analyses, 1H-NMR, and 13C-NMR). The scavenging efficacy of Ph2 by DPPH assay was employed. Cytotoxic effect was assessed by MTT assay against cancer cell lines including (Hep G2/ human hepatocyte carcinoma, A549/ human lung adenocarcinoma, SW480 / human colon cancer cell, and AGS /adenocarcinoma of the stomach), beside the non-cancerous cell line (HEK 293). About 1.404 g Ph2 was obtained from 18.146 g apple leaves (7.7%). The DPPH and MTT assay results demonstrated that the purified Ph2 possessed potent antioxidant activity with significant anticancer effects on all cancer cell lines. Data suggested that purified Ph2 from Iraqi apple leaves has potential antioxidant, cytotoxicity, which may benefit in human health.


Asunto(s)
Malus , Floretina , Hojas de la Planta , Humanos , Malus/química , Hojas de la Planta/química , Floretina/farmacología , Floretina/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Células HEK293 , Células A549 , Línea Celular Tumoral , Células Hep G2 , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Irak
9.
J Indian Prosthodont Soc ; 24(3): 245-251, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946507

RESUMEN

AIM: Synthetic inorganic materials are commonly used as reinforcing agents in polyetheretherketone (PEEK) composite, whereas natural organic plant-based reinforcing agents are negligible. Surface hardness, roughness, and wettability are indicative factors of osseointegration behavior to be used as an implant material. This study evaluated micro surface hardness (MSH), nano surface hardness (NSH), surface roughness (SR), and contact angle (CA) of PEEK-Azadirachta indica reinforced at 10 wt%, 20 wt%, and 30 wt%. SETTINGS AND DESIGN: This was an in vitro study. MATERIALS AND METHODS: Neem (A. indica) leaf nanoparticles were prepared and reinforced with PEEK powder at 10%, 20%, and 30% weight ratios by injection molding. Sixty specimens underwent the microhardness and CA testing using a digital microhardness tester, and CA goniometer, respectively, and later nanoindentation test to analyze the nanohardness and SR. STATISTICAL ANALYSIS USED: A one-way ANOVA test with a 95% confidence interval for MSH and NSH, SR, and CA was performed on the samples. A post hoc Bonferroni test was conducted (α = 0.05) to compare the groups. RESULTS: There was a significant increase in nanohardness (P = 0.000) with zero difference in microhardness (P = 0.514). The addition of 10 wt%, 20 wt%, and 30 wt% nanoparticles increased the SR value of the pure PEEK from 273.19 nm to 284.10 (3.99%), 296.91 (8.68%), and 287.54 (5.24%), respectively. In the analysis of the CA, CA 20% shows the lowest angle (63.69) with the highest for control specimens (82.39). There is an increase in the PEEK composite SR with a decrease in CA. CONCLUSIONS: The addition of plant-derived nanoparticles into the PEEK matrix has a significant impact on the hardness and hydrophobicity enhancing cell growth and osteoblastic differentiation during osseointegration of dental implants.


Asunto(s)
Benzofenonas , Cetonas , Nanopartículas , Polietilenglicoles , Polímeros , Propiedades de Superficie , Humectabilidad , Polietilenglicoles/química , Cetonas/química , Nanopartículas/química , Dureza , Técnicas In Vitro , Implantes Dentales , Ensayo de Materiales/métodos , Hojas de la Planta/química
10.
Sci Rep ; 14(1): 15041, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951552

RESUMEN

The Indian economy is greatly influenced by the Banana Industry, necessitating advancements in agricultural farming. Recent research emphasizes the imperative nature of addressing diseases that impact Banana Plants, with a particular focus on early detection to safeguard production. The urgency of early identification is underscored by the fact that diseases predominantly affect banana plant leaves. Automated systems that integrate machine learning and deep learning algorithms have proven to be effective in predicting diseases. This manuscript examines the prediction and detection of diseases in banana leaves, exploring various diseases, machine learning algorithms, and methodologies. The study makes a contribution by proposing two approaches for improved performance and suggesting future research directions. In summary, the objective is to advance understanding and stimulate progress in the prediction and detection of diseases in banana leaves. The need for enhanced disease identification processes is highlighted by the results of the survey. Existing models face a challenge due to their lack of rotation and scale invariance. While algorithms such as random forest and decision trees are less affected, initially convolutional neural networks (CNNs) is considered for disease prediction. Though the Convolutional Neural Network models demonstrated impressive accuracy in many research but it lacks in invariance to scale and rotation. Moreover, it is observed that due its inherent design it cannot be combined with feature extraction methods to identify the banana leaf diseases. Due to this reason two alternative models that combine ANN with scale-invariant Feature transform (SIFT) model or histogram of oriented gradients (HOG) combined with local binary patterns (LBP) model are suggested. The first model ANN with SIFT identify the disease by using the activation functions to process the features extracted by the SIFT by distinguishing the complex patterns. The second integrate the combined features of HOG and LBP to identify the disease thus by representing the local pattern and gradients in an image. This paves a way for the ANN to learn and identify the banana leaf disease. Moving forward, exploring datasets in video formats for disease detection in banana leaves through tailored machine learning algorithms presents a promising avenue for research.


Asunto(s)
Aprendizaje Automático , Musa , Redes Neurales de la Computación , Enfermedades de las Plantas , Hojas de la Planta , Algoritmos
11.
BMC Genomics ; 25(1): 666, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961329

RESUMEN

BACKGROUND: Pruning is an important cultivation management option that has important effects on peach yield and quality. However, the effects of pruning on the overall genetic and metabolic changes in peach leaves and fruits are poorly understood. RESULTS: The transcriptomic and metabolomic profiles of leaves and fruits from trees subjected to pruning and unpruning treatments were measured. A total of 20,633 genes and 622 metabolites were detected. Compared with those in the control, 1,127 differentially expressed genes (DEGs) and 77 differentially expressed metabolites (DEMs) were identified in leaves from pruned and unpruned trees (pdLvsupdL), whereas 423 DEGs and 29 DEMs were identified in fruits from the pairwise comparison pdFvsupdF. The content of three auxin analogues was upregulated in the leaves of pruned trees, the content of all flavonoids detected in the leaves decreased, and the expression of almost all genes involved in the flavonoid biosynthesis pathway decreased. The phenolic acid and amino acid metabolites detected in fruits from pruned trees were downregulated, and all terpenoids were upregulated. The correlation analysis revealed that DEGs and DEMs in leaves were enriched in tryptophan metabolism, auxin signal transduction, and flavonoid biosynthesis. DEGs and DEMs in fruits were enriched in flavonoid and phenylpropanoid biosynthesis, as well as L-glutamic acid biosynthesis. CONCLUSIONS: Pruning has different effects on the leaves and fruits of peach trees, affecting mainly the secondary metabolism and hormone signalling pathways in leaves and amino acid biosynthesis in fruits.


Asunto(s)
Frutas , Perfilación de la Expresión Génica , Metabolómica , Hojas de la Planta , Prunus persica , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Prunus persica/genética , Prunus persica/metabolismo , Prunus persica/crecimiento & desarrollo , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Metaboloma , Transcriptoma , Flavonoides/metabolismo , Ácidos Indolacéticos/metabolismo
12.
Arh Hig Rada Toksikol ; 75(2): 137-146, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38963137

RESUMEN

Traditional medicine has used sage (Salvia officinalis L.) preparations for centuries to prevent and treat various inflammatory and oxidative stress-induced conditions. The aim of this in vitro study was to determine the bioactive properties of a sage leave extract obtained with environmentally friendly aqueous extraction and lyophilisation in primary human peripheral blood cells. To that end we measured the total phenolic and flavonoid content (TPC and TFC, respectively) with gas chromatography-mass spectrometry (GC-MS). Non-cytotoxic concentrations determined with the trypan blue assay were used to assess the antioxidant (DPPH, ABTS, and PAB assay), antigenotoxic (CBMN assay), immunomodulatory (IL-1ß and TNF-α), and neuroprotective effects (AChE inhibition). The extract contained high TPC (162 mg GAE/g of dry extract) and TFC (39.47 mg QE/g of dry extract) concentrations, while ß-thujone content was unexpectedly low (below 0.9 %). Strong radical-scavenging activity combined with glutathione reductase activation led to a decrease in basal and H2O2-induced oxidative stress and DNA damage. A decrease in TNF-α and increase in IL-1ß levels suggest complex immunomodulatory response that could contribute to antioxidant and, together with mild AChE inhibition, neuroprotective effects. Overall, this study has demonstrated that aqueous sage leave extract reduces the levels of thujone, 1,8-cineole, pinene, and terpene ketones that could be toxic in high concentrations, while maintaining high concentrations of biologically active protective compounds which have a potential to prevent and/or treat inflammatory and oxidative stress-related conditions.


Asunto(s)
Inflamación , Leucocitos Mononucleares , Estrés Oxidativo , Extractos Vegetales , Salvia officinalis , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Leucocitos Mononucleares/efectos de los fármacos , Salvia officinalis/química , Inflamación/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Daño del ADN/efectos de los fármacos , Hojas de la Planta/química
13.
Anal Chim Acta ; 1316: 342875, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969433

RESUMEN

BACKGROUND: Indole-3-acetic acid (IAA) and salicylic acid (SA), pivotal regulators in plant growth, are integral to a variety of plant physiological activities. The ongoing and simultaneous monitoring of these hormones in vivo enhances our comprehension of their interactive and regulatory roles. Traditional detection methods, such as liquid chromatography-mass spectrometry, cannot obtain precise and immediate information on IAA and SA due to the complexity of sample processing. In contrast, the electrochemical detection method offers high sensitivity, rapid response times, and compactness, making it well-suited for in vivo or real-time detection applications. RESULTS: A microneedle electrochemical sensor system crafted from disposable stainless steel (SS) wire was specifically designed for the real-time assessment of IAA and SA in plant in situ. This sensor system included a SS wire (100 µm diameter) coated with carbon cement and multi-walled carbon nanotubes, a plain platinum wire (100 µm diameter), and an Ag/AgCl wire (100 µm diameter). Differential pulse voltammetry and amperometry were adopted for detecting SA and IAA within the range of 0.1-20 µM, respectively. This sensor was applied to track IAA and SA fluctuations in tomato leaves during PstDC3000 infection, offering continuous data. Observations indicated an uptick in SA levels following infection, while IAA production was suppressed. The newly developed disposable SS wire-based microneedle electrochemical sensor system is economical, suitable for mass production, and inflicts minimal damage during the monitoring of SA and IAA in plant tissues. SIGNIFICANCE: This disposable microneedle electrochemical sensor facilitates in vivo detection of IAA and SA in smaller plant tissues and allows for long-time monitoring of their concentrations, which not only propels research into the regulatory and interaction mechanisms of IAA and SA but also furnishes essential tools for advancing precision agriculture.


Asunto(s)
Técnicas Electroquímicas , Ácidos Indolacéticos , Hojas de la Planta , Ácido Salicílico , Solanum lycopersicum , Acero Inoxidable , Solanum lycopersicum/química , Ácidos Indolacéticos/análisis , Ácido Salicílico/análisis , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Acero Inoxidable/química , Técnicas Electroquímicas/instrumentación , Agujas , Enfermedades de las Plantas/microbiología
14.
PLoS One ; 19(7): e0306031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38959268

RESUMEN

Brown spot of citrus caused by Alternaria citri is one of the emerging threats to the successful production of citrus crops. The present study, conducted with a substantial sample size of 50 leaf samples for statistical reliability, aimed to determine the change in mineral content in citrus leaves after brown spot disease attack. Leaf samples from a diverse range of susceptible citrus varieties (Valentia late, Washington navel, and Kinnow) and resistant varieties (Citron, Eruka lemon, and Mayer lemon) were analyzed. Significant variations (p ≤ 0.05) in mineral contents were observed across reaction groups (inoculated and un-inoculated), types (resistant and susceptible), and varieties of citrus in response to infection of Alternaria citri. The analysis of variance showed significant changes in mineral levels of citrus leaves, including nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), zinc (Zn), sodium (Na), iron (Fe), and copper (Cu). The results indicate that the concentration of N and P differed by 6.63% and 1.44%, respectively, in resistant plants, while susceptible plants showed a difference of 6.07% and 1.19%. Moreover, resistant plants showed a higher concentrations of K, Ca, Mg, Zn, Na, Fe, and Cu at 8.40, 2.1, 1.83, 2.21, 1.58, 2.89, and 0.36 ppm respectively, compared to susceptible plants which showed concentrations of 5.99, 1.93, 1.47, 1.09, 1.24, 1.81, and 0.31 ppm respectively. Amounts of mineral contents were reduced in both resistant as well as susceptible plants of citrus after inoculation. Amount of N (8.56), P (1.87) % while K (10.74), Ca (2.71), Mg (2.62), Zn (2.20), Na (2.08), Fe (3.57) and Cu (0.20) ppm were recorded in un-inoculated group of citrus plants that reduced to 3.15 and 0.76% and 3.66, 1.40, 0.63,0.42, 0.74, 1.13 and 0.13 ppm in inoculated group respectively. It was accomplished that susceptible varieties contained lower ionic contents than resistant varieties. The higher concentrations of ionic contents in resistant citrus varieties build up the biochemical and physiological processes of the citrus plant, which help to restrict spread of pathogens. Further research could explore the interplay between mineral nutrition and disease resistance in citrus, potentially leading to the development of new disease-resistant varieties.


Asunto(s)
Alternaria , Citrus , Minerales , Enfermedades de las Plantas , Hojas de la Planta , Citrus/microbiología , Citrus/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Minerales/análisis , Minerales/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/química , Genotipo , Resistencia a la Enfermedad/genética , Fósforo/análisis
15.
PLoS One ; 19(7): e0305572, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954711

RESUMEN

Green leafy vegetables are an essential component of Chinese leafy vegetables. Due to their crisp stems and tender leaves, orderly harvester generally causes significant mechanical clamping damage. The physical and mechanical properties of green leafy vegetables are one of the important basis to design the orderly harvester. At the same time, they provide important parameters for the simulation and optimization of harvester. So, this paper measured the physical characteristic parameters of roots and stems of green leafy vegetables. Then, based on the TMS-Pro texture analyzer, the elasticity modulus of the roots and stems of green leafy vegetables were measured. The static friction coefficient, dynamic friction coefficient, and restitution coefficient of green leafy vegetables root-root, stem-stem, root-steel, and stem-steel were measured separately using a combination method of inclined plane and high-speed photography. Uniaxial compression creep experiments were carried out on whole and single leaf of green leafy vegetables using the TA.XT plus C universal testing machine. The constitutive equation of the four-element Burgers model was used to fit the deformation curve of the sample with time during the constant-pressure loading stage. The fitting determination coefficients R2 were all higher than 0.996, which verified the reasonable validity of the selected model. The above experimental results provide a parameter basis and theoretical support for the design and discrete element simulation optimization of orderly harvester critical components of green leafy vegetables.


Asunto(s)
Hojas de la Planta , Raíces de Plantas , Verduras , Viscosidad , Hojas de la Planta/química , Elasticidad , Tallos de la Planta/fisiología
16.
Sci Rep ; 14(1): 15062, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956110

RESUMEN

Soil salinity is a major nutritional challenge with poor agriculture production characterized by high sodium (Na+) ions in the soil. Zinc oxide nanoparticles (ZnO NPs) and biochar have received attention as a sustainable strategy to reduce biotic and abiotic stress. However, there is a lack of information regarding the incorporation of ZnO NPs with biochar to ameliorate the salinity stress (0, 50,100 mM). Therefore, the current study aimed to investigate the potentials of ZnO NPs application (priming and foliar) alone and with a combination of biochar on the growth and nutrient availability of spinach plants under salinity stress. Results demonstrated that salinity stress at a higher rate (100 mM) showed maximum growth retardation by inducing oxidative stress, resulted in reduced photosynthetic rate and nutrient availability. ZnO NPs (priming and foliar) alone enhanced growth, chlorophyll contents and gas exchange parameters by improving the antioxidant enzymes activity of spinach under salinity stress. While, a significant and more pronounced effect was observed at combined treatments of ZnO NPs with biochar amendment. More importantly, ZnO NPs foliar application with biochar significantly reduced the Na+ contents in root 57.69%, and leaves 61.27% of spinach as compared to the respective control. Furthermore, higher nutrient contents were also found at the combined treatment of ZnO NPs foliar application with biochar. Overall, ZnO NPs combined application with biochar proved to be an efficient and sustainable strategy to alleviate salinity stress and improve crop nutritional quality under salinity stress. We inferred that ZnO NPs foliar application with a combination of biochar is more effectual in improving crop nutritional status and salinity mitigation than priming treatments with a combination of biochar.


Asunto(s)
Carbón Orgánico , Fotosíntesis , Hojas de la Planta , Estrés Salino , Spinacia oleracea , Óxido de Zinc , Zinc , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/metabolismo , Spinacia oleracea/crecimiento & desarrollo , Carbón Orgánico/farmacología , Carbón Orgánico/química , Óxido de Zinc/farmacología , Óxido de Zinc/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Fotosíntesis/efectos de los fármacos , Zinc/farmacología , Zinc/metabolismo , Nutrientes/metabolismo , Clorofila/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Antioxidantes/metabolismo , Suelo/química , Estrés Oxidativo/efectos de los fármacos , Salinidad
17.
Sci Rep ; 14(1): 15123, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956272

RESUMEN

The OVATE gene family plays an important role in regulating the development of plant organs and resisting stress, but its expression characteristics and functions in sorghum have not been revealed. In this study, we identified 26 OVATE genes in the sorghum BTx623 genome, which were divided into four groups and distributed unevenly across 9 chromosomes. Evolutionary analysis showed that after differentiation between sorghum and Arabidopsis, the OVATE gene family may have experienced unique expansion events, and all OVATE family members were negatively selected. Transcriptome sequencing and RT-qPCR results showed that OVATE genes in sorghum showed diverse expression characteristics, such as gene SORBl_3001G468900 and SORBl_3009G173400 were significantly expressed in seeds, while SORBI_3005G042700 and SORBI_3002G417700 were only highly expressed in L1. Meantime, in the promoter region, a large number of hormone-associated cis-acting elements were identified, and these results suggest that members of the OVATE gene family may be involved in regulating specific development of sorghum leaves and seeds. This study improves the understanding of the OVATE gene family of sorghum and provides important clues for further exploration of the function of the OVATE gene family.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Hojas de la Planta , Proteínas de Plantas , Semillas , Sorghum , Sorghum/genética , Sorghum/metabolismo , Semillas/genética , Semillas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Filogenia , Perfilación de la Expresión Génica , Evolución Molecular , Regiones Promotoras Genéticas , Cromosomas de las Plantas/genética , Genes de Plantas
18.
Sci Rep ; 14(1): 15544, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969695

RESUMEN

Bacterial toxins have received a great deal of attention in the development of cancer treatments. Parasporin-2 (PS2Aa1 or Mpp46Aa1) is a Bacillus thuringiensis parasporal protein that preferentially destroys human cancer cells while not harming normal cells, making it a promising anticancer treatment. With the efficient development and sustainable silver nanoparticles (AgNPs) synthesis technology, the biomedical use of AgNPs has expanded. This study presents the development of a novel nanotoxin composed of biosynthesized silver nanoparticles loaded with the N-terminal truncated PS2Aa1 toxin. MOEAgNPs were synthesized using a biological method, with Moringa oleifera leaf extract and maltose serving as reducing and capping agents. The phytochemicals present in M. oleifera leaf extract were identified by GC-MS analysis. MOEAgNPs were loaded with N-terminal truncated PS2Aa1 fused with maltose-binding protein (MBP-tPS2) to formulate PS2-MOEAgNPs. The PS2-MOEAgNPs were evaluated for size, stability, toxin loading efficacy, and cytotoxicity. PS2-MOEAgNPs demonstrated dose-dependent cytotoxicity against the T-cell leukemia MOLT-4 and Jurkat cell lines but had little effect on the Hs68 fibroblast or normal cell line. Altogether, the current study provides robust evidence that PS2-MOEAgNPs can efficiently inhibit the proliferation of T-cell leukemia cells, thereby suggesting their potential as an alternative to traditional anticancer treatments.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Plata , Humanos , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Extractos Vegetales/química , Extractos Vegetales/farmacología , Moringa oleifera/química , Proteínas Recombinantes/farmacología , Hojas de la Planta/química , Supervivencia Celular/efectos de los fármacos , Endotoxinas , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo
19.
Sci Rep ; 14(1): 15537, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969738

RESUMEN

Crop yield production could be enhanced for agricultural growth if various plant nutrition deficiencies, and diseases are identified and detected at early stages. Hence, continuous health monitoring of plant is very crucial for handling plant stress. The deep learning methods have proven its superior performances in the automated detection of plant diseases and nutrition deficiencies from visual symptoms in leaves. This article proposes a new deep learning method for plant nutrition deficiencies and disease classification using a graph convolutional network (GNN), added upon a base convolutional neural network (CNN). Sometimes, a global feature descriptor might fail to capture the vital region of a diseased leaf, which causes inaccurate classification of disease. To address this issue, regional feature learning is crucial for a holistic feature aggregation. In this work, region-based feature summarization at multi-scales is explored using spatial pyramidal pooling for discriminative feature representation. Furthermore, a GCN is developed to capacitate learning of finer details for classifying plant diseases and insufficiency of nutrients. The proposed method, called Plant Nutrition Deficiency and Disease Network (PND-Net), has been evaluated on two public datasets for nutrition deficiency, and two for disease classification using four backbone CNNs. The best classification performances of the proposed PND-Net are as follows: (a) 90.00% Banana and 90.54% Coffee nutrition deficiency; and (b) 96.18% Potato diseases and 84.30% on PlantDoc datasets using Xception backbone. Furthermore, additional experiments have been carried out for generalization, and the proposed method has achieved state-of-the-art performances on two public datasets, namely the Breast Cancer Histopathology Image Classification (BreakHis 40 × : 95.50%, and BreakHis 100 × : 96.79% accuracy) and Single cells in Pap smear images for cervical cancer classification (SIPaKMeD: 99.18% accuracy). Also, the proposed method has been evaluated using five-fold cross validation and achieved improved performances on these datasets. Clearly, the proposed PND-Net effectively boosts the performances of automated health analysis of various plants in real and intricate field environments, implying PND-Net's aptness for agricultural growth as well as human cancer classification.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Enfermedades de las Plantas , Hojas de la Planta , Humanos
20.
Plant Cell Rep ; 43(8): 190, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976088

RESUMEN

KEY MESSAGE: New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Péptidos , Enfermedades de las Plantas , Prunus dulcis , Xylella , Xylella/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Prunus dulcis/microbiología , Péptidos/farmacología , Péptidos/metabolismo , Ácido Salicílico/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad , Hojas de la Planta/microbiología , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...