Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.010
Filtrar
1.
Food Chem ; 462: 140986, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208737

RESUMEN

Harvest season exerts great influence on tea quality. Herein, the variations in non-volatile flavor substances in spring and summer fresh tea leaves of four varieties were comprehensively investigated by integrating UHPLC-Q-Exactive based lipidomics and metabolomics. A total of 327 lipids and 99 metabolites were detected, among which, 221 and 58 molecules were significantly differential. The molecular species of phospholipids, glycolipids and acylglycerolipids showed most prominent and structure-dependent seasonal changes, relating to polar head, unsaturation and total acyl length. Particularly, spring tea contained higher amount in aroma precursors of highly unsaturated glycolipids and phosphatidic acids. The contents of umami-enhancing amino acids and phenolic acids, e.g., theanine, theogallin and gallotannins, were increased in spring. Besides, catechins, theaflavins, theasinensins and flavone/flavonol glycosides showed diverse changes. These phytochemical differences covered key aroma precursors, tastants and colorants, and may confer superior flavor of black tea processed using spring leaves, which was verified by sensory evaluation.


Asunto(s)
Camellia sinensis , Aromatizantes , Lipidómica , Espectrometría de Masas , Metabolómica , Hojas de la Planta , Estaciones del Año , Camellia sinensis/química , Camellia sinensis/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Cromatografía Líquida de Alta Presión , Aromatizantes/química , Aromatizantes/metabolismo , Humanos , Gusto , Odorantes/análisis , Lípidos/análisis , Lípidos/química
2.
Sci Rep ; 14(1): 21712, 2024 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289494

RESUMEN

The systemic coordination of accumulation of plasma membrane aquaporins (PIP) was investigated in this study in relation to mycorrhized maize response to a rapid development of severe drought followed by rewatering. In non-mycorrhizal roots, drought led to a drop in PIP abundance, followed by a transient increase under rewatering, whereas leaves showed an opposite pattern. In contrast, mycorrhiza contributed to maintenance of high and stable levels of PIPs in both plant organs after an initial increase, prolonged over the irrigation period. Isoelectric focusing electrophoresis resolved up to 13 aquaporin complexes with highly reproducible pl positions across leaf and root samples, symbiotic and non-symbiotic, stressed or not. Mass spectrometry recognized in leaves and roots a different ratio of PIP1 and PIP2 subunits within 2D spots that accumulated the most. Regardless of symbiotic status, drought regulation of aquaporins in roots was manifested as the prevalence of complexes that comprise almost exclusively PIP2 monomers. In contrast, the leaf response involved enrichment in PIP1s. PIP1s are thought to enhance water transport, facilitate CO2 diffusion but also affect stomatal movements. These features, together with elevated aquaporin levels, might explain a stress tolerance mechanism observed in mycorrhizal plants, resulting in faster recovery of stomatal water conductance and CO2 assimilation rate after drought.


Asunto(s)
Acuaporinas , Sequías , Micorrizas , Hojas de la Planta , Proteínas de Plantas , Raíces de Plantas , Zea mays , Zea mays/metabolismo , Zea mays/microbiología , Acuaporinas/metabolismo , Micorrizas/metabolismo , Micorrizas/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Agua/metabolismo , Especificidad de Órganos
3.
Sci Rep ; 14(1): 21941, 2024 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304705

RESUMEN

Due to the fast-changing global climate, conventional agricultural systems have to deal with more unpredictable and harsh environmental conditions leading to compromise food production. The application of phytonanotechnology can ensure safer and more sustainable crop production, allowing the target-specific delivery of bioactive molecules with great and partially explored positive effects for agriculture, such as an increase in crop production and plant pathogen reduction. In this study, the effect of free pterostilbene (PTB) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) loaded with pterostilbene was investigated on Solanum lycopersicum L. metabolism. An untargeted NMR-based metabolomics approach was used to examine primary and secondary metabolism whereas a targeted HPLC-MS/MS-based approach was used to explore the impact on defense response subjected to anti-oxidant effect of PTB, such as free fatty acids, oxylipins and them impact on hormone biosynthesis, in particular salicylic and jasmonic acid. In tomato leaves after treatment with PTB and PLGA NPs loaded with PTB (NPs + PTB), both NPs + PTB and free PTB treatments increased GABA levels in tomato leaves. In addition, a decrease of quercetin-3-glucoside associated with the increase in caffeic acid was observed suggesting a shift in secondary metabolism towards the biosynthesis of phenylpropanoids and other phenolic compounds. An increase of behenic acid (C22:0) and a remodulation of oxylipin metabolism deriving from the linoleic acid (i.e. 9-HpODE, 13-HpODE and 9-oxo-ODE) and linolenic acid (9-HOTrE and 9-oxoOTrE) after treatment with PLGA NPs and PLGA NPs + PTB were also found as a part of mechanisms of plant redox modulation. To the best of our knowledge, this is the first study showing the role of PLGA nanoparticles loaded with pterostilbene in modulating leaf metabolome and physiology in terms of secondary metabolites, fatty acids, oxylipins and hormones. In perspective, PLGA NPs loaded with PTB could be used to reshape the metabolic profile to allow plant to react more quickly to stresses.


Asunto(s)
Nanopartículas , Oxilipinas , Hojas de la Planta , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Solanum lycopersicum , Estilbenos , Nanopartículas/química , Oxilipinas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Estilbenos/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Metabolómica/métodos
4.
Sci Rep ; 14(1): 21929, 2024 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304737

RESUMEN

One of the main abiotic stresses that affect plant development and lower agricultural productivity globally is salt in the soil. Organic amendments, such as compost and biochar can mitigate the opposing effects of soil salinity (SS) stress. The purpose of this experiment was to look at how tomato growth and yield on salty soil were affected by mineral fertilization and manure-biochar compost (MBC). Furthermore, the study looked at how biochar (organic amendments) work to help tomato plants that are stressed by salt and also a mechanism by which biochar addresses the salt stress on tomato plants. Tomato yield and vegetative growth were negatively impacted by untreated saline soil, indicating that tomatoes are salt-sensitive. MBC with mineral fertilization increased vegetative growth, biomass yield, fruit yield, chlorophyll, and nutrient contents, Na/K ratio of salt-stressed tomato plants signifies the ameliorating effects on tomato plant growth and yield, under salt stress. Furthermore, the application of MBC with mineral fertilizer decreased H2O2, but increased leaf relative water content (RWC), leaf proline, total soluble sugar, and ascorbic acid content and improved leaf membrane damage, in comparison with untreated plants, in response to salt stress. Among the composting substances, T7 [poultry manure-biochar composting (PBC) (1:2) @ 3 t/ha + soil-based test fertilizer (SBTF)] dose exhibited better-improving effects on salt stress and had maintained an order of T7 > T9 > T8 > T6 in total biomass and fruit yield of tomato. These results suggested that MBC might mitigate the antagonistic effects of salt stress on plant growth and yield of tomatoes by improving osmotic adjustment, antioxidant capacity, nutrient accumulation, protecting photosynthetic pigments, and reducing ROS production and leaf damage in tomato plant leaves.


Asunto(s)
Estiércol , Fotosíntesis , Estrés Salino , Suelo , Solanum lycopersicum , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Suelo/química , Compostaje/métodos , Osmorregulación , Fertilizantes , Salinidad , Homeostasis , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Biomasa , Carbón Orgánico
5.
BMC Genomics ; 25(1): 887, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304819

RESUMEN

Camellia oleifera is an important woody oil tree in China, in which the flowers and fruits appear during the same period. The endogenous hormone changes and transcription expression levels in different parts of the flower tissue (sepals, petals, stamens, and pistils), flower buds, leaves, and seeds of Changlin 23 high-yield (H), Changlin low-yield (L), and control (CK) C. oleifera groups were studied. The abscisic acid (ABA) content in the petals and stamens in the L group was significantly higher than that in the H and CK groups, which may be related to flower and fruit drops. The high N6-isopentenyladenine (iP) and indole acetic acid (IAA) contents in the flower buds may be associated with a high yield. Comparative transcriptome analysis showed that the protein phosphatase 2C (PP2C), jasmonate-zim-domain protein (JAZ), and WRKY-related differentially expressed genes (DEGs) may play an important role in determining leaf color. Gene set enrichment analysis (GSEA) comparison showed that jasmonic acid (JA) and cytokinin play an important role in determining the pistil of the H group. In this study, endogenous hormone and transcriptome analyses were carried out to identify the factors influencing the large yield difference in C. oleifera in the same year, which provides a theoretical basis for C. oleifera in the future.


Asunto(s)
Camellia , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas , Transcriptoma , Camellia/genética , Camellia/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Flores/genética , Flores/metabolismo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
6.
BMC Plant Biol ; 24(1): 874, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304829

RESUMEN

BACKGROUND: Global warming has greatly increased the impact of high temperatures on crops, resulting in reduced yields and increased mortality. This phenomenon is of significant importance to the rose flower industry because high-temperature stress leads to bud dormancy or even death, reducing ornamental value and incurring economic losses. Understanding the molecular mechanisms underlying the response and resistance of roses to high-temperature stress can serve as an important reference for cultivating high-temperature-stress-resistant roses. RESULTS: To evaluate the impact of high temperatures on rose plants, we measured physiological indices in rose leaves following heat stress. Protein and chlorophyll contents were significantly decreased, whereas proline and malondialdehyde (MDA) contents, and peroxidase (POD) activity were increased. Subsequently, transcriptomics and metabolomics analyses identified 4,652 common differentially expressed genes (DEGs) and 57 common differentially abundant metabolites (DAMs) in rose plants from four groups. Enrichment analysis showed that DEGs and DAMs were primarily involved in the mitogen-activated protein kinases (MAPK) signaling pathway, plant hormone signal transduction, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis. The combined analysis of the DEGs and DAMs revealed that flavonoid biosynthesis pathway-related genes, such as chalcone isomerase (CHI), shikimate O-hydroxycinnamoyl transferase (HCT), flavonol synthase (FLS), and bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR), were downregulated after heat stress. Moreover, in the MAPK signaling pathway, the expression of genes related to jasmonic acid exhibited a decrease, but ethylene receptor (ETR/ERS), P-type Cu + transporter (RAN1), ethylene-insensitive protein 2/3 (EIN2), ethylene-responsive transcription factor 1 (ERF1), and basic endochitinase B (ChiB), which are associated with the ethylene pathway, were mostly upregulated. Furthermore, heterologous overexpression of the heat stress-responsive gene RcHSP70 increased resistance to heat stress in Arabidopsis thaliana. CONCLUSION: The results of this study indicated that the flavonoid biosynthesis pathway, MAPK signaling pathway, and plant hormones may be involved in high-temperature resistance in roses. Constitutive expression of RcHSP70 may contribute to increasing high-temperature tolerance. This study provides new insights into the genes and metabolites induced in roses in response to high temperature, and the results provide a reference for analyzing the molecular mechanisms underlying resistance to heat stress in roses.


Asunto(s)
Respuesta al Choque Térmico , Metabolómica , Rosa , Rosa/genética , Rosa/metabolismo , Rosa/fisiología , Respuesta al Choque Térmico/genética , Perfilación de la Expresión Génica , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología
7.
J Agric Food Chem ; 72(38): 21193-21207, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39258382

RESUMEN

Zinc (Zn) and nitrogen (N) are the two crucial nutrients for tea plant growth and development and contribute to the quality formation of tea fresh leaves. In this study, a zinc/iron-regulated transporter-like protein 4 gene (i.e., CsZIP4) was functionally characterized. Expression profiling showed that CsZIP4 could be induced by Zn stresses and a N deficiency. Heterologous expression of CsZIP4 in yeast revealed that CsZIP4 possessed the capacity for Zn transport but not ammonium. Moreover, CsZIP4 overexpression in Arabidopsis thaliana promoted Zn and N uptake and transport and contributed to alleviate Zn stresses by collaborating with N supply, which might be interrelated to the expression of N or Zn metabolism-related genes, such as AtNRT1.1 and AtZIP4. Additionally, CsZIP4 was localized in the plasma membrane and chloroplast, which was helpful in maintaining cellular homeostasis under a Zn excess. Furthermore, silencing of CsZIP4 in tea plants by virus-induced gene silencing increased the chlorophyll content but decreased the Zn content. Finally, the yeast one-hybrid assay demonstrated that CsbZIP2 bound to the CsZIP4 promoter. These results will shed light on the functions of CsZIP4 in the N and Zn interaction in tea plants.


Asunto(s)
Camellia sinensis , Regulación de la Expresión Génica de las Plantas , Nitrógeno , Proteínas de Plantas , Zinc , Camellia sinensis/metabolismo , Camellia sinensis/genética , Camellia sinensis/química , Zinc/metabolismo , Nitrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Transporte Biológico , Hierro/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/química , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética
8.
J Agric Food Chem ; 72(38): 21089-21101, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39267592

RESUMEN

To determine the effects of microbial proteins on Qingzhuan tea sensory quality during tea pile fermentation, tea leaf metabolomic and microorganism proteomic analyses were performed. In total, 1835 differential metabolites and 443 differentially expressed proteins of the microorganisms were identified. Correlation analysis between metabolomics and proteomics data revealed that the levels of microbial proteins EG II and CBH I cellulase may play important roles in cell wall construction and permeability, which were crucial for the interaction between tea leaves and microorganisms. Microbial proteins heat shock proteins (HSP), alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and CuAO related to detoxification and stress responses showed a positive correlation with tea theanine, glutamine, γ-aminobutyric acid, glutamic acid, catechin, (-)-gallocatechin gallate, and (-)-catechin gallate, suggesting their effects on tea characteristic compound accumulation, thus affecting Qingzhuan tea sensory quality.


Asunto(s)
Camellia sinensis , Fermentación , , Camellia sinensis/química , Camellia sinensis/metabolismo , Té/química , Gusto , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Humanos , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Catequina/metabolismo , Catequina/análisis , Alcohol Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteómica , Glutamatos
9.
Sci Rep ; 14(1): 21248, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261527

RESUMEN

Rice grown in cadmium (Cd)-contaminated soil, is a potential threat to human health, but exogenous selenium (Se) application on rice can mitigate Cd toxicity. However, the mechanisms underlying Se mitigation of Cd stress in ratoon rice (RR) are still poorly understood. We conducted a pot experiment with moderate Cd-contaminated yellow-brown paddy soil on two rice varieties 'Taoyouxiangzhan' (TX) and 'Liangyou 6326'(LY). For all treatments, 1.0 mg kg-1 sodium selenite solution was added to soil. Treatment T1 was sodium selenite only, and in the other treatments 100 mg L-1 Se solution was sprayed on the leaves at seedling stage (T2), at tillering stage (T3), and in early anthesis stage (T4). Se treatments decreased Cd accumulation in rice grains and herbage. Under foliar spraying 100 mg L-1 Se at the seedling + 1.0 mg kg-1 Se in soil (T2), leaf Cd content decreased 16.95% in the current season and grains content decreased 46.67% in the subsequent season. Furthermore, grain Se content increased 0.94 mg kg-1 for the TX variety combined with the analysis of Cd bio-accumulation factor in grains, and Se treatments effectively decreased Cd grain concentrations due to reduced Cd translocation from roots to grains. TX variety rice showed a more pronounced response to Se treatments than LY.


Asunto(s)
Cadmio , Oryza , Selenio , Contaminantes del Suelo , Oryza/metabolismo , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Cadmio/metabolismo , Cadmio/toxicidad , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Selenio/metabolismo , Selenio/farmacología , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Suelo/química , Plantones/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo
10.
Sci Rep ; 14(1): 21373, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39266608

RESUMEN

Salinity stress negatively affects the growth and yield of crops worldwide. Onion (Allium cepa L.) is moderately sensitive to salinity. Beneficial microorganisms can potentially confer salinity tolerance. This study investigated the effects of endomycorrhizal fungi (M), Pseudomonas putida (Ps) and their combination (MPs) on onion growth under control (0 ppm), moderate (2000 ppm) and high (4000 ppm) NaCl salinity levels. A pot experiment was conducted with sandy loam soil and onion cultivar Giza 20. Results showed that salinity reduced growth attributes, leaf pigments, biomass and bulb yield while increasing oxidative stress markers. However, individual or combined inoculations significantly increased plant height, bulb diameter and biomass production compared to uninoculated plants under saline conditions. MPs treatment provided the highest stimulation, followed by Pseudomonas and mycorrhizae alone. Overall, dual microbial inoculation showed synergistic interaction, conferring maximum benefits for onion growth, bulbing through integrated physiological and biochemical processes under salinity. Bulb yield showed 3.5, 36 and 83% increase over control at 0, 2000 and 4000 ppm salinity, respectively. In conclusion, combined application of mycorrhizal-Pseudomonas inoculations (MPs) effectively mitigate salinity stress. This approach serves as a promising biotechnology for ensuring sustainable onion productivity under saline conditions.


Asunto(s)
Cebollas , Pseudomonas putida , Salinidad , Pseudomonas putida/fisiología , Pseudomonas putida/crecimiento & desarrollo , Pseudomonas putida/efectos de los fármacos , Cebollas/microbiología , Micorrizas/fisiología , Biomasa , Estrés Salino , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Tolerancia a la Sal , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Estrés Oxidativo/efectos de los fármacos
11.
Sci Rep ; 14(1): 21286, 2024 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266741

RESUMEN

In sweet potato, rational nitrogen (N) assimilation and distribution are conducive to inhibiting vine overgrowth. Nitrate (NO3-) is the main N form absorbed by roots, and cultivar is an important factor affecting N utilization. Herein, a hydroponic experiment was conducted that included four NO3- concentrations of 0 (N0), 4 (N1), 8 (N2) and 16 (N3) mmol L-1 with two cultivars of Jishu26 (J26, N-sensitive) and Xushu32 (X32, N-tolerant). For J26, with increasing NO3- concentrations, the root length and root surface area significantly decreased. However, no significant differences were observed in these parameters for X32. Higher NO3- concentrations upregulated the expression levels of the genes that encode nitrate reductase (NR2), nitrite reductase (NiR2) and nitrate transporter (NRT1.1) in roots for both cultivars. The trends in the activities of NR and NiR were subject to regulation of NR2 and NiR2 transcription, respectively. For both cultivars, N2 increased the N accumulated in leaves, growth points and roots. For J26, N3 further increased the N accumulation in these organs. Under higher NO3- nutrition, compared with X32, J26 exhibited higher expression levels of the NiR2, NR2 and NRT1.1 genes, a higher influx NO3- rate in roots, and higher activities of NR and NiR in leaves and roots. Conclusively, the regulated effects of NO3- supplies on root growth and NO3- utilization were more significant for J26. Under high NO3- conditions, J26 exhibited higher capacities of NO3- absorption and distributed more N in leaves and in growth points, which may contribute to higher growth potential in shoots and more easily cause vine overgrowth.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ipomoea batatas , Nitratos , Nitrógeno , Raíces de Plantas , Nitratos/metabolismo , Ipomoea batatas/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Nitrógeno/metabolismo , Nitrato-Reductasa/metabolismo , Nitrato-Reductasa/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Transportadores de Nitrato , Hidroponía , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Nitrito Reductasas/metabolismo , Nitrito Reductasas/genética , Proteínas de Transporte de Anión/metabolismo , Proteínas de Transporte de Anión/genética
12.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273242

RESUMEN

Calcium stress can negatively impact plant growth, prompting plants to respond by mitigating this effect. However, the specific mechanisms underlying this response remain unclear. In this study, we used non-targeted metabolomics and transcriptomics to investigate the response mechanisms of Zelkova schneideriana leaves under varying degrees of calcium stress. Results revealed that calcium stress led to wilt in young leaves. When calcium stress exceeds the tolerance threshold of the leaf, it results in wilting of mature leaves, rupture of chloroplasts in palisade tissue, and extensive wrinkling and breakage of leaf cells. Transcriptomic analysis indicated that calcium stress inhibited photosynthesis by suppressing the expression of genes related to photosynthetic system II and electron transport. Leaf cells activate phenylpropanoid biosynthesis, flavonoid biosynthesis, and Vitamin B6 metabolism to resist calcium stress. When calcium accumulation gradually surpassed the tolerance threshold of the cells, this results in failure of conventional anti-calcium stress mechanisms, leading to cell death. Furthermore, excessive calcium stress inhibits the expression of CNGC and anti-pathogen genes. The results of the metabolomics study showed that five key metabolites increased in response to calcium stress, which may play an important role in countering calcium stress. This study provides insights into the response of Z. schneideriana leaves to different levels of calcium stress, which could provide a theoretical basis for cultivating Z. schneideriana in karst areas and enhance our understanding of plant responses to calcium stress.


Asunto(s)
Calcio , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Estrés Fisiológico , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Calcio/metabolismo , Fotosíntesis , Metabolómica/métodos , Transcriptoma , Perfilación de la Expresión Génica
13.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273249

RESUMEN

Indoor farming systems enable plant production in precisely controlled environments. However, implementing stable growth conditions and the absence of stress stimulants can weaken plants' defense responses and limit the accumulation of bioactive, health-beneficial phytochemicals. A potential solution is the controlled application of stressors, such as supplemental ultraviolet (UV) light. To this end, we analyzed the efficiency of short-term pre-harvest supplementation of the red-green-blue (RGB, LED) spectrum with ultraviolet B (UV-B) or C (UV-C) light to boost phytochemical synthesis. Additionally, given the biological harm of UV radiation due to high-energy photons, we monitored plants' photosynthetic activity during treatment and their morphology as well as sensory attributes after the treatment. Our analyses showed that UV-B radiation did not negatively impact photosynthetic activity while significantly increasing the overall antioxidant potential of lettuce through enhanced levels of secondary metabolites (total phenolics, flavonoids, anthocyanins), carotenoids, and ascorbic acid. On the contrary, UV-C radiation-induced anthocyanin accumulation in the green leaf cultivar significantly harmed the photosynthetic apparatus and limited plant growth. Taken together, we showed that short-term UV-B light supplementation is an efficient method for lettuce biofortification with healthy phytochemicals, while UV-C treatment is not recommended due to the negative impact on the quality (morphology, sensory properties) of the obtained leafy products. These results are crucial for understanding the potential of UV light supplementation for producing functional plants.


Asunto(s)
Antioxidantes , Lactuca , Fotosíntesis , Rayos Ultravioleta , Lactuca/metabolismo , Lactuca/efectos de la radiación , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Antioxidantes/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Flavonoides/metabolismo , Fitoquímicos/metabolismo , Carotenoides/metabolismo , Antocianinas/metabolismo , Ácido Ascórbico/metabolismo , Fenoles/metabolismo
14.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273269

RESUMEN

In order to explore the response mechanism of Lilium pumilum (L. pumilum) to saline-alkali stress, we successfully cloned LpGDSL (GDSL lipase, Gly-Asp-Ser-Leu) from L. pumilum. The qRT-PCR results indicated that the LpGDSL expression was higher in the leaves of L. pumilum, and the expression of the LpGDSL reached the highest level at 12 h in leaves under 11 mM H2O2, 200 mM NaCl, 25 mM Na2CO3, and 20 mM NaHCO3. The bacteriophage overexpressing LpGDSL was more tolerant than the control under different NaHCO3 contents. Overexpressed and wild-type plants were analyzed for phenotype, chlorophyll content, O2- content, H2O2 content, lignin content, and so on. Overexpressed plants had significantly higher resistance than the wild type and were less susceptible to saline-alkali stress. The yeast two-hybrid and BiFC assays demonstrated the existence of an interaction between LpGDSL and LpBCP. The yeast one-hybrid assay and transcriptional activation assay confirmed that B3 transcription factors could act on LpGDSL promoters. Under saline-alkali stress, L. pumilum will promote the expression of LpGDSL, which will then promotes the accumulation of lignin and the scavenging of reactive oxygen species (ROS) to reduce its damage, thus improving the saline-alkali resistance of the plant.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina , Lilium , Proteínas de Plantas , Especies Reactivas de Oxígeno , Lignina/metabolismo , Lilium/metabolismo , Lilium/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Álcalis , Peróxido de Hidrógeno/metabolismo , Tolerancia a la Sal/genética , Plantas Modificadas Genéticamente , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
15.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273273

RESUMEN

Leaf angle (LA) is an important trait of plant architecture, and individuals with narrow LA can better capture canopy light under high-density planting, which is beneficial for increasing the overall yield per unit area. To study the genetic basis and molecular regulation mechanism of leaf angle in rapeseed, we carried out a series of experiments. Quantitative trait loci (QTL) mapping was performed using the RIL population, and seven QTLs were identified. Transcriptome analysis showed that the cell wall formation/biogenesis processes and biosynthesis/metabolism of cell wall components were the most enrichment classes. Most differentially expressed genes (DEGs) involved in the synthesis of lignin, xylan, and cellulose showed down-regulated expression in narrow leaf material. Microscopic analysis suggested that the cell size affected by the cell wall in the junction area of the stem and petiole was the main factor in leaf petiole angle (LPA) differences. Combining QTL mapping and RNA sequencing, five promising candidate genes BnaA01G0125600ZS, BnaA01G0135700ZS, BnaA01G0154600ZS, BnaA10G0154200ZS, and BnaC03G0294200ZS were identified in rapeseed, and most of them were involved in cell wall biogenesis and the synthesis/metabolism of cell wall components. The results of QTL, transcriptome analysis, and cytological analysis were highly consistent, collectively revealing that genes related to cell wall function played a crucial role in regulating the LA trait in rapeseed. The study provides further insights into LA traits, and the discovery of new QTLs and candidate genes is highly beneficial for genetic improvement.


Asunto(s)
Brassica napus , Mapeo Cromosómico , Hojas de la Planta , Sitios de Carácter Cuantitativo , Brassica napus/genética , Brassica napus/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia de ARN/métodos , Pared Celular/metabolismo , Pared Celular/genética , Fenotipo , Perfilación de la Expresión Génica/métodos , Genes de Plantas , Transcriptoma
16.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273328

RESUMEN

The mitigation mechanisms of a kind of controlled-release nitrogen fertilizer (sulfur-coated controlled-release nitrogen fertilizer, SCNF) in response to O3 stress on a winter wheat (Triticum aestivum L.) variety (Nongmai-88) were studied in crop physiology and soil biology through the ozone-free-air controlled enrichment (O3-FACE) simulation platform and soil microbial metagenomics. The results showed that SCNF could not delay the O3-induced leaf senescence of winter wheat but could enhance the leaf size and photosynthetic function of flag leaves, increase the accumulation of nutrient elements, and lay the foundation for yield by regulating the release rate of nitrogen (N). By regulating the soil environment, SCNF could maintain the diversity and stability of soil bacterial and archaeal communities, but there was no obvious interaction with the soil fungal community. By alleviating the inhibition effects of O3 on N-cycling-related genes (ko00910) of soil microorganisms, SCNF improved the activities of related enzymes and might have great potential in improving soil N retention. The results demonstrated the ability of SCNF to improve leaf photosynthetic function and increase crop yield under O3-polluted conditions in the farmland ecosystem, which may become an effective nitrogen fertilizer management measure to cope with the elevated ambient O3 and achieve sustainable production.


Asunto(s)
Fertilizantes , Nitrógeno , Ozono , Fotosíntesis , Hojas de la Planta , Microbiología del Suelo , Triticum , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Triticum/microbiología , Triticum/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Nitrógeno/metabolismo , Ozono/farmacología , Estrés Fisiológico , Suelo/química , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Bacterias/genética
17.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273416

RESUMEN

To date, the role of green leaf volatiles (GLVs) has been mainly constrained to protecting plants against pests and pathogens. However, increasing evidence suggests that among the stresses that can significantly harm plants, GLVs can also provide significant protection against heat, cold, drought, light, and salinity stress. But while the molecular basis for this protection is still largely unknown, it seems obvious that a common theme in the way GLVs work is that most, if not all, of these stresses are associated with physical damage to the plants, which, in turn, is the major event responsible for the production of GLVs. Here, I summarize the current state of knowledge on GLVs and abiotic stresses and provide a model explaining the multifunctionality of these compounds.


Asunto(s)
Hojas de la Planta , Estrés Fisiológico , Compuestos Orgánicos Volátiles , Hojas de la Planta/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Plantas/metabolismo
18.
PLoS One ; 19(9): e0304628, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39250484

RESUMEN

Adzuki bean, an important legume crop, exhibits poor tolerance to low temperatures. To investigate the effect of exogenous abscisic acid (ABA) on the physiological metabolism and yield resistance of adzuki bean under low-temperature stress, we conducted a potted experiment using Longxiaodou 4 (LXD 4) and Tianjinhong (TJH) as test materials and pre-sprayed with exogenous ABA at flowering stage continuously for 5 days with an average of 12°C and an average of 15°C, respectively. We found that, compared with spraying water, foliar spraying exogenous ABA increased the activities of antioxidants and the content of non-enzymatic antioxidants, effectively inhibited the increase of malondialdehyde (MDA), hydrogen peroxide (H2O2) content, O2-· production rate. Exogenous ABA induced the activation of endogenous protective mechanisms by increasing antioxidant enzymes activities such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as elevated levels of non-enzymatic antioxidants including ascorbic acid (ASA) and glutathione (GSH). Moreover, the yield loss of 5.81%-39.84% caused by chilling stress was alleviated by spraying ABA. In conclusion, foliar spraying exogenous ABA can reduce the negative effects of low-temperature stress on the yield of Adzuki beans, which is essential to ensure stable production of Adzuki beans under low-temperature conditions.


Asunto(s)
Ácido Abscísico , Antioxidantes , Frío , Vigna , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Vigna/efectos de los fármacos , Vigna/metabolismo , Antioxidantes/metabolismo , Malondialdehído/metabolismo , Peróxido de Hidrógeno/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Estrés Fisiológico/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo
19.
Sci Rep ; 14(1): 20744, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39251604

RESUMEN

Silver nanoparticles (AgNPs) have been successfully synthesized using leaf extract of Neem (Azadirachta Indica), Mint (Mentha Piperita), Tulsi (Ocimum Tenuiflorum), Bermuda grass (Cynodon Dactylon) and silver salt. As plant extracts produce best capping material for the stabilization of nanoparticles. AgNPs were characterized by UV-Vis spectroscopy in range of 200-800 nm and transmission electron microscopy TEM, XRD and FTIR. The nanoparticles synthesized were mainly in sizes between 25 and 100 nm. They appeared to be spherical, nanotriangles and irregular in shape. Catalytic application was observed for all the aqueous solution of leaves, quantity taken was 1 ml, 2 ml, 3 ml, 4 ml and 5 ml. Furthermore, prepared Ag nanoparticles are also used for seed germination.


Asunto(s)
Germinación , Tecnología Química Verde , Nanopartículas del Metal , Extractos Vegetales , Semillas , Plata , Plata/química , Nanopartículas del Metal/química , Germinación/efectos de los fármacos , Catálisis , Tecnología Química Verde/métodos , Semillas/crecimiento & desarrollo , Semillas/química , Semillas/efectos de los fármacos , Extractos Vegetales/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Microscopía Electrónica de Transmisión
20.
Sci Rep ; 14(1): 20645, 2024 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232102

RESUMEN

The accumulation of nisin in the fermentation medium can reduce the process's productivity. This research studied the potential of Nymphaea alba leaf powder (NALP) as a hydrophobic biosorbent for efficient in-situ nisin adsorption from the fermentation medium by docking and experimental analysis. Molecular docking analysis showed that di-galloyl ellagic acid, a phytochemical compound found in N. alba, had the highest affinity towards nisin. Enhancements in nisin adsorption were seen following pre-treatment of NAPL with HCl and MgCl2. A logistic growth model was employed to evaluate the growth dynamics of the biosorption capacity, offering valuable insights for process scalability. Furthermore, optimization through Response Surface Methodology elucidated optimal nisin desorption conditions by Liebig's law of the minimum, which posits that the scarcest resource governs production efficiency. Fourier Transform Infrared (FTIR) spectroscopy pinpointed vital functional groups involved in biosorption. Scanning electron microscopy revealed the changing physical characteristics of the biosorbent after exposure to nisin. The findings designate NALP as a feasible adsorbent for nisin removal from the fermentation broth, thus facilitating its application in the purification of other biotechnological products based on growth and production optimization principles.


Asunto(s)
Fermentación , Simulación del Acoplamiento Molecular , Nisina , Hojas de la Planta , Nisina/química , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Adsorción , Polvos , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA