Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.031
Filtrar
1.
Drug Des Devel Ther ; 18: 2531-2553, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952486

RESUMEN

The WHO Global Status Report on Oral Health 2022 reveals that oral diseases caused by infection with oral pathogenic microorganisms affect nearly 3.5 billion people worldwide. Oral health problems are caused by the presence of S. mutans, S. sanguinis, E. faecalis and C. albicans in the oral cavity. Synthetic anti-infective drugs have been widely used to treat oral infections, but have been reported to cause side effects and resistance. Various strategies have been implemented to overcome this problem. Synthetic anti-infective drugs have been widely used to treat oral infections, but they have been reported to cause side effects and resistance. Therefore, it is important to look for safe anti-infective alternatives. Ethnobotanical and ethnopharmacological studies suggest that Red Betel leaf (Piper crocatum Ruiz & Pav) could be a potential source of oral anti-infectives. This review aims to discuss the pathogenesis mechanism of several microorganisms that play an important role in causing health problems, the mechanism of action of synthetic oral anti-infective drugs in inhibiting microbial growth in the oral cavity, and the potential of red betel leaf (Piper crocatum Ruiz & Pav) as an herbal oral anti-infective drug. This study emphasises the importance of researching natural components as an alternative treatment for oral infections that is more effective and can meet global needs.


Asunto(s)
Piper , Humanos , Piper/química , Enfermedades de la Boca/tratamiento farmacológico , Enfermedades de la Boca/microbiología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Boca/microbiología
2.
Curr Microbiol ; 81(8): 256, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955831

RESUMEN

Antimicrobial resistance is a global health issue, in which microorganisms develop resistance to antimicrobial drugs, making infections more difficult to treat. This threatens the effectiveness of standard medical treatments and necessitates the urgent development of new strategies to combat resistant microbes. Studies have increasingly explored natural sources of new antimicrobial agents that harness the rich diversity of compounds found in plant species. This pursuit holds promise for the discovery of novel treatments for combating antimicrobial resistance. In this context, the chemical composition, antibacterial, and antibiofilm activities of the essential oil from Croton urticifolius Lam. leaves (CuEO) were evaluated. CuEO was extracted via hydrodistillation, and its chemical constituents were identified via gas chromatography-mass spectrometry (GC/MS). The antibacterial activity of CuEO was evaluated in a 96-well plate via the microdilution method, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined. The effect of CuEO on biofilm formation was assessed by quantifying the biomass using crystal violet staining and viable cell counting. In addition, alterations in the cellular morphology of biofilms treated with CuEO were examined using scanning electron microscopy (SEM) and laser confocal microscopy. GC/MS analysis identified 26 compounds, with elemicine (39.72%); eucalyptol (19.03%), E-caryophyllene (5.36%), and methyleugenol (4.12%) as the major compounds. In terms of antibacterial activity, CuEO showed bacteriostatic effects against Staphylococcus aureus ATCC 700698, S. aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, and Escherichia coli ATCC 11303, and bactericidal activity against S. aureus ATCC 700698. In addition, CuEO significantly inhibited bacterial biofilm formation. Microscopic analysis showed that CuEO damaged the bacterial membrane by leaching out the cytoplasmic content. Therefore, the results of this study show that the essential oil of C. urticifolius may be a promising natural alternative for preventing infections caused by bacterial biofilms. This study is the first to report the antibiofilm activity of C. urticifolius essential oil.


Asunto(s)
Antibacterianos , Biopelículas , Croton , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Hojas de la Planta , Biopelículas/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Croton/química , Antibacterianos/farmacología , Antibacterianos/química , Hojas de la Planta/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Cromatografía de Gases y Espectrometría de Masas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Membrana Celular/efectos de los fármacos
3.
Georgian Med News ; (349): 126-136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38963216

RESUMEN

The present study was dealing with a Polyphenolic compound known as Phloretin. Phloretin (Ph), a dihydrochalcone, was determined qualitatively and quantitatively in different aerial parts for Iraqi Malus domestica (apple), cv." Ibrahimi" included leaves, petioles, stems, fruit pulp, and peels extracts. Leaves represented a rich source of Ph, which was separated and purified by preparative HPLC. The chemical structure of the isolated Phloretin (Ph2) was confirmed using various analytical characterization techniques: TLC, HPLC, FTIR, Melting point, CHN elemental analyses, 1H-NMR, and 13C-NMR). The scavenging efficacy of Ph2 by DPPH assay was employed. Cytotoxic effect was assessed by MTT assay against cancer cell lines including (Hep G2/ human hepatocyte carcinoma, A549/ human lung adenocarcinoma, SW480 / human colon cancer cell, and AGS /adenocarcinoma of the stomach), beside the non-cancerous cell line (HEK 293). About 1.404 g Ph2 was obtained from 18.146 g apple leaves (7.7%). The DPPH and MTT assay results demonstrated that the purified Ph2 possessed potent antioxidant activity with significant anticancer effects on all cancer cell lines. Data suggested that purified Ph2 from Iraqi apple leaves has potential antioxidant, cytotoxicity, which may benefit in human health.


Asunto(s)
Malus , Floretina , Hojas de la Planta , Humanos , Malus/química , Hojas de la Planta/química , Floretina/farmacología , Floretina/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Células HEK293 , Células A549 , Línea Celular Tumoral , Células Hep G2 , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Irak
4.
J Indian Prosthodont Soc ; 24(3): 245-251, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946507

RESUMEN

AIM: Synthetic inorganic materials are commonly used as reinforcing agents in polyetheretherketone (PEEK) composite, whereas natural organic plant-based reinforcing agents are negligible. Surface hardness, roughness, and wettability are indicative factors of osseointegration behavior to be used as an implant material. This study evaluated micro surface hardness (MSH), nano surface hardness (NSH), surface roughness (SR), and contact angle (CA) of PEEK-Azadirachta indica reinforced at 10 wt%, 20 wt%, and 30 wt%. SETTINGS AND DESIGN: This was an in vitro study. MATERIALS AND METHODS: Neem (A. indica) leaf nanoparticles were prepared and reinforced with PEEK powder at 10%, 20%, and 30% weight ratios by injection molding. Sixty specimens underwent the microhardness and CA testing using a digital microhardness tester, and CA goniometer, respectively, and later nanoindentation test to analyze the nanohardness and SR. STATISTICAL ANALYSIS USED: A one-way ANOVA test with a 95% confidence interval for MSH and NSH, SR, and CA was performed on the samples. A post hoc Bonferroni test was conducted (α = 0.05) to compare the groups. RESULTS: There was a significant increase in nanohardness (P = 0.000) with zero difference in microhardness (P = 0.514). The addition of 10 wt%, 20 wt%, and 30 wt% nanoparticles increased the SR value of the pure PEEK from 273.19 nm to 284.10 (3.99%), 296.91 (8.68%), and 287.54 (5.24%), respectively. In the analysis of the CA, CA 20% shows the lowest angle (63.69) with the highest for control specimens (82.39). There is an increase in the PEEK composite SR with a decrease in CA. CONCLUSIONS: The addition of plant-derived nanoparticles into the PEEK matrix has a significant impact on the hardness and hydrophobicity enhancing cell growth and osteoblastic differentiation during osseointegration of dental implants.


Asunto(s)
Benzofenonas , Cetonas , Nanopartículas , Polietilenglicoles , Polímeros , Propiedades de Superficie , Humectabilidad , Polietilenglicoles/química , Cetonas/química , Nanopartículas/química , Dureza , Técnicas In Vitro , Implantes Dentales , Ensayo de Materiales/métodos , Hojas de la Planta/química
5.
Arh Hig Rada Toksikol ; 75(2): 137-146, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38963137

RESUMEN

Traditional medicine has used sage (Salvia officinalis L.) preparations for centuries to prevent and treat various inflammatory and oxidative stress-induced conditions. The aim of this in vitro study was to determine the bioactive properties of a sage leave extract obtained with environmentally friendly aqueous extraction and lyophilisation in primary human peripheral blood cells. To that end we measured the total phenolic and flavonoid content (TPC and TFC, respectively) with gas chromatography-mass spectrometry (GC-MS). Non-cytotoxic concentrations determined with the trypan blue assay were used to assess the antioxidant (DPPH, ABTS, and PAB assay), antigenotoxic (CBMN assay), immunomodulatory (IL-1ß and TNF-α), and neuroprotective effects (AChE inhibition). The extract contained high TPC (162 mg GAE/g of dry extract) and TFC (39.47 mg QE/g of dry extract) concentrations, while ß-thujone content was unexpectedly low (below 0.9 %). Strong radical-scavenging activity combined with glutathione reductase activation led to a decrease in basal and H2O2-induced oxidative stress and DNA damage. A decrease in TNF-α and increase in IL-1ß levels suggest complex immunomodulatory response that could contribute to antioxidant and, together with mild AChE inhibition, neuroprotective effects. Overall, this study has demonstrated that aqueous sage leave extract reduces the levels of thujone, 1,8-cineole, pinene, and terpene ketones that could be toxic in high concentrations, while maintaining high concentrations of biologically active protective compounds which have a potential to prevent and/or treat inflammatory and oxidative stress-related conditions.


Asunto(s)
Inflamación , Leucocitos Mononucleares , Estrés Oxidativo , Extractos Vegetales , Salvia officinalis , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Leucocitos Mononucleares/efectos de los fármacos , Salvia officinalis/química , Inflamación/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Daño del ADN/efectos de los fármacos , Hojas de la Planta/química
6.
Anal Chim Acta ; 1316: 342875, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969433

RESUMEN

BACKGROUND: Indole-3-acetic acid (IAA) and salicylic acid (SA), pivotal regulators in plant growth, are integral to a variety of plant physiological activities. The ongoing and simultaneous monitoring of these hormones in vivo enhances our comprehension of their interactive and regulatory roles. Traditional detection methods, such as liquid chromatography-mass spectrometry, cannot obtain precise and immediate information on IAA and SA due to the complexity of sample processing. In contrast, the electrochemical detection method offers high sensitivity, rapid response times, and compactness, making it well-suited for in vivo or real-time detection applications. RESULTS: A microneedle electrochemical sensor system crafted from disposable stainless steel (SS) wire was specifically designed for the real-time assessment of IAA and SA in plant in situ. This sensor system included a SS wire (100 µm diameter) coated with carbon cement and multi-walled carbon nanotubes, a plain platinum wire (100 µm diameter), and an Ag/AgCl wire (100 µm diameter). Differential pulse voltammetry and amperometry were adopted for detecting SA and IAA within the range of 0.1-20 µM, respectively. This sensor was applied to track IAA and SA fluctuations in tomato leaves during PstDC3000 infection, offering continuous data. Observations indicated an uptick in SA levels following infection, while IAA production was suppressed. The newly developed disposable SS wire-based microneedle electrochemical sensor system is economical, suitable for mass production, and inflicts minimal damage during the monitoring of SA and IAA in plant tissues. SIGNIFICANCE: This disposable microneedle electrochemical sensor facilitates in vivo detection of IAA and SA in smaller plant tissues and allows for long-time monitoring of their concentrations, which not only propels research into the regulatory and interaction mechanisms of IAA and SA but also furnishes essential tools for advancing precision agriculture.


Asunto(s)
Técnicas Electroquímicas , Ácidos Indolacéticos , Hojas de la Planta , Ácido Salicílico , Solanum lycopersicum , Acero Inoxidable , Solanum lycopersicum/química , Ácidos Indolacéticos/análisis , Ácido Salicílico/análisis , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Acero Inoxidable/química , Técnicas Electroquímicas/instrumentación , Agujas , Enfermedades de las Plantas/microbiología
7.
PLoS One ; 19(7): e0306031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38959268

RESUMEN

Brown spot of citrus caused by Alternaria citri is one of the emerging threats to the successful production of citrus crops. The present study, conducted with a substantial sample size of 50 leaf samples for statistical reliability, aimed to determine the change in mineral content in citrus leaves after brown spot disease attack. Leaf samples from a diverse range of susceptible citrus varieties (Valentia late, Washington navel, and Kinnow) and resistant varieties (Citron, Eruka lemon, and Mayer lemon) were analyzed. Significant variations (p ≤ 0.05) in mineral contents were observed across reaction groups (inoculated and un-inoculated), types (resistant and susceptible), and varieties of citrus in response to infection of Alternaria citri. The analysis of variance showed significant changes in mineral levels of citrus leaves, including nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), zinc (Zn), sodium (Na), iron (Fe), and copper (Cu). The results indicate that the concentration of N and P differed by 6.63% and 1.44%, respectively, in resistant plants, while susceptible plants showed a difference of 6.07% and 1.19%. Moreover, resistant plants showed a higher concentrations of K, Ca, Mg, Zn, Na, Fe, and Cu at 8.40, 2.1, 1.83, 2.21, 1.58, 2.89, and 0.36 ppm respectively, compared to susceptible plants which showed concentrations of 5.99, 1.93, 1.47, 1.09, 1.24, 1.81, and 0.31 ppm respectively. Amounts of mineral contents were reduced in both resistant as well as susceptible plants of citrus after inoculation. Amount of N (8.56), P (1.87) % while K (10.74), Ca (2.71), Mg (2.62), Zn (2.20), Na (2.08), Fe (3.57) and Cu (0.20) ppm were recorded in un-inoculated group of citrus plants that reduced to 3.15 and 0.76% and 3.66, 1.40, 0.63,0.42, 0.74, 1.13 and 0.13 ppm in inoculated group respectively. It was accomplished that susceptible varieties contained lower ionic contents than resistant varieties. The higher concentrations of ionic contents in resistant citrus varieties build up the biochemical and physiological processes of the citrus plant, which help to restrict spread of pathogens. Further research could explore the interplay between mineral nutrition and disease resistance in citrus, potentially leading to the development of new disease-resistant varieties.


Asunto(s)
Alternaria , Citrus , Minerales , Enfermedades de las Plantas , Hojas de la Planta , Citrus/microbiología , Citrus/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Minerales/análisis , Minerales/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/química , Genotipo , Resistencia a la Enfermedad/genética , Fósforo/análisis
8.
PLoS One ; 19(7): e0305572, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954711

RESUMEN

Green leafy vegetables are an essential component of Chinese leafy vegetables. Due to their crisp stems and tender leaves, orderly harvester generally causes significant mechanical clamping damage. The physical and mechanical properties of green leafy vegetables are one of the important basis to design the orderly harvester. At the same time, they provide important parameters for the simulation and optimization of harvester. So, this paper measured the physical characteristic parameters of roots and stems of green leafy vegetables. Then, based on the TMS-Pro texture analyzer, the elasticity modulus of the roots and stems of green leafy vegetables were measured. The static friction coefficient, dynamic friction coefficient, and restitution coefficient of green leafy vegetables root-root, stem-stem, root-steel, and stem-steel were measured separately using a combination method of inclined plane and high-speed photography. Uniaxial compression creep experiments were carried out on whole and single leaf of green leafy vegetables using the TA.XT plus C universal testing machine. The constitutive equation of the four-element Burgers model was used to fit the deformation curve of the sample with time during the constant-pressure loading stage. The fitting determination coefficients R2 were all higher than 0.996, which verified the reasonable validity of the selected model. The above experimental results provide a parameter basis and theoretical support for the design and discrete element simulation optimization of orderly harvester critical components of green leafy vegetables.


Asunto(s)
Hojas de la Planta , Raíces de Plantas , Verduras , Viscosidad , Hojas de la Planta/química , Elasticidad , Tallos de la Planta/fisiología
9.
Sci Rep ; 14(1): 15544, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969695

RESUMEN

Bacterial toxins have received a great deal of attention in the development of cancer treatments. Parasporin-2 (PS2Aa1 or Mpp46Aa1) is a Bacillus thuringiensis parasporal protein that preferentially destroys human cancer cells while not harming normal cells, making it a promising anticancer treatment. With the efficient development and sustainable silver nanoparticles (AgNPs) synthesis technology, the biomedical use of AgNPs has expanded. This study presents the development of a novel nanotoxin composed of biosynthesized silver nanoparticles loaded with the N-terminal truncated PS2Aa1 toxin. MOEAgNPs were synthesized using a biological method, with Moringa oleifera leaf extract and maltose serving as reducing and capping agents. The phytochemicals present in M. oleifera leaf extract were identified by GC-MS analysis. MOEAgNPs were loaded with N-terminal truncated PS2Aa1 fused with maltose-binding protein (MBP-tPS2) to formulate PS2-MOEAgNPs. The PS2-MOEAgNPs were evaluated for size, stability, toxin loading efficacy, and cytotoxicity. PS2-MOEAgNPs demonstrated dose-dependent cytotoxicity against the T-cell leukemia MOLT-4 and Jurkat cell lines but had little effect on the Hs68 fibroblast or normal cell line. Altogether, the current study provides robust evidence that PS2-MOEAgNPs can efficiently inhibit the proliferation of T-cell leukemia cells, thereby suggesting their potential as an alternative to traditional anticancer treatments.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Plata , Humanos , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Extractos Vegetales/química , Extractos Vegetales/farmacología , Moringa oleifera/química , Proteínas Recombinantes/farmacología , Hojas de la Planta/química , Supervivencia Celular/efectos de los fármacos , Endotoxinas , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo
10.
Cardiovasc Hematol Agents Med Chem ; 22(2): 230-239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975619

RESUMEN

BACKGROUND: Plants have been used for ages in traditional medicine, and it is exciting to perceive how recent research has recognized the bioactive compounds liable for their beneficial effects. Green synthesis of metal nanoparticles is a hastily emergent research area in nanotechnology. This study describes the synthesis of silver nanoparticles (AgNPs) using Coriandrum sativum and Murraya koenigii leaf extract and its thrombolytic activity. OBJECTIVE: The aim of the study was to determine the clot lysis activity of Coriandrum sativum and Murraya koenigii synthesized silver nanoparticles. METHODS: Leaves of Coriandrum sativum and Murraya koenigii were collected. Methanolic extraction of the plant sample was done through a Soxhlet extractor. The methanolic extract obtained from both the leaves was subjected to GC-MS analysis. The synthesized NPs from leaf extracts were monitored for analysis, where the typical X-ray diffraction pattern and its diffraction peaks were identified. 3D image of the NPs was analysed by Atomic Force Microscopy. The surface charge of nanoparticles was identified by Zeta potential. The Clot lysis activity of Coriandrum sativum and Murraya koenigii synthesized silver nanoparticles were analysed by the modified Holmstorm method. RESULTS: The thrombolytic property of the methanolic extract of plants Coriandrum sativum showed clot lysis activity at 2.5 mg/mL with 45.99% activity, and Murraya koenigii extract with 66.56% activity. The nanoparticles (Nps) from Coriandrum sativum showed clot lysis activity at 2.5 mg/mL with 58.29% activity, and NPs from Murraya koenigii with 54.04% activity. Coriandrum sativum in GC-MS exhibited 3 peaks, whereas Murraya koenigii extract showed five peaks with notable bioactive compounds. CONCLUSION: These NPs were further used for biomedical applications after being fixed by an organic encapsulation agent. The present research reveals the usefulness of Coriandrum sativum and Murraya koenigii for the environmentally friendly manufacture of silver nanoparticles.


Asunto(s)
Coriandrum , Fibrinolíticos , Tecnología Química Verde , Nanopartículas del Metal , Murraya , Extractos Vegetales , Hojas de la Planta , Plata , Nanopartículas del Metal/química , Murraya/química , Plata/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Coriandrum/química , Hojas de la Planta/química , Fibrinolíticos/química , Fibrinolíticos/farmacología
11.
Sci Rep ; 14(1): 15394, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965275

RESUMEN

Some herbal extracts contain relatively high amounts of lipopolysaccharide (LPS). Because orally administered LPS activates innate immunity without inducing inflammation, it plays a role as an active ingredient in herbal extracts. However, the LPS content in herbal extracts remains extensively unevaluated. This study aimed to create a database of LPS content in herbal extracts; therefore, the LPS content of 414 herbal extracts was measured and the macrophage activation potential was evaluated. The LPS content of these hot water extracts was determined using the kinetic-turbidimetric method. The LPS concentration ranged from a few ng/g to hundreds of µg/g (Standard Escherichia coli LPS equivalent). Twelve samples had a high-LPS-content of > 100 µg/g, including seven samples from roots and three samples from leaves of the herbal extracts. These samples showed high phagocytosis and NO production capacity, and further investigation using polymyxin B, an LPS inhibitor, significantly inhibited macrophage activation. This study suggests that some herbal extracts contain sufficient LPS concentration to activate innate immunity. Therefore, a new approach to evaluate the efficacy of herbal extracts based on their LPS content was proposed. A database listing the LPS content of different herbal extracts is essential for this approach.


Asunto(s)
Inmunidad Innata , Lipopolisacáridos , Activación de Macrófagos , Fagocitosis , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Inmunidad Innata/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Animales , Ratones , Activación de Macrófagos/efectos de los fármacos , Células RAW 264.7 , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Hojas de la Planta/química
12.
PeerJ ; 12: e17588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948224

RESUMEN

In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized using neem leaf aqueous extracts and characterized using transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-Vis), and dynamic light scattering (DLS). Then compare its efficacy as anticancer and antibacterial agents with chemically synthesized ZnO-NPs and the neem leaf extract used for the green synthesis of ZnO-NPs. The TEM, UV-vis, and particle size confirmed that the developed ZnO-NPs are nanoscale. The chemically and greenly synthesized ZnO-NPs showed their optical absorbance at 328 nm and 380 nm, respectively, and were observed as spherical particles with a size of about 85 nm and 62.5 nm, respectively. HPLC and GC-MS were utilized to identify the bioactive components in the neem leaf aqueous extract employed for the eco-friendly production of ZnO-NPs. The HPLC analysis revealed that the aqueous extract of neem leaf contains 19 phenolic component fractions. The GC-MS analysis revealed the existence of 21 bioactive compounds. The antiproliferative effect of green ZnO-NPs was observed at different concentrations (31.25 µg/mL-1000 µg/mL) on Hct 116 and A 549 cancer cells, with an IC50 value of 111 µg/mL for A 549 and 118 µg/mL for Hct 116. On the other hand, the antibacterial activity against gram-positive and gram-negative bacteria was estimated. The antibacterial result showed that the MIC of green synthesized ZnO-NPs against gram-positive and gram-negative bacteria were 5, and 1 µg/mL. Hence, they could be utilized as effective antibacterial and antiproliferative agents.


Asunto(s)
Antibacterianos , Antineoplásicos , Extractos Vegetales , Hojas de la Planta , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Humanos , Hojas de la Planta/química , Antineoplásicos/farmacología , Antineoplásicos/química , Azadirachta/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Tecnología Química Verde/métodos , Tamaño de la Partícula , Línea Celular Tumoral
13.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 523-533, jul. 2024. tab
Artículo en Inglés | LILACS | ID: biblio-1538056

RESUMEN

Leaves of Croton stipulaceuswere extracted (EHex, ECHCl3and EEtOH extracts) to assesstheir antioxidant potential, anti-inflammatory activity in murine models and acute toxicity. EEtOH showed the highest effect in DPPH (37.80% inhibition), FRAP (1065.00 ± 55.30 µmolFe2+) and total polyphenols (231.24 ± 9.05 meq AG/gM). EHex was the most active, ~ 50% inhibition of TPA-induced ear edema; while EEtOH (dose of 2 mg/ear) showed the highest inhibition in the chronic model (97% inhibition), and inhibited MPO activity (48%). In carrageenan-induced edema, ECHCl3(dose 500 mg/kg) was the most active. None of the extracts showed acute toxicity (LD50) at 2 g/kg (p.o.). This work is the first report that supports the traditional use of C. stipulaceusas an anti-inflammatory.


De las hojas de Croton stipulaceusse obtuvieron diferentes extractos (EHex, ECHCl3y EEtOH) evaluando el potencial antioxidante y la actividad antiinflamatoria en modelos murinos y la toxicidad aguda. El EEtOH mostró mayor efecto en DPPH (37.80% inhibición), FRAP (1065.00 ± 55.30 µmolFe2+) y polifenolestotales (231.24 ± 9.05 meq AG/gM). El EHex fue el más activo, cercano al 50% de inhibición del edema auricular inducido con TPA; mientras que el EEtOH (dosis de 2 mg/oreja) mostró la mayor inhibición en el modelo crónico (97% inhibición), e inhibió la actividad de la MPO (48%). En el edema inducido con carragenina, el ECHCl3(dosis 500 mg/kg) fue el más activo. Ninguno de los extractos mostró una toxicidad aguda (DL50) mayor a 2 g/kg (p.o). Este trabajo es el primer reporte que sustenta el uso tradicional de C. stipulaceuscomo antiinflamatorio.


Asunto(s)
Hojas de la Planta/química , Croton/química , Extractos Vegetales/metabolismo , Extractos Vegetales/química , Estructuras de las Plantas/metabolismo , Estructuras de las Plantas/química , Hojas de la Planta/metabolismo , Croton/metabolismo , Antiinflamatorios , Antioxidantes
14.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 636-644, jul. 2024. graf, tab
Artículo en Inglés | LILACS | ID: biblio-1538072

RESUMEN

Thechemical composition, antioxidant and antimicrobial activities of the essential oil from aerial parts (leaves and flowers) of Chuquiraga arcuataHarling grown in the Ecuadorian Andes were studied. One hundred and twenty-six compounds were identified in the essential oil. Monoterpene hydrocarbons (45.8%) and oxygenated monoterpenes (44.1%) had the major percentages. The most abundant compounds were camphor (21.6%), myrcene (19.5%), and 1,8-cineole (13.4%). Antioxidant activity was examined using DPPH, ABTS,and FRAP assays. The essential oil had a moderate scavenging effect and reduction of ferric ion capacity through FRAP assay. Antimicrobial activity of the essential oil was observed against four pathogenic bacteria and a fungus. The essential oil exhibited activity against all microorganism strains under test, particularly against Candida albicansand Staphylococcus aureuswith MICs of 2.43-12.10 µg/mL.


Se estudió la composición química, actividades antioxidantes y antimicrobianas del aceite esencial procedente de las partes aérea (hojas y flores) de Chuquiraga arcuataHarling cultivadas en los Andes ecuatorianos. Se identificaron 126 compuestos en el aceite esencial. Los hidrocarburos monoterpénicos (45,8%) y los monoterpenos oxigenados (44,1%) tuvieron el mayor porcentaje. Los compuestos más abundantes fueron alcanfor (21,6%), mirceno (19,5%) y 1,8-cineol (13,4%). La actividadantioxidante se examinó mediante ensayos DPPH, ABTS y FRAP. El aceite esencial tuvo un efecto eliminador moderado y una reducción de la capacidad de iones férricos mediante el ensayo FRAP. Se observó actividad antimicrobiana del aceite esencial contra cuatro bacterias y un hongo patógenos. El aceite esencial mostró actividad contra todas las cepas de microorganismos bajo prueba, particularmente contra Candida albicansy Staphylococcus aureuscon CMI de 2,43-12,10 µg/mL.


Asunto(s)
Aceites Volátiles/química , Extractos Vegetales/química , Antioxidantes/química , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Hojas de la Planta/química , Flores/química , Ecuador , Antioxidantes/farmacología
15.
Food Res Int ; 190: 114545, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945558

RESUMEN

Cyclocarya paliurus (Batal.) leaves, which contain a range of bioactive compounds, have been used as a traditional Chinese medicine homologous food since ancient times. However, there is a paucity of literature on comprehensive studies of alkaloids in the leaves of Cyclocarya paliurus (Batal.). For the first time, this study aimed to discover and identify alkaloids extracted from Cyclocarya paliurus (Batal.) leaves by ultra-high performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UPLC-QTOF-MS). A total of ten alkaloids have been identified from Cyclocarya paliurus (Batal.) leaves based on accurate mass spectra (mass accuracy, isotopic spacing and distribution) and comparison to fragmentation spectra reported in the literature. In vitro, alkaloids alleviated insulin resistance by increasing glucose consumption and glycogen content in insulin resistance HepG2 cells. The RNA-seq and western blotting results showed that alkaloids could upregulate the expression of phosphatidylinositol 3-kinase (PI3K), and increase the phosphorylation of insulin receptor protein kinase B (AKT). This study not only clarified the chemical constituents and revealed that diverse alkaloids also presented from Cyclocarya paliurus (Batal.) leaves, also, it will provide chemical information on potential compounds for developing new drugs.


Asunto(s)
Alcaloides , Resistencia a la Insulina , Juglandaceae , Hojas de la Planta , Espectrometría de Masas en Tándem , Hojas de la Planta/química , Alcaloides/análisis , Células Hep G2 , Humanos , Cromatografía Líquida de Alta Presión , Juglandaceae/química , Espectrometría de Masas en Tándem/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Proteínas Proto-Oncogénicas c-akt/metabolismo
16.
Food Res Int ; 190: 114638, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945627

RESUMEN

Tea trichomes were regarded as an essential evaluation index for reflecting tea flavor quality in terms of aroma and influence on infusion color. This study reveals the impact of golden oxidized trichomes on the color, volatile and non-volatile metabolites of black teas through comparative metabolomics combined quantitative analysis on hongbiluo (trichomes-deficiency black teas), hongjinluo (trichomes-rich black teas), and trichomes (from hongjinluo). Forty-six volatile components were detected using headspace solid-phase microextraction gas chromatography-mass spectrometry, while the results suggested that the contribution of trichomes to black teas is limited. A total of 60 marker non-volatile compounds were identified, including catechins, catechin oxidation products, flavonoid glycosides, organic acids, hydrolysable tannins and amino acids. Notably, p-coumaroyl-kaempferol glucosides, and catechin dimers demonstrated high levels in independent trichomes and showed a positive correlation with the brightness and yellow hue of black tea infusions, specifically kaempferol 3-O-di-(p-coumaroyl)-hexoside. Furthermore, results from fractional extraction analysis of separated trichomes provided that N-ethyl-2-pyrrolidinone-substituted epicatechin gallates, acylated kaempferol glycosides, and chromogenic catechins dimers, such as theaflavins, were primary color contributors in oxidized trichomes. Especially, we found that epicatechin gallate (ECG) and its derivates, 3'-O-methyl-ECG and N-ethyl-2-pyrrolidinone-substituted ECG, highly accumulated in trichomes, which may be associated with the varieties of hongbiluo and hongjinluo black teas. Eventually, addition tests were applied to verify the color contribution of trichome mixtures. Our findings employed comprehensive information revealing that golden oxidized trichomes contributed significantly to the brightness and yellow hue of black tea infusion, but their contribution to the aroma and metabolic profile is limited. These findings may contribute to the effective modulation of the infusion color during black tea production by regulating the proportion of tea trichomes or screening trichomes-rich or deficiency varieties.


Asunto(s)
Camellia sinensis , Color , Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Oxidación-Reducción , , Tricomas , Compuestos Orgánicos Volátiles , Metabolómica/métodos , Té/química , Camellia sinensis/química , Compuestos Orgánicos Volátiles/análisis , Tricomas/química , Tricomas/metabolismo , Catequina/análisis , Catequina/análogos & derivados , Catequina/metabolismo , Microextracción en Fase Sólida , Hojas de la Planta/química , Metaboloma , Flavonoides/análisis
17.
Sci Rep ; 14(1): 14741, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926601

RESUMEN

Potentially toxic metal(loid) assessment of tea and tea garden soil is a vital guarantee of tea safety and is very necessary. This study analyzed the distribution of seven potentially toxic metal(loid)s in different organs of the tea plants and soil at various depths in the Yangai tea farm of Guiyang City, Guizhou Province, China. Although soil potentially toxic metal(loid) in the study area is safe, there should be attention to the health risks of Cu, Ni, As, and Pb in the later stages of tea garden management. Soil As and Pb are primarily from anthropogenic sources, soil Zn is mainly affected by natural sources and human activities, and soil with other potentially toxic metal(loid) is predominantly from natural sources. Tea plants might be the enrichment of Zn and the exclusion or tolerance of As, Cu, Ni, and Pb. The tea plant has a strong ability for absorbing Cd and preferentially storing it in its roots, stems, and mature leaves. Although the Cd and other potentially toxic metal(loid)s content of tea in Guizhou Province is generally within the range of edible safety, with the increase of tea planting years, it is essential to take corresponding measures to prevent the potential health risks of Cd and other potentially toxic metal(loid)s in tea.


Asunto(s)
Camellia sinensis , Contaminantes del Suelo , Suelo , Camellia sinensis/química , Contaminantes del Suelo/análisis , China , Suelo/química , Metales Pesados/análisis , Metales Pesados/toxicidad , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Té/química , Monitoreo del Ambiente , Metales/análisis
18.
Biomolecules ; 14(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38927041

RESUMEN

The genus Brassica is an important source of food in the Mediterranean diet with documented nutritional and medicinal properties. However, few studies have investigated the phytochemical composition and the biological activity of wild Sicilian taxa. Thus, we aimed to study the chemical profile and the antioxidant potential, in vitro and in LPS-stimulated RAW 264.7 cells, of a methanolic extract of leaves of wild Brassica macrocarpa Guss (B. macrocarpa) (Egadi Islands; Sicily-Italy). B. macrocarpa methanolic extract showed a large amount of glucosinolates and different phenolic compounds. It exhibited antioxidant activity in the DPPH assay and in LPS-stimulated RAW 264.7 cells, being able to reduce NO and ROS levels and NOS2 mRNA expression. Our study demonstrated that Sicilian B. macrocarpa methanolic extract, in LPS-stimulated macrophages, efficiently counteracts oxidative stress and displays radical scavenging activity. Future studies are required to identify the contribution of the single phytocomponents, to characterize the action mechanism, and to reveal possible applications in human health.


Asunto(s)
Antioxidantes , Brassica , Depuradores de Radicales Libres , Extractos Vegetales , Hojas de la Planta , Células RAW 264.7 , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratones , Hojas de la Planta/química , Animales , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química , Brassica/química , Antioxidantes/farmacología , Antioxidantes/química , Óxido Nítrico/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Lipopolisacáridos/farmacología , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Fenoles/química , Sicilia , Glucosinolatos/farmacología , Glucosinolatos/química
19.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 40: e20240004, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902996

RESUMEN

The human immune system plays a pivotal role in protecting the body against pathogens, maintaining homeostasis, and preventing disease. Immunomodulation, the process of regulating immune responses, is crucial for optimal health. In recent years, there has been growing interest in natural remedies for immune system modulation, driven by the recognition of their potential efficacy and safety profiles. This project aims to investigate the immunomodulatory effects of drumstick leaves tablets, derived from Moringa oleifera, a plant known for its rich nutritional and medicinal properties. The study will explore the potential of drumstick leaves tablets to modulate immune responses through in vitro and in vivo experiments. Through comprehensive analysis of the immunomodulatory properties of drumstick leaves tablets, this project aims to contribute to our understanding of natural remedies for immune system modulation. The findings could have significant implications for the development of novel therapeutic interventions aimed at enhancing immune function and improving human health.


Asunto(s)
Agentes Inmunomoduladores , Moringa oleifera , Hojas de la Planta , Comprimidos , Moringa oleifera/química , Hojas de la Planta/química , Agentes Inmunomoduladores/farmacología , Animales , Factores Inmunológicos/farmacología , Ratones , Humanos , Medicamentos Herbarios Chinos/farmacología
20.
Sci Rep ; 14(1): 14526, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914559

RESUMEN

Generally, medicinal plants are harvested with high amount of water, so it is essential to subject the product to drying as soon as possible to prevent degradation before application. Most compounds from medicinal plants are sensitive to drying processes, so it is important to adjust the drying conditions. The objective of this study was to describe the drying of Rue (Ruta chalepensis L.) leaves, select the models that best fit each drying condition, determine the activation energy and thermodynamic properties of the leaves, and evaluate their quality after drying. Leaves were harvested with moisture content of 3.55 ± 0.05 kg water kg-1dry matter and subjected to drying at temperatures of 40, 50, 60 and 70 °C. Valcam model showed the best fit to represent the drying kinetics of Rue leaves at temperatures of 40 and 70 °C, and Midilli model proved to be better for the temperatures of 50 and 60 °C. Effective diffusion coefficient increased linearly with the increase in drying air temperature, and the activation energy was 60.58 kJ mol-1. Enthalpy, entropy and Gibbs free energy values ranged from 57.973 to 57.723 kJ mol-1, from - 0.28538 to - 0.28614 kJ mol-1 K-1 and from 147.34 to 155.91 kJ mol-1, respectively, for the temperature range of 40-70 °C. Drying air temperature promoted darkening or tendency to loss of green color; increase in drying air temperature leads to greater discoloration, as well as a higher concentration of total phenolic compounds (about 221.10 mg GAE mL-1 g-1 dm), with a peak at temperature of 60 °C.


Asunto(s)
Desecación , Hojas de la Planta , Termodinámica , Hojas de la Planta/química , Cinética , Desecación/métodos , Temperatura , Agua/química , Plantas Medicinales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...