Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.121
Filtrar
1.
Rev. biol. trop ; 72(1): e55957, ene.-dic. 2024. tab, graf
Artículo en Español | SaludCR, LILACS | ID: biblio-1559321

RESUMEN

Resumen Introducción: Los vertidos de líquidos inflamables pueden producir accidentes graves, principalmente en plantas industriales y en carretera. Para prevenir la dispersión de derrames, se utilizan diversas formas de recolecta, como la absorción con sólidos porosos. Residuos agroindustriales pueden ser aprovechados como materiales sorbentes de líquidos inflamables. Objetivo: Determinar la capacidad de absorción de las biomasas residuales del pedúnculo de la palma aceitera (Elaeis guineensis) y del endocarpio del fruto de coyol (Acrocomia sp.) para cuatro líquidos orgánicos inflamables. Métodos: Las biomasas residuales de E. guineensis y de Acrocomia sp. se evaluaron como sorbentes para combustibles derramados (diésel, queroseno de aviación, queroseno comercial y gasolina). Se midió la cantidad de líquido absorbida por las biomasas a 24 ºC durante una semana, y su cinética de desorción a 50 ºC, usando balanzas de secado. Resultados: La propiedad sorbente del material de Acrocomia sp. no fue satisfactoria, comparada con el pedúnculo de E. guineensis, debido a diferencias en arquitectura residual del material orgánico. Esta última biomasa muestra una capacidad de absorción para los combustibles de 2.4 ± 0.2 cm3 g-1 a 24 ºC. La diatomita absorbe mayor cantidad de los combustibles estudiados, pero la difusión de estos fluidos a 50 ºC por la matriz mineral es solo 0.26 ± 0.09 veces lo observado para el material de E. guineensis, como resultado del mayor grado de tortuosidad de los poros de la diatomita. Conclusiones: El pedúnculo de palma aceitera (E. guineensis) mostró un adecuado potencial desempeño para la aplicación pasiva en la mitigación de los riesgos de incendio, con respecto a la diatomita. El endocarpio del fruto de Acrocomia sp. no resultó útil para esta operación de recuperación.


Abstract Introduction: Spills of flammable liquids can lead to serious accidents, mainly in industrial plants and on roads. To prevent the spread of spills, various forms of collection are used, such as absorption with porous solids. Agroindustrial waste can be used as sorbent materials for flammable liquids. Objective: To determine the sorption capacity of the residual empty-fruit bunch of oil-palm (Elaeis guineensis) and the macaw palm (Acrocomia sp.) nutshell for four organic flammable liquids. Methods: The residual biomasses of E. guineensis and Acrocomia sp. were assessed as sorbents for spilled fuels (diesel, jet fuel, commercial kerosene, and gasoline). Volumetric measurement of liquid-fuel absorption at 24 ºC was taken during a week. Desorption was measured at 50 ºC as the drying kinetics, by using moisture scales. Results: The sorption capacity of the Acrocomia sp. material was not satisfactory, compared to the E. guineensis residual material, due to differences in the residual architecture of the organic material. This last can absorb 2.4 ± 0.2 cm3 g-1 at 24 ºC, during a one-week period. Diatomite absorbs greater quantities of the organic liquids but, the fluids diffusion at 50 ºC is 0.26 ± 0.09 times more slowly in the mineral matrix, because of the greater pore tortuosity in this mineral matrix. Conclusions: The oil-palm empty fruit bunch of E. guineensis, showed lesser but adequate performance than the sorbing behavior for fire hazard mitigation of diatomite. The nutshell of macaw palm (Acrocomia sp.) did not prove to be useful for this recovery operation.


Asunto(s)
Aceite de Palma/análisis , Sistemas de Extinción de Incendios , Aceites de Plantas/análisis , Queroseno
2.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 58-65, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39097895

RESUMEN

This investigation aimed to explore the antioxidant, anti-inflammatory effects of Cade oil and its efficacy within a Wistar allergic asthma model. The antioxidant activity was assessed through various in vitro tests using chain-breaking antioxidant effects (radical scavenging and reducing abilities assays).  In vivo experiments involved Wistar rats categorized into four groups: negative control group, Ovalbumin-sensitised/challenged group, Cade oil-treated group, and Ovalbumin-sensitised/challenged Cade oil-treated group. These experiments aimed to evaluate oxidative stress parameters in the lungs and erythrocytes. The results indicated that the Cade oil exhibited significant antioxidant capabilities, evidenced by its radical scavenging activity against DPPH, ABTS, and Galvinoxyl radicals, with IC50 values ranging from 21.92 to 24.44 µg/mL. Besides, the reducing abilities methods showed A0,5 value ranging from 11.51 to 30.40  µg/mL for reducing power, Cupric ion reducing antioxidant capacity, and O-phenanthroline assays. Additionally, the IC50 value for ß-carotene scavenging was found to be (8.2 ± 0.25 µg/ml). Analysis revealed high levels of polyphenols and flavonoids in Cade oil, indicating rich polyphenol (275.21 ± 3.14 mg GAE/g DW) and flavonoid (28.23 ± 1.91 µg QE/mg) content. In vivo findings highlighted Cade oil's efficacy in reducing inflammatory cell recruitment, enhancing antioxidant status, reducing lipid peroxidation, and improving histopathological alterations within the allergic asthma model. These results demonstrated that Cade oil has a potent antioxidant, anti-inflammatory, and anti-asthmatic properties, suggesting its potential therapeutic application in asthma treatment.


Asunto(s)
Antiasmáticos , Antiinflamatorios , Antioxidantes , Asma , Modelos Animales de Enfermedad , Juniperus , Ratas Wistar , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Antiasmáticos/química , Juniperus/química , Ratas , Aceites de Plantas/farmacología , Aceites de Plantas/química , Aceites de Plantas/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Masculino , Ovalbúmina , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo
3.
Se Pu ; 42(8): 731-739, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39086241

RESUMEN

Edible plant oils are a key component of the daily human diet, and the quality and safety of plant oils are related to human health. Perfluorinated and polyfluoroalkyl substances (PFASs) are pollutants that can contaminate plant oil through the processing of raw materials or exposure to materials containing these substances. Thus, establishing a sensitive and accurate analytical method for the determination of PFASs is critical for ensuring the safety of plant oils. In this study, a method based on acetonitrile extraction and solid phase extraction purification combined with ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-MS/MS) was developed for the simultaneous determination of 21 PFASs, including perfluorocarboxylic acids, perfluoroalkyl sulfonic acids, and fluorotelomer sulfonic acids, in edible plant oils. The chromatographic conditions and MS parameters were optimized, and the influences of the extraction solvents and purification method were systematically studied. Plant oil samples were directly extracted with acetonitrile and purified using a weak anion-exchange (WAX) column. The 21 target PFASs were separated on a reversed-phase C18 chromatographic column and detected using a triple quadrupole mass spectrometer with an electrospray ionization source. The mass spectrometer was operated in negative-ion mode. The target compounds were analyzed in multiple reaction monitoring (MRM) mode and quantified using an internal standard method. The results demonstrated that the severe interference observed during the detection of PFASs in the co-extracted substances was completely eliminated after the extraction mixture was purified using a WAX column. The 21 target PFASs showed good linearity in their corresponding ranges, with correlation coefficients greater than 0.995. The limits of detection (LODs) and limits of quantification (LOQs) of the method were in the range of 0.004-0.015 and 0.015-0.050 µg/kg, respectively. The recoveries ranged from 95.6% to 115.8%, with relative standard deviations (RSDs) in the range of 0.3%-10.9% (n=9). The established method is characterized by simple sample pretreatment, good sensitivity, high immunity to interferences, and good stability, rendering it suitable for the rapid analysis and accurate determination of typical PFASs in edible plant oils.


Asunto(s)
Fluorocarburos , Contaminación de Alimentos , Aceites de Plantas , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Fluorocarburos/análisis , Espectrometría de Masas en Tándem/métodos , Contaminación de Alimentos/análisis , Aceites de Plantas/química , Aceites de Plantas/análisis
4.
BMC Complement Med Ther ; 24(1): 262, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987702

RESUMEN

BACKGROUND: Bitter orange (Citrus aurantium) is a fruiting shrub native to tropical and subtropical countries around the world and cultivated in many regions due to its nutraceutical value. The current study investigated the metabolic profiling and enzyme inhibitory activities of volatile constituents derived from the C. aurantium peel cultivated in Egypt by three different extraction methods. METHODS: The volatile chemical constituents of the peel of C. aurantium were isolated using three methods; steam distillation (SD), hydrodistillation (HD), and microwave-assisted hydrodistillation (MAHD), and then were investigated by GC-MS. The antioxidant potential was evaluated by different assays such as DPPH, ABTS, FRAP, CUPRAC, and phosphomolybdenum and metal chelating potential. Moreover, the effect of enzyme inhibition of the three essential oils was tested using BChE, AChE, tyrosinase, glucosidase, as well as amylase assays. RESULTS: A total of six compounds were detected by GC/MS analysis. The major constituent obtained by all three extraction methods was limonene (98.86% by SD, 98.68% by HD, and 99.23% by MAHD). Differences in the composition of the compounds of the three oils were observed. The hydrodistillation technique has yielded the highest number of compounds, notably two oxygenated monoterpenes: linalool (0.12%) and α-terpineol acetate (0.1%). CONCLUSION: In our study differences in the extraction methods of C. aurantium peel oils resulted in differences in the oils' chemical composition. Citrus essential oils and their components showed potential antioxidant, anticholinesterase, antimelanogenesis, and antidiabetic activities. The presence of linalool and α-terpineol acetate may explain the superior activity observed for the oil isolated by HD in both radical scavenging and AChE inhibition assays, as well as in the enzyme inhibition assays.


Asunto(s)
Antioxidantes , Frutas , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Frutas/química , Antioxidantes/farmacología , Antioxidantes/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Cromatografía de Gases y Espectrometría de Masas , Citrus aurantiifolia/química , Citrus/química , Aceites de Plantas/farmacología , Aceites de Plantas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Egipto , Monoterpenos/farmacología , Monoterpenos Acíclicos/farmacología , Limoneno/farmacología
5.
Br Poult Sci ; 65(4): 494-501, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38994872

RESUMEN

1. The extensive use of antimicrobials in poultry production may contribute to the emergence of resistant bacteria. This study was conducted to determine the prevalence and resistance of different E. coli strains isolated from raw chicken meat and to investigate the possibility to use Lebanese native oregano essential oils as alternatives.2. In total, 250 chickens from Lebanese markets were examined for the presence of E. coli. Isolates were then screened for susceptibility using 19 antibiotics and two essential oils extracted from oregano plants.3. Of the 250 chickens tested, 80% were contaminated with E. coli. Main resistance was seen against amoxycillin, ampicillin, penicillin, tetracycline, tylosin, streptomycin and erythromycin. The highest rate of sensitivity was found in 86.1% of strains to Amoxycillin/Clavulanic acid, 80.09% to Tilmicosin. Both essential oils from Origanum syriacum (98%) and O. ehrenbergii (97.3%) showed promising potential in inhibiting the growth of the tested bacteria. Oil from O. syriacum exhibited superior efficacy against 200 E. coli strains, inhibiting 46.1% at 200 mg/l and all at 400 mg/l, while O. ehrenbergii oil showed slightly lower inhibition, affecting 41.6% at 200 mg/l and all at 400 mg/l.


Asunto(s)
Antibacterianos , Pollos , Escherichia coli , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Origanum , Animales , Pollos/microbiología , Escherichia coli/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Origanum/química , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana/veterinaria , Inocuidad de los Alimentos , Farmacorresistencia Bacteriana , Líbano/epidemiología , Prevalencia , Carne/microbiología , Carne/análisis , Microbiología de Alimentos , Aceites de Plantas/farmacología
6.
J Agric Food Chem ; 72(28): 15755-15764, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38954802

RESUMEN

Squalene has been proven to possess various bioactive functions that are widely present in vegetable oils. A more comprehensive understanding of the reaction behavior of squalene under oxidative conditions was achieved by studying its antioxidant capacity and thermal degradation products. The total singlet oxygen quenching rate constant (kr + kq) of squalene was 3.8 × 107 M-1 s-1, and both physical and chemical quenching mechanisms equally contribute to the overall singlet oxygen quenching. Fourteen degradation products of squalene were identified at 180 °C by using gas chromatography-mass spectrometry (GC-MS). Combining with DFT calculations, the thermal degradation pathway of squalene was proposed: the aldehydes, ketones, and alcohols, and epoxy compounds were formed by the homolytic cleavage of squalene hydroperoxides to form alkoxy radicals, followed by ß-scission of the alkoxyl radicals at adjacent C-C bonds or intramolecular cyclization.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Calor , Oxidación-Reducción , Oxígeno Singlete , Escualeno , Escualeno/química , Oxígeno Singlete/química , Cinética , Antioxidantes/química , Aceites de Plantas/química , Estructura Molecular
7.
Molecules ; 29(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38998934

RESUMEN

Oral malodor still constitutes a major challenge worldwide. A strong effort is invested in eliminating volatile sulfur compound-producing oral bacteria through organic natural products such as essential oils. Fusobacterium nucleatum is a known volatile sulfur compound-producing bacteria that inspires oral malodor. The aim of the present study was to test the effect of lavender essential oil on the bacterium's ability to produce volatile sulfide compounds, the principal components of oral malodor. Lavender (Lavandula angustifolia) essential oil was extracted by hydrodistillation and analyzed using GC-MS. The minimal inhibitory concentration (MIC) of lavender essential oil on Fusobacterium nucleatum was determined in a previous trial. Fusobacterium nucleatum was incubated anaerobically in the presence of sub-MIC, MIC, and above MIC concentrations of lavender essential oil, as well as saline and chlorhexidine as negative and positive controls, respectively. Following incubation, volatile sulfur compound levels were measured using GC (Oralchroma), and bacterial cell membrane damage was studied using fluorescence microscopy. Chemical analysis of lavender essential oil yielded five main components, with camphor being the most abundant, accounting for nearly one-third of the total lavender essential oil volume. The MIC (4 µL/mL) of lavender essential oil reduced volatile sulfur compound secretion at a statistically significant level compared to the control (saline). Furthermore, the level of volatile sulfur compound production attributed to 1 MIC of lavender essential oil was in the range of the positive control chlorhexidine with no significant difference. When examining bacterial membrane damage, 2 MIC of lavender essential oil (i.e., 8 µL/mL) demonstrated the same, showing antibacterial membrane damage values comparative to chlorhexidine. Since lavender essential oil was found to be highly effective in hindering volatile sulfur compound production by Fusobacterium nucleatum through the induction of bacterial cell membrane damage, the results suggest that lavender essential oil may be a suitable alternative to conventional chemical-based anti-malodor agents.


Asunto(s)
Fusobacterium nucleatum , Halitosis , Lavandula , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Fusobacterium nucleatum/efectos de los fármacos , Fusobacterium nucleatum/metabolismo , Halitosis/microbiología , Halitosis/tratamiento farmacológico , Halitosis/metabolismo , Lavandula/química , Sulfuros/farmacología , Sulfuros/química , Humanos , Aceites de Plantas/farmacología , Aceites de Plantas/química , Cromatografía de Gases y Espectrometría de Masas , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/química , Antibacterianos/farmacología , Antibacterianos/química
8.
Molecules ; 29(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38999144

RESUMEN

This study assessed the nutritional profile of camellia oil through its fatty acid composition, highlighting its high oleic acid content (81.4%), followed by linoleic (7.99%) and palmitic acids (7.74%), demonstrating its excellence as an edible oil source. The impact of beeswax (BW) and glycerol monolaurate (GML) on camellia oil oleogels was investigated, revealing that increasing BW or GML concentrations enhanced hardness and springiness, with 10% BW oleogel exhibiting the highest hardness and springiness. FTIR results suggested that the structure of the oleogels was formed by interactions between molecules without altering the chemical composition. In biscuits, 10% BW oleogel provided superior crispness, expansion ratio, texture, and taste, whereas GML imparted a distinct odor. In sausages, no significant differences were observed in color, water retention, and pH between the control and replacement groups; however, the BW group scored higher than the GML group in the sensory evaluation. The findings suggest that the BW oleogel is an effective fat substitute in biscuits and sausages, promoting the application of camellia oil in food products.


Asunto(s)
Camellia , Lauratos , Monoglicéridos , Compuestos Orgánicos , Aceites de Plantas , Ceras , Camellia/química , Ceras/química , Aceites de Plantas/química , Lauratos/química , Compuestos Orgánicos/química , Compuestos Orgánicos/análisis , Monoglicéridos/química , Productos de la Carne/análisis , Gusto , Ácidos Grasos/química , Ácidos Grasos/análisis
9.
Nutrients ; 16(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38999771

RESUMEN

The study aimed to evaluate the antithrombotic action of Acrocomia aculeata pulp oil (AAPO) in natura, in an in vitro experimental model. AAPO was obtained by solvent extraction, and its chemical characterization was performed by gas chromatography coupled to a mass spectrometer (GC-MS). In vitro toxicity was evaluated with the Trypan Blue exclusion test and in vivo by the Galleria mellonella model. ADP/epinephrine-induced platelet aggregation after treatment with AAPO (50, 100, 200, 400, and 800 µg/mL) was evaluated by turbidimetry, and coagulation was determined by prothrombin activity time (PT) and activated partial thromboplastin time (aPTT). Platelet activation was measured by expression of P-selectin on the platelet surface by flow cytometry and intraplatelet content of reactive oxygen species (ROS) by fluorimetry. The results showed that AAPO has as major components such as oleic acid, palmitic acid, lauric acid, caprylic acid, and squalene. AAPO showed no toxicity in vitro or in vivo. Platelet aggregation decreased against agonists using treatment with different concentrations of AAPO. Oil did not interfere in PT and aPTT. Moreover, it expressively decreased ROS-induced platelet activation and P-selectin expression. Therefore, AAPO showed antiplatelet action since it decreased platelet activation verified by the decrease in P-selectin expression as well as in ROS production.


Asunto(s)
Fibrinolíticos , Selectina-P , Aceites de Plantas , Agregación Plaquetaria , Especies Reactivas de Oxígeno , Animales , Agregación Plaquetaria/efectos de los fármacos , Selectina-P/metabolismo , Humanos , Aceites de Plantas/farmacología , Aceites de Plantas/química , Especies Reactivas de Oxígeno/metabolismo , Fibrinolíticos/farmacología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Coagulación Sanguínea/efectos de los fármacos , Activación Plaquetaria/efectos de los fármacos
10.
Ann Afr Med ; 23(3): 391-399, 2024 Jul 01.
Artículo en Francés, Inglés | MEDLINE | ID: mdl-39034564

RESUMEN

OBJECTIVES: This study investigated the anti-cryptococcal potential of certain essential oils (EOs)/compounds alone and in combination with fluconazole. MATERIALS AND METHODS: We investigated the antifungal activity of oils of Cinnamomum verum, Cymbopogon citratus, Cymbopogon martini, and Syzygium aromaticum, and their major active ingredients cinnamaldehyde, citral, eugenol, and geraniol against clinical and standard strains of Cryptococcus neoformans (CN). Disc diffusion, broth microdilution, checkerboard methods, and transmission electron microscopy were employed to determine growth inhibition, synergistic interaction, and mechanism of action of test compounds. RESULTS: EOs/compounds showed pronounced antifungal efficacy against azole-resistant CN in the order of cinnamaldehyde > eugenol > S. aromaticum > C. verum > citral > C. citratus > geraniol ≥ C. martini, each exhibiting zone of inhibition >15 mm. These oils/compounds were highly cidal compared to fluconazole. Eugenol and cinnamaldehyde showed the strongest synergy with fluconazole against CN by lowering their MICs up to 32-fold. Transmission electron microscopy indicated damage of the fungal cell wall, cell membrane, and other endomembranous organelles. CONCLUSION: Test oils and their active compounds exhibited potential anti-cryptococcus activity against the azole-resistant strains of CN. Moreover, eugenol and cinnamaldehyde significantly potentiated the anti-cryptococcal activity of fluconazole. It is suggested that multiple sites of action from oils/compounds could turn static fluconazole into a cidal drug combination in combating cryptococcosis.


RésuméObjectifs: Cette étude a étudié le potentiel anti-cryptocoque de certaines huiles essentielles (HE)/composés seuls et en combinaison avec fluconazole. Matériels et méthodes: Nous avons étudié l'activité antifongique des huiles de Cinnamomum verum, Cymbopogon citratus, Cymbopogon martini et Syzygium spiceum , et leurs principaux ingrédients actifs, le cinnamaldéhyde, le citral, l'eugénol et le géraniol, contre les normes cliniques et standards. souches de Cryptococcus neoformans (CN). Diffusion sur disque, microdilution en bouillon, méthodes en damier et microscopie électronique à transmission ont été utilisés pour déterminer l'inhibition de la croissance, l'interaction synergique et le mécanisme d'action des composés testés. Résultats: HE/composés a montré une efficacité antifongique prononcée contre les CN résistantes aux azoles dans l'ordre suivant: cinnamaldéhyde > eugénol > S. spiceum > C. verum > citral > C. citratus > géraniol ≥ C. martini , chacun présentant une zone d'inhibition > 15 mm. Ces huiles/composés étaient hautement cides par rapport au fluconazole. L'eugénol et le cinnamaldéhyde ont montré la synergie la plus forte avec le fluconazole contre le CN en abaissant leurs CMI jusqu'à 32 fois. La microscopie électronique à transmission a indiqué des dommages à la paroi cellulaire fongique, à la membrane cellulaire et à d'autres organites endomembranaires. Conclusion: Les huiles testées et leurs composés actifs ont montré une activité anti-cryptocoque potentielle contre les souches de CN résistantes aux azoles. De plus, l'eugénol et le cinnamaldéhyde ont significativement potentialisé l'activité anticryptococcique du fluconazole. Il est suggéré que plusieurs Les sites d'action des huiles/composés pourraient transformer le fluconazole statique en une combinaison médicamenteuse cide pour lutter contre la cryptococcose.


Asunto(s)
Acroleína , Antifúngicos , Cryptococcus neoformans , Cymbopogon , Farmacorresistencia Fúngica , Sinergismo Farmacológico , Eugenol , Fluconazol , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/ultraestructura , Fluconazol/farmacología , Antifúngicos/farmacología , Aceites Volátiles/farmacología , Cymbopogon/química , Farmacorresistencia Fúngica/efectos de los fármacos , Acroleína/análogos & derivados , Acroleína/farmacología , Eugenol/farmacología , Humanos , Monoterpenos Acíclicos/farmacología , Syzygium/química , Cinnamomum zeylanicum/química , Terpenos/farmacología , Monoterpenos/farmacología , Microscopía Electrónica de Transmisión , Aceites de Plantas/farmacología , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología
11.
Bioresour Technol ; 406: 131059, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950832

RESUMEN

Bio-oil derived from biomass fast pyrolysis can be upgraded to gasoline and diesel alternatives by catalytic hydrodeoxygenation (HDO). Here, the novel nitrogen-doped carbon-alumina hybrid supported cobalt (Co/NCAn, n = 1, 2.5, 5) catalyst is established by a coagulation bath technique. The optimized Co/NCA2.5 catalyst presented 100 % conversion of guaiacol, high selectivity to cyclohexane (93.6 %), and extremely high deoxygenation degree (97.3 %), respectively. Therein, the formation of cyclohexanol was facilitated by stronger binding energy and greater charge transfer between Co and NC which was unraveled by density functional theory calculations. In addition, the appropriate amount of Lewis acid sites enhanced the cleavage of the C-O bond in cyclohexanol, finally resulting in a remarkable selectivity for cyclohexane. Finally, the Co/NCA2.5 catalyst also exhibited excellent selectivity (93.1 %) for high heating value hydrocarbon fuel in crude bio-oil HDO. This work provides a theoretical basis on N dopants collaborating alumina hybrid catalysts for efficient HDO reaction.


Asunto(s)
Óxido de Aluminio , Biocombustibles , Carbono , Cobalto , Nitrógeno , Cobalto/química , Catálisis , Óxido de Aluminio/química , Nitrógeno/química , Carbono/química , Ciclohexanos/química , Aceites de Plantas , Polifenoles
12.
J Texture Stud ; 55(4): e12855, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992897

RESUMEN

The effects of oil type, emulsifier type, and emulsion particle size on the texture, gel strength, and rheological properties of SPI emulsion-filled gel (SPI-FG) and TFSP emulsion-filled gel (TFSP-FG) were investigated. Using soybean protein isolate or sodium caseinate as emulsifiers, emulsions with cocoa butter replacer (CBR), palm oil (PO), virgin coconut oil (VCO), and canola oil (CO) as oil phases were prepared. These emulsions were filled into SPI and TFSP gel substrates to prepare emulsion-filled gels. Results that the hardness and gel strength of both gels increased with increasing emulsion content when CBR was used as the emulsion oil phase. However, when the other three liquid oils were used as the oil phase, the hardness and gel strength of TFSP-FG decreased with the increasing of emulsion content, but those of SPI-FG increased when SPI was used as emulsifier. Additionally, the hardness and gel strength of both TFSP-FG and SPI-FG increased with the decreasing of mean particle size of emulsions. Rheological measurements were consistent with textural measurements and found that compared with SC, TFSP-FG, and SPI-FG showed higher G' values when SPI was used as emulsifier. Confocal laser scanning microscopy (CLSM) observation showed that the distribution and stability of emulsion droplets in TFSP-FG and SPI-FG were influenced by the oil type, emulsifier type and emulsion particle size. SPI-stabilized emulsion behaved as active fillers in SPI-FG reinforcing the gel matrix; however, the gel matrix of TFSP-FG still had many void pores when SPI-stabilized emulsion was involved. In conclusion, compared to SPI-FG, the emulsion filler effect that could reinforce gel networks became weaker in TFSP-FG.


Asunto(s)
Emulsionantes , Emulsiones , Geles , Tamaño de la Partícula , Reología , Proteínas de Soja , Proteínas de Soja/química , Emulsiones/química , Emulsionantes/química , Geles/química , Aceites de Plantas/química , Aceite de Palma/química , Aceite de Brassica napus/química , Aceite de Coco/química , Dureza , Caseínas/química , Grasas de la Dieta
13.
PLoS One ; 19(7): e0301558, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985711

RESUMEN

Extraction is the first and most important step in obtaining the effective ingredients of medicinal plants. Mentha longifolia (L.) L. is of considerable economic importance as a natural raw material for the food and pharmaceutical industries. Since the effect of different extraction methods (traditional and modern methods) on the quantity, quality and antimicrobial activity of the essential oil of this plant has not been done simultaneously; the present study was designed for the first time with the aim of identifying the best extraction method in terms of these features. For this purpose, extracting the essential oil of M. longifolia with the methods of hydrodistillation with Clevenger device (HDC), steam distillation with Kaiser device (SDK), simultaneous distillation with a solvent (SDE), hydrodistillation with microwave device (HDM), pretreatment of ultrasonic waves and Clevenger (U+HDC) and supercritical fluid (SF) were performed. Chemical compounds were identified by gas chromatography coupled with mass spectrometer (GC-MS). Antimicrobial activity of essential oils against various clinical microbial strains was evaluated by agar diffusion method and determination of the minimum inhibitory concentration and minimum bactericidal concentration (MIC and MBC). The results showed that the highest and lowest yields of M. longifolia leaf essential oil belonged to HDC (1.6083%) and HDM (0.3416%). The highest number of compounds belonged to SDK essential oil and was equal to 72 compounds (with a relative percentage of 87.13%) and the lowest number of compounds was related to the SF essential oil sample (7 compounds with a relative percentage of 100%). Piperitenone (25.2-41.38%), piperitenone oxide (22.02-0%), pulegone (10.81-0%) and 1,8-cineole (5-35.0%) are the dominant and main components of M. longifolia essential oil were subjected to different extraction methods. Antimicrobial activity results showed that the lowest MIC value belonged to essential oils extracted by HDM, SDK, SDE and U+HDC methods with a value of 1000 µg/mL was observed against Gram-negative bacteria Shigella dysenteriae, which was 5 times weaker than rifampin and 7 times weaker than gentamicin. Therefore, it can be concluded that in terms of efficiency of the HDC method, in terms of the percentage of compounds of the HDM method, and in terms of microbial activity, the SDK, HDM and U+HDC methods performed better.


Asunto(s)
Antibacterianos , Mentha , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Mentha/química , Antibacterianos/farmacología , Cromatografía de Gases y Espectrometría de Masas , Destilación/métodos , Bacterias/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cromatografía con Fluido Supercrítico/métodos , Aceites de Plantas/farmacología , Aceites de Plantas/química
14.
Waste Manag ; 186: 280-292, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38954920

RESUMEN

This work outlines the first microwave (MW)-assisted protocol for the production of biofuel precursor furfural (FF) from the raw agricultural waste almond hull (AH), olive stone (OS), and the winemaking-derived grape stalk (GS), grape marc (GM) and exhausted grape marc (EGM) through a one-pot synthesis process. To enhance the overall yield, a catalytic process was firstly developed from xylose, major constituent of hemicellulose present in lignocellulosic biomass. This method afforded FF with 100 % selectivity, yielding over 85 % in isolated product when using H2SO4, as opposed to a 37 % yield with AlCl3·6H2O, at 150 °C in only 10 min. For both catalysts, the developed methodology was further validated, proving adaptable and efficient in producing the targeted FF from the aforementioned lignocellulosic raw materials. More specifically, the employment of AlCl3·6H2O resulted in the highest selectivity (up to 89 % from GM) and FF yield (42 % and 39 % molar from OS and AH, respectively), maintaining notable selectivity for the latter (61 and 48 % from AH and OS). At this regard, and considering the environmental factor of sustainability, it is important to point out the role of AlCl3·6H2O in contrast to H2SO4, thus mitigating detrimental substances. This study provides an important management of agricultural waste through sustainable practises for the development of potential bio-based chemicals, aligning with Green Chemistry and process intensification principles.


Asunto(s)
Furaldehído , Microondas , Prunus dulcis , Vino , Furaldehído/análogos & derivados , Vino/análisis , Prunus dulcis/química , Biocombustibles/análisis , Vitis , Lignina/química , Aceites de Plantas/química , Catálisis , Cloruro de Aluminio , Olea/química
15.
An Acad Bras Cienc ; 96(3): e20230435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985028

RESUMEN

This study evaluated the oil content obtained from andiroba seeds by pressurized n-propane at different conditions of temperature (25, 35, and 45 °C) and pressure (40, 60, and 80 bar), and conventional extraction technique using n-hexane as the solvent. Kinetic extraction curves were fitted using Sovová's mathematical model. The chemical characterization of the oil was reported as well as the protein content in the extraction by-product. Pressurized extractions conducted at 25 °C provided the highest oil recovery (~45 wt%) from the seeds. The increase in pressure at 25 ºC favored obtaining oil with higher Stigmasterol contents, however, the Squalene content was higher in the oil obtained at 40 bar. The oils with the highest concentration phenolic compounds and antioxidant activity were obtained at 80 bar. Extraction with n-propane provided oils with higher levels of phenolic compounds, however, with antioxidant activity similar to conventional extraction. For all evaluated extractions, the product showed a predominance of oleic and palmitic acids, with similar values of oxidative stability. The extraction of the by-product with the highest soluble protein content was obtained under mild processing conditions (25 °C and 40 bar) with n-propane.


Asunto(s)
Antioxidantes , Aceites de Plantas , Semillas , Semillas/química , Antioxidantes/análisis , Antioxidantes/aislamiento & purificación , Aceites de Plantas/química , Temperatura , Presión , Arecaceae/química , Hexanos/química
16.
Compr Rev Food Sci Food Saf ; 23(4): e13405, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39030791

RESUMEN

Frying is a popular cooking method that produces delicious and crispy foods but can also lead to oil degradation and the formation of health-detrimental compounds in the dishes. Chemical reactions such as oxidation, hydrolysis, and polymerization contribute to these changes. In this context, emerging technologies like ultrasound-assisted frying (USF) and microwave (MW)-assisted frying show promise in enhancing the quality and stability of frying oils and fried foods. This review examines the impact of these innovative technologies, delving into the principles of these processes, their influence on the chemical composition of oils, and their implications for the overall quality of fried food products with a focus on reducing oil degradation and enhancing the nutritional and sensory properties of the fried food. Additionally, the article initially addresses the various reactions occurring in oils during the frying process and their influencing factors. The advantages and challenges of USF and MW-assisted frying are also highlighted in comparison to traditional frying methods, demonstrating how these innovative techniques have the potential to improve the quality and stability of oils and fried foods.


Asunto(s)
Culinaria , Microondas , Culinaria/métodos , Calor , Ultrasonido , Calidad de los Alimentos , Ondas Ultrasónicas , Aceites de Plantas/química
17.
Anim Sci J ; 95(1): e13981, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39030799

RESUMEN

The current study evaluated the effects of parsley essential oil on broiler growth performance, carcass features, liver and kidney functions, immunity and antioxidant activity, and lipid profile. A total of 160 unsexed 7-day broiler chicks (Cobb500) were distributed into five groups; each group contained five replicates with eight birds each. The treatments were (1) basal diet (no additive, T1), (2) basal diet + 0.5 mL parsley essential oil/kg (T2), (3) basal diet + 1 mL parsley essential oil/kg (T3), (4) basal diet + 1.5 mL parsley essential oil/kg (T4), and (5) basal diet + 2 mL parsley essential oil/kg (T5). According to GC-MS analysis, parsley oil contains D-limonene, hexadecanoic acid, α-cyclocitral, globulol, α-pinene, myristicin, cryophyllene, bergapten, α-chamigrene, etc. The current results indicated that the most abundant molecules in parsley oil were D-limonene (18.82%), oleic acid (14.52%), α-cyclocitral (11.75%), globulol (11.24%), α-guaiene (7.34%), apiol (5.45%), and hexadecanoic acid (4.69%). Adding parsley essential oil to the broiler diet quadratically increased body weight (BW) during 1-3 weeks of age. The T5 group recorded the highest value (869.37 g) of BW in comparison to other treatments and the control group. The cholesterol, triglyceride, low-density lipoprotein (LDL) cholesterol, and total immunoglobulin, including immunoglobulin G (IgG) and immunoglobulin M (IgM) levels in the birds fed parsley essential oil were not affected. The T3 group recorded the highest value (159 ng/mL) of superoxide dismutase (SOD) and the lowest value (2.01 ng/mL) of malondialdehyde (MDA) when compared to the control and other treatment. In conclusion, we recommend using parsley oil at levels of 1 mL/kg diet of broiler chicks.


Asunto(s)
Alimentación Animal , Antioxidantes , Pollos , Dieta , Riñón , Hígado , Aceites Volátiles , Petroselinum , Animales , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Pollos/inmunología , Pollos/fisiología , Antioxidantes/metabolismo , Alimentación Animal/análisis , Aceites Volátiles/administración & dosificación , Aceites Volátiles/farmacología , Hígado/metabolismo , Dieta/veterinaria , Riñón/metabolismo , Petroselinum/química , Aceites de Plantas/farmacología , Aceites de Plantas/administración & dosificación , Lípidos/sangre , Lípidos/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Aditivos Alimentarios , Suplementos Dietéticos , Masculino
18.
Phytopathology ; 114(7): 1502-1514, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023506

RESUMEN

Late blight, caused by the notorious pathogen Phytophthora infestans, poses a significant threat to potato (Solanum tuberosum) crops worldwide, impacting their quality as well as yield. Here, we aimed to investigate the potential use of cinnamaldehyde, carvacrol, and eugenol as control agents against P. infestans and to elucidate their underlying mechanisms of action. To determine the pathogen-inhibiting concentrations of these three plant essential oils (PEOs), a comprehensive evaluation of their effects using gradient dilution, mycelial growth rate, and spore germination methods was carried out. Cinnamaldehyde, carvacrol, and eugenol were capable of significantly inhibiting P. infestans by hindering its mycelial radial growth, zoospore release, and sporangium germination; the median effective inhibitory concentration of the three PEOs was 23.87, 8.66, and 89.65 µl/liter, respectively. Scanning electron microscopy revealed that PEOs caused the irreversible deformation of P. infestans, resulting in hyphal shrinkage, distortion, and breakage. Moreover, propidium iodide staining and extracellular conductivity measurements demonstrated that all three PEOs significantly impaired the integrity and permeability of the pathogen's cell membrane in a time- and dose-dependent manner. In vivo experiments confirmed the dose-dependent efficacy of PEOs in reducing the lesion diameter of potato late blight. Altogether, these findings provide valuable insight into the antifungal mechanisms of PEOs vis-à-vis late blight-causing P. infestans. By utilizing the inherent capabilities of these natural compounds, we could effectively limit the harmful impacts of late blight on potato crops, thereby enhancing agricultural practices and ensuring the resilience of global potato food production.


Asunto(s)
Cimenos , Eugenol , Aceites Volátiles , Phytophthora infestans , Enfermedades de las Plantas , Solanum tuberosum , Phytophthora infestans/efectos de los fármacos , Phytophthora infestans/fisiología , Solanum tuberosum/microbiología , Aceites Volátiles/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Eugenol/farmacología , Cimenos/farmacología , Monoterpenos/farmacología , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Aceites de Plantas/farmacología , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Esporas/efectos de los fármacos , Esporas/fisiología , Acroleína/análogos & derivados
19.
PLoS One ; 19(7): e0307452, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39024374

RESUMEN

Modern production of vegetable oils has reached impressive levels, and the ever-growing quantities of waste cooking oil (WCO) provide a local source of raw materials for innovative materials. The WCO composite production process involves a series of reactions, including polymerisation, esterification, and transesterification, which lead to the hardening of composite materials. In light of the growing problem of bacterial and fungal diseases, materials with high strength properties and biocidal properties are being sought. Fungal infections of the skin are a widespread problem, and the number of cases is steadily increasing. This article presents a study of the antibacterial potential of WCO-based composites enriched with hops or sorrel root in the context of their application in the construction industry. The compressive and flexural strength of the oil composites, their absorbability and hydrophobicity, and their effects on Gram-positive (S. aureus and S. epidermidis) and Gram-negative (E. coli and P. aeruginosa) bacteria and fungi (A. niger, P. anomala) were investigated. Maximum split tensile strength (4.3 MPa) and flexural strength (5.1 MPa) were recorded for oil-hop composites. Oil composites enriched with curly sorrel and hops showed antibacterial activity against S. aureus at 27% and 25%. High biocidal activity (up to 70%) was recorded against E. coli and against S. epidermidis (up to 99%) due to the action of composites with curly sorrel. The antifungal activities of composites with hops was 15% and 19% for P. anomala and A. niger, respectively, while with curly sorrel they were 42% and 30%.


Asunto(s)
Aceites de Plantas , Aceites de Plantas/farmacología , Aceites de Plantas/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Resistencia a la Tracción , Culinaria , Antibacterianos/farmacología , Antibacterianos/química , Hongos/efectos de los fármacos
20.
J Ethnopharmacol ; 333: 118512, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38964627

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Cannabis sativa L. ssp. indica (Lam.) plant has been historically utilized as a natural herbal remedy for the treatment of several ailments. In Lebanon, cannabis extracts have long been traditionally used to treat arthritis, diabetes, and cancer. AIM OF THE STUDY: The current study aims to investigate the anti-cancer properties of Lebanese cannabis oil extract (COE) on acute myeloid leukemia using WEHI-3 cells, and a WEHI-3-induced leukemia mouse model. MATERIALS AND METHODS: WEHI-3 cells were treated with increasing concentrations of COE to determine the IC50 after 24, 48 and 72-h post treatment. Flow cytometry was utilized to identify the mode of cell death. Western blot assay was performed to assess apoptotic marker proteins. In vivo model was established by inoculating WEHI-3 cells in BALB/c mice, and treatment commencing 10 days post-inoculation and continued for a duration of 3 weeks. RESULTS: COE exhibited significant cytotoxicity with IC50 of 7.76, 3.82, and 3.34 µg/mL at 24, 48, and 72 h respectively post-treatment. COE treatment caused an induction of apoptosis through an inhibition of the MAPK/ERK pathway and triggering a caspase-dependent apoptosis via the extrinsic and intrinsic modes independent of ROS production. Animals treated with COE exhibited a significantly higher survival rate, reduction in spleen weight as well as white blood cells count. CONCLUSION: COE exhibited a potent anti-cancer activity against AML cells, both in vitro and in vivo. These findings emphasize the potential application of COE as a chemotherapeutic adjuvant in treatment of acute myeloid leukemia.


Asunto(s)
Apoptosis , Cannabis , Leucemia Mieloide Aguda , Ratones Endogámicos BALB C , Aceites de Plantas , Animales , Leucemia Mieloide Aguda/tratamiento farmacológico , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Líbano , Cannabis/química , Aceites de Plantas/farmacología , Aceites de Plantas/uso terapéutico , Ratones , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Masculino , Humanos , Supervivencia Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA