Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.303
Filtrar
1.
BMC Cancer ; 24(1): 793, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961353

RESUMEN

BACKGROUND: Accurate regulation of gene expression is crucial for normal development and function of cells. The prognostic significance and potential carcinogenic mechanisms of the related gene JARID2 in OSCC are not yet clear, but existing research has indicated a significant association between the two. METHODS AND MATERIALS: The relationship between the expression of the JARID2 gene in tumor samples of OSCC patients and clinical pathological factors was analyzed using immunohistochemistry experiments and RT-qPCR analysis. Based on the clinical pathological data of patients, bioinformatics analysis was conducted using public databases to determine the function of JARID2 in OSCC. Knockdown OSCC cell lines were constructed, and the impact of JARID2 on the biological behavior of OSCC cell lines was assessed through CCK-8, wound healing assay, and transwell analysis. RESULTS: Immunohistochemistry experiments confirmed the correlation between JARID2 and the prognosis of OSCC patients, while RT-qPCR experiments demonstrated its expression levels in tissue and cells. CKK-8 experiments, wound healing assays, and Transwell experiments indicated that knocking down JARID2 had a negative impact on the proliferation, invasion, and migration of OSCC cells. Bioinformatics analysis results showed that the expression of JARID2 in OSCC is closely associated with patient gene co-expression, gene function enrichment, immune infiltration, and drug sensitivity. CONCLUSION: Our study indicates that JARID2 is a novel prognostic biomarker and potential therapeutic target for OSCC.


Asunto(s)
Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Boca , Invasividad Neoplásica , Complejo Represivo Polycomb 2 , Humanos , Neoplasias de la Boca/patología , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Movimiento Celular/genética , Pronóstico , Línea Celular Tumoral , Femenino , Masculino , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Técnicas de Silenciamiento del Gen
2.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960704

RESUMEN

The Polycomb Repressive Complex 2 (PRC2) regulates corticogenesis, yet the consequences of mutations to this epigenetic modifier in the mature brain are poorly defined. Importantly, PRC2 core genes are haploinsufficient and causative of several human neurodevelopmental disorders. To address the role of PRC2 in mature cortical structure and function, we conditionally deleted the PRC2 gene Eed from the developing mouse dorsal telencephalon. Adult homozygotes displayed smaller forebrain structures. Single-nucleus transcriptomics revealed that glutamatergic neurons were particularly affected, exhibiting dysregulated gene expression profiles, accompanied by aberrations in neuronal morphology and connectivity. Remarkably, homozygous mice performed well on challenging cognitive tasks. In contrast, while heterozygous mice did not exhibit clear anatomical or behavioral differences, they displayed dysregulation of neuronal genes and altered neuronal morphology that was strikingly different from homozygous phenotypes. Collectively, these data reveal how alterations to PRC2 function shape the mature brain and reveal a dose-specific role for PRC2 in determining glutamatergic neuron identity.


Asunto(s)
Ácido Glutámico , Neurogénesis , Neuronas , Complejo Represivo Polycomb 2 , Animales , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Ratones , Neurogénesis/fisiología , Ácido Glutámico/metabolismo , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Masculino , Ratones Endogámicos C57BL , Femenino , Ratones Transgénicos
3.
Nat Commun ; 15(1): 5155, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886411

RESUMEN

Dysregulated epigenetic states are a hallmark of cancer and often arise from genetic alterations in epigenetic regulators. This includes missense mutations in histones, which, together with associated DNA, form nucleosome core particles. However, the oncogenic mechanisms of most histone mutations are unknown. Here, we demonstrate that cancer-associated histone mutations at arginines in the histone H3 N-terminal tail disrupt repressive chromatin domains, alter gene regulation, and dysregulate differentiation. We find that histone H3R2C and R26C mutants reduce transcriptionally repressive H3K27me3. While H3K27me3 depletion in cells expressing these mutants is exclusively observed on the minor fraction of histone tails harboring the mutations, the same mutants recurrently disrupt broad H3K27me3 domains in the chromatin context, including near developmentally regulated promoters. H3K27me3 loss leads to de-repression of differentiation pathways, with concordant effects between H3R2 and H3R26 mutants despite different proximity to the PRC2 substrate, H3K27. Functionally, H3R26C-expressing mesenchymal progenitor cells and murine embryonic stem cell-derived teratomas demonstrate impaired differentiation. Collectively, these data show that cancer-associated H3 N-terminal arginine mutations reduce PRC2 activity and disrupt chromatin-dependent developmental functions, a cancer-relevant phenotype.


Asunto(s)
Arginina , Diferenciación Celular , Histonas , Mutación , Neoplasias , Complejo Represivo Polycomb 2 , Histonas/metabolismo , Histonas/genética , Diferenciación Celular/genética , Arginina/metabolismo , Animales , Humanos , Ratones , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Cromatina/metabolismo , Epigénesis Genética , Células Madre Mesenquimatosas/metabolismo , Línea Celular Tumoral
4.
Mol Plant ; 17(7): 1110-1128, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38825830

RESUMEN

Spatiotemporal regulation of gene expression by polycomb repressive complex 2 (PRC2) is critical for animal and plant development. The Arabidopsis fertilization independent seed (FIS)-PRC2 complex functions specifically during plant reproduction from gametogenesis to seed development. After a double fertilization event, triploid endosperm proliferates early, followed by the growth of a diploid embryo, which replaces the endosperm in Arabidopsis and many dicots. Key genes critical for endosperm proliferation such as IKU2 and MINI3 are activated after fertilization. Here we report that two MADS-box AGAMOUS-LIKE (AGL) proteins associate with the key endosperm proliferation loci and recruit the FIS-PRC2 repressive complex at 4-5 days after pollination (DAP). Interestingly, AGL9 and AGL15 only accumulate toward the end of endosperm proliferation at 4-5 DAP and promote the deposition of H3K27me3 marks at key endosperm proliferation loci. Disruption of AGL9 and AGL15 or overexpression of AGL9 or AGL15 significantly influence endosperm proliferation and cellularization. Genome-wide analysis with cleavage Under Targets and tagmentation (CUT&Tag) sequencing and RNA sequencing revealed the landscape of endosperm H3K27me3 marks and gene expression profiles in Col-0 and agl9 agl15. CUT&Tag qPCR also demonstrated the occupancy of the two MADS-box proteins and FIS-PRC2 on a few representative target loci. Our studies suggest that MADS-box proteins could potentially recruit PRC2 to regulate many other developmental processes in plants or even in fungi and animals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Endospermo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Endospermo/metabolismo , Endospermo/crecimiento & desarrollo , Endospermo/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Dominio MADS/genética , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Proliferación Celular
5.
Cancer Discov ; 14(6): 903-905, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38826100

RESUMEN

SUMMARY: In this issue, a study by Kazansky and colleagues explored resistance mechanisms after EZH2 inhibition in malignant rhabdoid tumors (MRT) and epithelioid sarcomas (ES). The study identified genetic alterations in EZH2 itself, along with alterations that converge on RB1-E2F-mediated cell-cycle control, and demonstrated that inhibition of cell-cycle kinases, such as Aurora Kinase B (AURKB) could bypass EZH2 inhibitor resistance to enhance treatment efficacy. See related article by Kazansky et al., p. 965 (6).


Asunto(s)
Ciclo Celular , Resistencia a Antineoplásicos , Proteína Potenciadora del Homólogo Zeste 2 , Humanos , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/genética , Resistencia a Antineoplásicos/genética , Terapia Molecular Dirigida , Aurora Quinasa B/metabolismo , Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa B/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/antagonistas & inhibidores
6.
Nat Commun ; 15(1): 4673, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824124

RESUMEN

Recent findings suggest that Hematopoietic Stem Cells (HSC) and progenitors arise simultaneously and independently of each other already in the embryonic aorta-gonad mesonephros region, but it is still unknown how their different features are established. Here, we uncover IκBα (Nfkbia, the inhibitor of NF-κB) as a critical regulator of HSC proliferation throughout development. IκBα balances retinoic acid signaling levels together with the epigenetic silencer, PRC2, specifically in HSCs. Loss of IκBα decreases proliferation of HSC and induces a dormancy related gene expression signature instead. Also, IκBα deficient HSCs respond with superior activation to in vitro culture and in serial transplantation. At the molecular level, chromatin regions harboring binding motifs for retinoic acid signaling are hypo-methylated for the PRC2 dependent H3K27me3 mark in IκBα deficient HSCs. Overall, we show that the proliferation index in the developing HSCs is regulated by a IκBα-PRC2 axis, which controls retinoic acid signaling.


Asunto(s)
Proliferación Celular , Células Madre Hematopoyéticas , Inhibidor NF-kappaB alfa , Transducción de Señal , Tretinoina , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Tretinoina/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Inhibidor NF-kappaB alfa/genética , Ratones , Desarrollo Embrionario/genética , Ratones Noqueados , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Ratones Endogámicos C57BL , Regulación del Desarrollo de la Expresión Génica , Femenino
7.
Mol Cell ; 84(12): 2255-2271.e9, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38851186

RESUMEN

The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Histonas , Proteínas de Dominio MADS , Complejo Represivo Polycomb 2 , ARN Polimerasa II , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Histonas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Transcripción Genética , Poliadenilación , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Terminación de la Transcripción Genética , Cromatina/metabolismo , Cromatina/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
8.
Sci Adv ; 10(19): eadl4529, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718120

RESUMEN

Polycomb repressive complexes 1 and 2 (PRC1 and 2) are required for heritable repression of developmental genes. The cis- and trans-acting factors that contribute to epigenetic inheritance of mammalian Polycomb repression are not fully understood. Here, we show that, in human cells, ectopically induced Polycomb silencing at initially active developmental genes, but not near ubiquitously expressed housekeeping genes, is inherited for many cell divisions. Unexpectedly, silencing is heritable in cells with mutations in the H3K27me3 binding pocket of the Embryonic Ectoderm Development (EED) subunit of PRC2, which are known to disrupt H3K27me3 recognition and lead to loss of H3K27me3. This mode of inheritance is less stable and requires intact PRC2 and recognition of H2AK119ub1 by PRC1. Our findings suggest that maintenance of Polycomb silencing is sensitive to local genomic context and can be mediated by PRC1-dependent H2AK119ub1 and PRC2 independently of H3K27me3 recognition.


Asunto(s)
Silenciador del Gen , Histonas , Proteínas del Grupo Polycomb , Ubiquitinación , Humanos , Histonas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Proteínas del Grupo Polycomb/genética , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 1/genética , Genoma Humano , Epigénesis Genética , Mutación
9.
Mol Cell ; 84(10): 1870-1885.e9, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759625

RESUMEN

How Polycomb repressive complex 2 (PRC2) is regulated by RNA remains an unsolved problem. Although PRC2 binds G-tracts with the potential to form RNA G-quadruplexes (rG4s), whether rG4s fold extensively in vivo and whether PRC2 binds folded or unfolded rG4 are unknown. Using the X-inactivation model in mouse embryonic stem cells, here we identify multiple folded rG4s in Xist RNA and demonstrate that PRC2 preferentially binds folded rG4s. High-affinity rG4 binding inhibits PRC2's histone methyltransferase activity, and stabilizing rG4 in vivo antagonizes H3 at lysine 27 (H3K27me3) enrichment on the inactive X chromosome. Surprisingly, mutagenizing the rG4 does not affect PRC2 recruitment but promotes its release and catalytic activation on chromatin. H3K27me3 marks are misplaced, however, and gene silencing is compromised. Xist-PRC2 complexes become entrapped in the S1 chromosome compartment, precluding the required translocation into the S2 compartment. Thus, Xist rG4 folding controls PRC2 activity, H3K27me3 enrichment, and the stepwise regulation of chromosome-wide gene silencing.


Asunto(s)
G-Cuádruplex , Histonas , Complejo Represivo Polycomb 2 , ARN Largo no Codificante , Inactivación del Cromosoma X , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratones , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Histonas/metabolismo , Histonas/genética , Células Madre Embrionarias de Ratones/metabolismo , Cromatina/metabolismo , Cromatina/genética , Cromosoma X/genética , Cromosoma X/metabolismo , Silenciador del Gen , Pliegue del ARN , Unión Proteica
10.
Elife ; 132024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813868

RESUMEN

Germline epigenetic programming, including genomic imprinting, substantially influences offspring development. Polycomb Repressive Complex 2 (PRC2) plays an important role in Histone 3 Lysine 27 trimethylation (H3K27me3)-dependent imprinting, loss of which leads to growth and developmental changes in mouse offspring. In this study, we show that offspring from mouse oocytes lacking the PRC2 protein Embryonic Ectoderm Development (EED) were initially developmentally delayed, characterised by low blastocyst cell counts and substantial growth delay in mid-gestation embryos. This initial developmental delay was resolved as offspring underwent accelerated fetal development and growth in late gestation resulting in offspring that were similar stage and weight to controls at birth. The accelerated development and growth in offspring from Eed-null oocytes was associated with remodelling of the placenta, which involved an increase in fetal and maternal tissue size, conspicuous expansion of the glycogen-enriched cell population, and delayed parturition. Despite placental remodelling and accelerated offspring fetal growth and development, placental efficiency, and fetal blood glucose levels were low, and the fetal blood metabolome was unchanged. Moreover, while expression of the H3K27me3-imprinted gene and amino acid transporter Slc38a4 was increased, fetal blood levels of individual amino acids were similar to controls, indicating that placental amino acid transport was not enhanced. Genome-wide analyses identified extensive transcriptional dysregulation and DNA methylation changes in affected placentas, including a range of imprinted and non-imprinted genes. Together, while deletion of Eed in growing oocytes resulted in fetal growth and developmental delay and placental hyperplasia, our data indicate a remarkable capacity for offspring fetal growth to be normalised despite inefficient placental function and the loss of H3K27me3-dependent genomic imprinting.


Asunto(s)
Impresión Genómica , Animales , Femenino , Embarazo , Ratones , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Desarrollo Fetal/genética , Placenta/metabolismo , Oocitos/metabolismo , Oocitos/crecimiento & desarrollo , Sistema de Transporte de Aminoácidos A
11.
Nat Genet ; 56(6): 1193-1202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744974

RESUMEN

Polycomb repressive complex 2 (PRC2) interacts with RNA in cells, but there is no consensus on how RNA regulates PRC2 canonical functions, including chromatin modification and the maintenance of transcription programs in lineage-committed cells. We assayed two separation-of-function mutants of the PRC2 catalytic subunit EZH2, defective in RNA binding but functional in methyltransferase activity. We find that part of the RNA-binding surface of EZH2 is required for chromatin modification, yet this activity is independent of RNA. Mechanistically, the RNA-binding surface within EZH2 is required for chromatin modification in vitro and in cells, through interactions with nucleosomal DNA. Contrarily, an RNA-binding-defective mutant exhibited normal chromatin modification activity in vitro and in lineage-committed cells, accompanied by normal gene repression activity. Collectively, we show that part of the RNA-binding surface of EZH2, rather than the RNA-binding activity per se, is required for the histone methylation in vitro and in cells, through interactions with the substrate nucleosome.


Asunto(s)
Cromatina , Proteína Potenciadora del Homólogo Zeste 2 , Histonas , Nucleosomas , ARN , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Nucleosomas/metabolismo , ARN/metabolismo , ARN/genética , Humanos , Cromatina/metabolismo , Cromatina/genética , Histonas/metabolismo , Histonas/genética , Unión Proteica , Metilación , Animales , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Ratones , Mutación
12.
Mol Cell ; 84(7): 1178-1179, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579673

RESUMEN

A new study in Molecular Cell by Guo et al.1 and two studies in Cell Reports by Healy et al.2 and by Hall Hickman and Jenner3 show how PRC2 and other chromatin regulators do not appear to bind RNA in vivo, challenging the importance of RNA for their function.


Asunto(s)
Complejo Represivo Polycomb 2 , ARN , ARN/genética , Complejo Represivo Polycomb 2/metabolismo , Cromatina/genética
13.
Nucleic Acids Res ; 52(10): 5756-5773, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38587189

RESUMEN

Dynamic interaction between BRCA2 and telomeric G-quadruplexes (G4) is crucial for maintaining telomere replication homeostasis. Cells lacking BRCA2 display telomeric damage with a subset of these cells bypassing senescence to initiate break-induced replication (BIR) for telomere synthesis. Here we show that the abnormal stabilization of telomeric G4 following BRCA2 depletion leads to telomeric repeat-containing RNA (TERRA)-R-loop accumulation, triggering liquid-liquid phase separation (LLPS) and the assembly of Alternative Lengthening of Telomeres (ALT)-associated promyelocytic leukemia (PML) bodies (APBs). Disruption of R-loops abolishes LLPS and impairs telomere synthesis. Artificial engineering of telomeric LLPS restores telomere synthesis, underscoring the critical role of LLPS in ALT. TERRA-R-loops also recruit Polycomb Repressive Complex 2 (PRC2), leading to tri-methylation of Lys27 on histone H3 (H3K27me3) at telomeres. Half of paraffin-embedded tissue sections from human breast cancers exhibit APBs and telomere length heterogeneity, suggesting that BRCA2 mutations can predispose individuals to ALT-type tumorigenesis. Overall, BRCA2 abrogation disrupts the dynamicity of telomeric G4, producing TERRA-R-loops, finally leading to the assembly of telomeric liquid condensates crucial for ALT. We propose that modulating the dynamicity of telomeric G4 and targeting TERRA-R-loops in telomeric LLPS maintenance may represent effective therapeutic strategies for treating ALT-like cancers with APBs, including those with BRCA2 disruptions.


Asunto(s)
Proteína BRCA2 , Replicación del ADN , G-Cuádruplex , Homeostasis del Telómero , Telómero , Humanos , Telómero/metabolismo , Telómero/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Homeostasis del Telómero/genética , Replicación del ADN/genética , Histonas/metabolismo , Histonas/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Estructuras R-Loop , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Línea Celular Tumoral , Femenino , Separación de Fases
14.
Cell Rep ; 43(4): 114090, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607915

RESUMEN

Gene repression by the Polycomb pathway is essential for metazoan development. Polycomb domains, characterized by trimethylation of histone H3 lysine 27 (H3K27me3), carry the memory of repression and hence need to be maintained to counter the dilution of parental H3K27me3 with unmodified H3 during replication. Yet, how locus-specific H3K27me3 is maintained through replication is unclear. To understand H3K27me3 recovery post-replication, we first define nucleation sites within each Polycomb domain in mouse embryonic stem cells. To map dynamics of H3K27me3 domains across the cell cycle, we develop CUT&Flow (coupling cleavage under target and tagmentation with flow cytometry). We show that post-replication recovery of Polycomb domains occurs by nucleation and spreading, using the same nucleation sites used during de novo domain formation. By using Polycomb repressive complex 2 (PRC2) subunit-specific inhibitors, we find that PRC2 targets nucleation sites post-replication independent of pre-existing H3K27me3. Thus, competition between H3K27me3 deposition and nucleosome turnover drives both de novo domain formation and maintenance during every cell cycle.


Asunto(s)
Ciclo Celular , Histonas , Complejo Represivo Polycomb 2 , Animales , Ratones , Histonas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Metilación , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Proteínas del Grupo Polycomb/metabolismo , Proteínas del Grupo Polycomb/genética , Dominios Proteicos , Nucleosomas/metabolismo
15.
Nat Commun ; 15(1): 3452, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658543

RESUMEN

Mutations in chromatin regulators are widespread in cancer. Among them, the histone H3 lysine 27 methyltransferase Polycomb Repressive Complex 2 (PRC2) shows distinct alterations according to tumor type. This specificity is poorly understood. Here, we model several PRC2 alterations in one isogenic system to reveal their comparative effects. Focusing then on lymphoma-associated EZH2 mutations, we show that Ezh2Y641F induces aberrant H3K27 methylation patterns even without wild-type Ezh2, which are alleviated by partial PRC2 inhibition. Remarkably, Ezh2Y641F rewires the response to PRC2 inhibition, leading to induction of antigen presentation genes. Using a unique longitudinal follicular lymphoma cohort, we further link EZH2 status to abnormal H3K27 methylation. We also uncover unexpected variability in the mutational landscape of successive biopsies, pointing to frequent co-existence of different clones and cautioning against stratifying patients based on single sampling. Our results clarify how oncogenic PRC2 mutations disrupt chromatin and transcription, and the therapeutic vulnerabilities this creates.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Histonas , Linfoma Folicular , Mutación , Complejo Represivo Polycomb 2 , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Humanos , Linfoma Folicular/genética , Linfoma Folicular/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Histonas/metabolismo , Histonas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Metilación , Cromatina/metabolismo , Cromatina/genética , Transcripción Genética
16.
Nucleic Acids Res ; 52(8): 4409-4421, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587197

RESUMEN

Gene fusions and their chimeric products are commonly linked with cancer. However, recent studies have found chimeric transcripts in non-cancer tissues and cell lines. Large-scale efforts to annotate structural variations have identified gene fusions capable of generating chimeric transcripts even in normal tissues. In this study, we present a bottom-up approach targeting population-specific chimeric RNAs, identifying 58 such instances in the GTEx cohort, including notable cases such as SUZ12P1-CRLF3, TFG-ADGRG7 and TRPM4-PPFIA3, which possess distinct patterns across different ancestry groups. We provide direct evidence for an additional 29 polymorphic chimeric RNAs with associated structural variants, revealing 13 novel rare structural variants. Additionally, we utilize the All of Us dataset and a large cohort of clinical samples to characterize the association of the SUZ12P1-CRLF3-causing variant with patient phenotypes. Our study showcases SUZ12P1-CRLF3 as a representative example, illustrating the identification of elusive structural variants by focusing on those producing population-specific fusion transcripts.


Asunto(s)
Fusión Génica , ARN , Receptores de Citocinas , Factores de Transcripción , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Proteínas de Fusión Oncogénica/genética , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Polimorfismo Genético , ARN/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Canales Catiónicos TRPM/genética , Receptores de Citocinas/genética , Análisis de Secuencia de ARN , Empalme del ARN
17.
J Cell Biol ; 223(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38652118

RESUMEN

Chromatin-remodeling protein BRG1/SMARCA4 is pivotal for establishing oligodendrocyte (OL) lineage identity. However, its functions for oligodendrocyte-precursor cell (OPC) differentiation within the postnatal brain and during remyelination remain elusive. Here, we demonstrate that Brg1 loss profoundly impairs OPC differentiation in the brain with a comparatively lesser effect in the spinal cord. Moreover, BRG1 is critical for OPC remyelination after injury. Integrative transcriptomic/genomic profiling reveals that BRG1 exhibits a dual role by promoting OPC differentiation networks while repressing OL-inhibitory cues and proneuronal programs. Furthermore, we find that BRG1 interacts with EED/PRC2 polycomb-repressive-complexes to enhance H3K27me3-mediated repression at gene loci associated with OL-differentiation inhibition and neurogenesis. Notably, BRG1 depletion decreases H3K27me3 deposition, leading to the upregulation of BMP/WNT signaling and proneurogenic genes, which suppresses OL programs. Thus, our findings reveal a hitherto unexplored spatiotemporal-specific role of BRG1 for OPC differentiation in the developing CNS and underscore a new insight into BRG1/PRC2-mediated epigenetic regulation that promotes and safeguards OL lineage commitment and differentiation.


Asunto(s)
Diferenciación Celular , ADN Helicasas , Oligodendroglía , Complejo Represivo Polycomb 2 , Animales , Ratones , ADN Helicasas/metabolismo , ADN Helicasas/genética , Epigénesis Genética , Histonas/metabolismo , Histonas/genética , Ratones Endogámicos C57BL , Neurogénesis/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Remielinización , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
18.
Immunol Cell Biol ; 102(5): 298-301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606590

RESUMEN

Epigenetic modifications, particularly through methylation of DNA packaging histones, play a pivotal role in controlling gene expression. Aberrant patterns of histone methylation have been associated with the development and progression of hematological malignancies. Unraveling the impact of aberrant histone marks on gene expression and leukemogenesis has spurred a concerted effort to develop clinically effective epigenetic therapies. In malignancies associated with the accumulation of histone H3 lysine trimethylation (H3K27me3), one such intervention involves preventing the deposition of this repressive histone mark by inhibiting the histone-modifying enzymes EZH1 and EZH2. While inhibition of EZH1/2 has demonstrated efficacy in both preclinical studies and clinical trials in various cancers, studies delineating the dynamic effect of EZH1/2 inhibition on H3K27me3 and disease relapse in clinical samples are lacking. In a recent publication, Yamagishi et al. explore how responses of a patient with adult T-cell leukemia/lymphoma to valemetostat, an EZH1/2 inhibitor, are associated with changes in H3K27me3, chromatin accessibility and gene expression, and how these changes can be circumvented in relapsed disease.


Asunto(s)
Epigénesis Genética , Histonas , Leucemia-Linfoma de Células T del Adulto , Animales , Humanos , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Histonas/metabolismo , Leucemia-Linfoma de Células T del Adulto/genética , Leucemia-Linfoma de Células T del Adulto/patología , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética
19.
Drug Discov Today ; 29(6): 103986, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642703

RESUMEN

EED within the PRC2 complex is crucial for chromatin regulation particularly in tumor development, making its inhibition a promising epigenetic therapeutic strategy. Significant advancement in PRC2 inhibitor development has been achieved with an approved EZH2 inhibitor in the market and with others in the clinical trials. However, current EZH2 inhibitors are limited to specific blood cancers and encounter therapeutic resistance. EED stabilizes PRC2 complex and enhances its activity through unique allosteric mechanisms, thereby acting as both a scaffold protein and a recognizer of H3K27me3 making it an attractive drug target. This review provides an overview of epigenetic therapeutic strategies targeting EED, including allosteric inhibitors, PPI inhibitors, and PROTACs, together with brief discussions on the relevant challenges, opportunities, and future directions.


Asunto(s)
Epigénesis Genética , Complejo Represivo Polycomb 2 , Humanos , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Complejo Represivo Polycomb 2/metabolismo , Epigénesis Genética/efectos de los fármacos , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Terapia Molecular Dirigida , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Regulación Alostérica/efectos de los fármacos
20.
Clin Epigenetics ; 16(1): 54, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600608

RESUMEN

The polycomb group (PcG) comprises a set of proteins that exert epigenetic regulatory effects and play crucial roles in diverse biological processes, ranging from pluripotency and development to carcinogenesis. Among these proteins, enhancer of zeste homolog 2 (EZH2) stands out as a catalytic component of polycomb repressive complex 2 (PRC2), which plays a role in regulating the expression of homologous (Hox) genes and initial stages of x chromosome inactivation. In numerous human cancers, including head and neck squamous cell carcinoma (HNSCC), EZH2 is frequently overexpressed or activated and has been identified as a negative prognostic factor. Notably, EZH2 emerges as a significant gene involved in regulating the STAT3/HOTAIR axis, influencing HNSCC proliferation, differentiation, and promoting metastasis by modulating related oncogenes in oral cancer. Currently, various small molecule compounds have been developed as inhibitors specifically targeting EZH2 and have gained approval for treating refractory tumors. In this review, we delve into the epigenetic regulation mediated by EZH2/PRC2 in HNSCC, with a specific focus on exploring the potential roles and mechanisms of EZH2, its crucial contribution to targeted drug therapy, and its association with cancer markers and epithelial-mesenchymal transition. Furthermore, we aim to unravel its potential as a therapeutic strategy for oral squamous cell carcinoma.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Metilación de ADN , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Complejo Represivo Polycomb 2/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...