Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.767
Filtrar
1.
PeerJ ; 12: e17641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099655

RESUMEN

Background: Due to the copious disposal of plastics, marine ecosystems receive a large part of this waste. Microplastics (MPs) are solid particles smaller than 5 millimeters in size. Among the plastic polymers, polystyrene (PS) is one of the most commonly used and discarded. Due to its density being greater than that of water, it accumulates in marine sediments, potentially affecting benthic communities. This study investigated the ingestion of MP and their effect on the meiofauna community of a sandy beach. Meiofauna are an important trophic link between the basal and higher trophic levels of sedimentary food webs and may therefore be substantially involved in trophic transfer of MP and their associated compounds. Methods: We incubated microcosms without addition of MP (controls) and treatments contaminated with PS MP (1-µm) in marine sediments at three nominal concentrations (103, 105, 107particles/mL), for nine days, and sampled for meiofauna with collections every three days. At each sampling time, meiofauna were collected, quantified and identified to higher-taxon level, and ingestion of MP was quantified under an epifluorescence microscope. Results: Except for Tardigrada, all meiofauna taxa (Nematoda, turbellarians, Copepoda, Nauplii, Acari and Gastrotricha) ingested MP. Absorption was strongly dose dependent, being highest at 107 particles/mL, very low at 105 particles/mL and non-demonstrable at 103 particles/mL. Nematodes accumulated MP mainly in the intestine; MP abundance in the intestine increased with increasing incubation time. The total meiofauna density and species richness were significantly lower at the lowest MP concentration, while at the highest concentration these parameters were very similar to the control. In contrast, Shannon-Wiener diversity and evenness were greater in treatments with low MP concentration. However, these results should be interpreted with caution because of the low meiofauna abundances at the lower two MP concentrations. Conclusion: At the highest MP concentration, abundance, taxonomic diversity and community structure of a beach meiofauna community were not significantly affected, suggesting that MP effects on meiofauna are at most subtle. However, lower MP concentrations did cause substantial declines in abundance and diversity, in line with previous studies at the population and community level. While we can only speculate on the underlying mechanism(s) of this counterintuitive response, results suggest that further research is needed to better understand MP effects on marine benthic communities.


Asunto(s)
Biodiversidad , Microplásticos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Cadena Alimentaria , Organismos Acuáticos , Poliestirenos , Invertebrados/efectos de los fármacos , Monitoreo del Ambiente/métodos
2.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125921

RESUMEN

The ability of bacteria to colonize diverse environmental niches is often linked to their competence in biofilm formation. It depends on the individual characteristics of a strain, the nature of the colonized surface (abiotic or biotic), or the availability of certain nutrients. Pseudomonas donghuensis P482 efficiently colonizes the rhizosphere of various plant hosts, but a connection between plant tissue colonization and the biofilm formation ability of this strain has not yet been established. We demonstrate here that the potential of P482 to form biofilms on abiotic surfaces and the structural characteristics of the biofilm are influenced by the carbon source available to the bacterium, with glycerol promoting the process. Also, the type of substratum, polystyrene or glass, impacts the ability of P482 to attach to the surface. Moreover, P482 mutants in genes associated with motility or chemotaxis, the synthesis of polysaccharides, and encoding proteases or regulatory factors, which affect biofilm formation on glass, were fully capable of colonizing the root tissue of both tomato and maize hosts. Investigating the role of cellular factors in biofilm formation using these plant-associated bacteria shows that the ability of bacteria to form biofilm on abiotic surfaces does not necessarily mirror its ability to colonize plant tissues. Our research provides a broader perspective on the adaptation of these bacteria to various environments.


Asunto(s)
Biopelículas , Carbono , Pseudomonas , Biopelículas/crecimiento & desarrollo , Pseudomonas/fisiología , Pseudomonas/metabolismo , Pseudomonas/genética , Carbono/metabolismo , Raíces de Plantas/microbiología , Rizosfera , Solanum lycopersicum/microbiología , Zea mays/microbiología , Vidrio , Adhesión Bacteriana , Glicerol/metabolismo , Poliestirenos
3.
Part Fibre Toxicol ; 21(1): 30, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39118174

RESUMEN

Plastic pollution is an emerging environmental issue, with microplastics and nanoplastics raising health concerns due to bioaccumulation. This work explored the impact of polystyrene nanoparticle (PS-NPs) exposure during prepuberty on male reproductive function post maturation in rats. Rats were gavaged with PS-NPs (80 nm) at 0, 3, 6, 12 mg/kg/day from postnatal day 21 to 95. PS-NPs accumulated in the testes and reduced sperm quality, serum reproductive hormones, and testicular coefficients. HE staining showed impaired spermatogenesis. PS-NPs disrupted the blood-testis barrier (BTB) by decreasing junction proteins, inducing inflammation and apoptosis. Transcriptomics identified differentially expressed genes related to metabolism, lysosome, apoptosis, and TLR4 signaling. Molecular docking revealed Cordycepin could compete with polystyrene for binding to TLR4. Cordycepin alleviated oxidative stress and improved barrier function in PS-NPs treated Sertoli cells. In conclusion, prepubertal PS-NPs exposure induces long-term reproductive toxicity in male rats, likely by disrupting spermatogenesis through oxidative stress and BTB damage. Cordycepin could potentially antagonize this effect by targeting TLR4 and warrants further study as a protective agent. This study elucidates the mechanisms underlying reproductive toxicity of PS-NPs and explores therapeutic strategies.


Asunto(s)
Barrera Hematotesticular , Desoxiadenosinas , Nanopartículas , Poliestirenos , Espermatogénesis , Testículo , Animales , Masculino , Desoxiadenosinas/farmacología , Barrera Hematotesticular/efectos de los fármacos , Poliestirenos/toxicidad , Nanopartículas/toxicidad , Espermatogénesis/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Simulación del Acoplamiento Molecular , Microplásticos/toxicidad , Receptor Toll-Like 4/metabolismo , Apoptosis/efectos de los fármacos , Maduración Sexual/efectos de los fármacos , Sustancias Protectoras/farmacología
4.
Water Sci Technol ; 90(3): 791-806, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39141035

RESUMEN

Rapid population growth intensifies water scarcity, highlighting the importance of treatment technologies such as reverse osmosis and membrane filtration to ensure safe drinking water and preserve resources. The use of polystyrene as a filter for polluted water is valuable due to its porous surface, efficiently retaining impurities. The system, a tubular reactor with a mixed polystyrene bed, underwent evaluations with varying particle sizes, flow rates and times, operating in dead-end mode and series system without recirculation with theoretical residence times between 180 and 360 min. The study, divided into two phases, optimized the system in the first phase, characterizing the filter bed and carrying out maintenance for 360 min at 0.5 L/min. Phase two evaluated the performance of the reactor in treating wastewater with flow rates of 0.5 and 1 L/min for 180 min. Under the best conditions of Phase I, 55% of Escherichia coli and turbidity were deactivated, not meeting potability standards. In Phase II, there was efficiency in the removal of several parameters, such as chemical oxygen demand (78.26%), total phosphorus (75%), nitrate (73.42%), ammonia (73.13%), nitrite (69.33%), potassium (70.83%), and sodium (68.75%). In addition, 98.32% of E. coli was deactivated, meeting CONAMA Class 2 and 3 irrigation standards.


Asunto(s)
Poliestirenos , Poliestirenos/química , Purificación del Agua/métodos , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Filtración/métodos , Escherichia coli , Contaminantes Químicos del Agua/química
5.
J Nanobiotechnology ; 22(1): 460, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090717

RESUMEN

BACKGROUND: Nanoplastics (NPs) are emerging pollutants that pose risks to living organisms. Recent findings have unveiled the reproductive harm caused by polystyrene nanoparticles (PS-NPs) in female animals, yet the intricate mechanism remains incompletely understood. Under this research, we investigated whether sustained exposure to PS-NPs at certain concentrations in vivo can enter oocytes through the zona pellucida or through other routes that affect female reproduction. RESULTS: We show that PS-NPs disrupted ovarian functions and decreased oocyte quality, which may be a contributing factor to lower female fertility in mice. RNA sequencing of mouse ovaries illustrated that the PI3K-AKT signaling pathway emerged as the predominant environmental information processing pathway responding to PS-NPs. Western blotting results of ovaries in vivo and cells in vitro showed that PS-NPs deactivated PI3K-AKT signaling pathway by down-regulating the expression of PI3K and reducing AKT phosphorylation at the protein level, PI3K-AKT signaling pathway which was accompanied by the activation of autophagy and apoptosis and the disruption of steroidogenesis in granulosa cells. Since PS-NPs penetrate granulosa cells but not oocytes, we examined whether PS-NPs indirectly affect oocyte quality through granulosa cells using a granulosa cell-oocyte coculture system. Preincubation of granulosa cells with PS-NPs causes granulosa cell dysfunction, resulting in a decrease in the quality of the cocultured oocytes that can be reversed by the addition of 17ß-estradiol. CONCLUSIONS: This study provides findings on how PS-NPs impact ovarian function and include transcriptome sequencing analysis of ovarian tissue. The study demonstrates that PS-NPs impair oocyte quality by altering the functioning of ovarian granulosa cells. Therefore, it is necessary to focus on the research on the effects of PS-NPs on female reproduction and the related methods that may mitigate their toxicity.


Asunto(s)
Células de la Granulosa , Nanopartículas , Oocitos , Poliestirenos , Transducción de Señal , Animales , Femenino , Ratones , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Fertilidad/efectos de los fármacos , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Nanopartículas/toxicidad , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Ovario/efectos de los fármacos , Ovario/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Poliestirenos/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Anal Chim Acta ; 1316: 342874, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969415

RESUMEN

BACKGROUND: The rapid development of micro-solid phase extraction (µ-SPE) procedures with new sorption materials, in particular, based on using natural materials, is currently reported. The production of these sorbents and the entire extraction procedure should support the implementation of Green Analytical Chemistry (GAC) principles. Promising materials are sorbents based on paper, which can be relatively easily modified, among others: by covering it with a polymer membrane. In this work, the practical application of paper-supported polystyrene used in the analysis of urine samples containing selected date-rape drugs (DRD) substances, and evaluation of the entire procedure using GAC metrics is presented. RESULTS: The paper-supported polystyrene membranes were successfully fabricated and characterized. The successful polystyrene coating on the paper was confirmed through ATR-FTIR measurements, ensuring even coverage. The µ-SPE procedure using this material facilitated extraction with a throughput of approximately 120 samples per hour in just a few steps. Throughout the research, a mixture of 100 mM acetic acid:methanol:acetonitrile (70:15:15, v/v/v) was selected as an optimal background electrolyte for capillary electrophoresis - mass spectrometry analysis. Validation results of this method demonstrated its suitability, exhibiting good linearity (R2 > 0.95), low limits of detection (3.1-15 ng mL-1), acceptable precision (<15 %), and recovery for all tested analytes. Furthermore, the greenness evaluation conducted with six different metrics: AGREEprep, AGREE, ComplexGAPI, SPMS, hexagonal metric, and WAC indicated the overall eco-friendliness and sustainability of the method, with minor concerns regarding energy consumption. SIGNIFICANCE: The use of cellulose paper with polystyrene membranes for µ-SPE provides a versatile and eco-friendly extraction method for detecting DRDs in urine samples. The presented work is an example of the use of GAC metrics in the evaluation of the analytical procedure. The optimized PT-µ-SPE/CE-MS method allows for minimized reagent usage and waste production. Moreover, the method proves to be sustainable and efficient for forensic toxicology analysis.


Asunto(s)
Papel , Poliestirenos , Microextracción en Fase Sólida , Poliestirenos/química , Humanos , Microextracción en Fase Sólida/métodos , Membranas Artificiales , Tecnología Química Verde , Límite de Detección , Drogas Ilícitas/orina , Drogas Ilícitas/aislamiento & purificación , Drogas Ilícitas/análisis
7.
J Environ Sci (China) ; 146: 176-185, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969446

RESUMEN

Microplastics (MPs) are commonly found with hydrophobic contaminants in the water column and pose a serious threat to aquatic organisms. The effects of polystyrene microplastics of different particle sizes on the accumulation of triclosan in the gut of Xenopus tropicalis, its toxic effects, and the transmission of resistance genes were evaluated. The results showed that co-exposure to polystyrene (PS-MPs) adsorbed with triclosan (TCS) caused the accumulation of triclosan in the intestine with the following accumulation capacity: TCS + 5 µm PS group > TCS group > TCS + 20 µm PS group > TCS + 0.1 µm PS group. All experimental groups showed increased intestinal inflammation and antioxidant enzyme activity after 28 days of exposure to PS-MPs and TCS of different particle sizes. The TCS + 20 µm PS group exhibited the highest upregulated expression of pro-inflammatory factors (IL-10, IL-1ß). The TCS + 20 µm group showed the highest increase in enzyme activity compared to the control group. PS-MPs and TCS, either alone or together, altered the composition of the intestinal microbial community. In addition, the presence of more antibiotic resistance genes than triclosan resistance genes significantly increased the expression of tetracycline resistance and sulfonamide resistance genes, which may be associated with the development of intestinal inflammation and oxidative stress. This study refines the aquatic ecotoxicity assessment of TCS adsorbed by MPs and provides informative information for the management and control of microplastics and non-antibiotic bacterial inhibitors.


Asunto(s)
Microplásticos , Tamaño de la Partícula , Poliestirenos , Triclosán , Contaminantes Químicos del Agua , Xenopus , Animales , Triclosán/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Intestinos/efectos de los fármacos , Adsorción , Expresión Génica/efectos de los fármacos
8.
Nat Commun ; 15(1): 5839, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992011

RESUMEN

3D printing has been widely used for on-demand prototyping of complex three-dimensional structures. In biomedical applications, PEDOT:PSS has emerged as a promising material in versatile bioelectronics due to its tissue-like mechanical properties and suitable electrical properties. However, previously developed PEDOT:PSS inks have not been able to fully utilize the advantages of commercial 3D printing due to its long post treatment times, difficulty in high aspect ratio printing, and low conductivity. We propose a one-shot strategy for the fabrication of PEDOT:PSS ink that is able to simultaneously achieve on-demand biocompatibility (no post treatment), structural integrity during 3D printing for tall three-dimensional structures, and high conductivity for rapid-prototyping. By using ionic liquid-facilitated PEDOT:PSS colloidal stacking induced by a centrifugal protocol, a viscoplastic PEDOT:PSS-ionic liquid colloidal (PILC) ink was developed. PILC inks exhibit high-aspect ratio vertical stacking, omnidirectional printability for generating suspended architectures, high conductivity (~286 S/cm), and high-resolution printing (~50 µm). We demonstrate the on-demand and versatile applicability of PILC inks through the fabrication of 3D circuit boards, on-skin physiological signal monitoring e-tattoos, and implantable bioelectronics (opto-electrocorticography recording, low voltage sciatic nerve stimulation and recording from deeper brain layers via 3D vertical spike arrays).


Asunto(s)
Materiales Biocompatibles , Coloides , Conductividad Eléctrica , Líquidos Iónicos , Poliestirenos , Impresión Tridimensional , Líquidos Iónicos/química , Coloides/química , Materiales Biocompatibles/química , Animales , Poliestirenos/química , Ratas , Tinta , Polímeros/química , Tiofenos/química , Neuronas/fisiología , Compuestos Bicíclicos Heterocíclicos con Puentes/química
9.
Lab Chip ; 24(14): 3546-3555, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38949063

RESUMEN

Microfluidic chips have emerged as significant tools in cell culture due to their capacity for supporting cells to adopt more physiologically relevant morphologies in 3D compared with traditional cell culture in 2D. Currently, irreversible bonding methods, where chips cannot be detached from their substrates without destroying the structure, are commonly used in fabrication, making it challenging to conduct further analysis on cells that have been cultured on-chip. Although some reversible bonding techniques have been developed, they are either restricted to certain materials such as glass, or require complex processing procedures. Here, we demonstrate a simple and reversible polydimethylsiloxane (PDMS)-polystyrene (PS) bonding technique that allows devices to withstand extended operations while pressurized, and supports long-term stable cell cultures. More importantly, it allows rapid and gentle live cell extraction for downstream manipulation and characterization after long-term on-chip culturing, and even further subculturing. Our new approach could greatly facilitate microfluidic chip-based cell and tissue cultures, overcoming current analytical limitations and opening up new avenues for downstream uses of on-chip cultures, including 3D-engineered tissue structures for biomedical applications.


Asunto(s)
Técnicas de Cultivo de Célula , Dimetilpolisiloxanos , Poliestirenos , Dimetilpolisiloxanos/química , Técnicas de Cultivo de Célula/instrumentación , Humanos , Poliestirenos/química , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Diseño de Equipo
10.
J Vis Exp ; (208)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39007608

RESUMEN

Viscoelastic behavior can be beneficial in enhancing the unprecedented dynamics of polymer metamaterials or, in contrast, negatively impacting their wave control mechanisms. It is, therefore, crucial to properly characterize the viscoelastic properties of a polymer metamaterial at its working frequencies to understand viscoelastic effects. However, the viscoelasticity of polymers is a complex phenomenon, and the data on storage and loss moduli at ultrasonic frequencies are extremely limited, especially for additively manufactured polymers. This work presents a protocol to experimentally characterize the viscoelastic properties of additively manufactured polymers and to use them in the numerical analysis of polymer metamaterials. Specifically, the protocol includes the description of the manufacturing process, experimental procedures to measure the thermal, viscoelastic, and mechanical properties of additively manufactured polymers, and an approach to use these properties in finite-element simulations of the metamaterial dynamics. The numerical results are validated in ultrasonic transmission tests. To exemplify the protocol, the analysis is focused on acrylonitrile butadiene styrene (ABS) and aims at characterizing the dynamic behavior of a simple metamaterial made from it by using fused deposition modeling (FDM) three-dimensional (3D) printing. The proposed protocol will be helpful for many researchers to estimate viscous losses in 3D-printed polymer elastic metamaterials that will improve the understanding of material-property relations for viscoelastic metamaterials and eventually stimulate the use of 3D-printed polymer metamaterial parts in various applications.


Asunto(s)
Elasticidad , Viscosidad , Impresión Tridimensional , Butadienos/química , Polímeros/química , Resinas Acrílicas/química , Análisis de Elementos Finitos , Materiales Manufacturados , Poliestirenos
11.
Molecules ; 29(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38998932

RESUMEN

Microbial contamination has profoundly impacted human health, and the effective eradication of widespread microbial issues is essential for addressing serious hygiene concerns. Taking polystyrene (PS) membrane as an example, we herein developed report a robust strategy for the in situ preparation of chlorine-regenerable antimicrobial polymer molecular sieve membranes through combining post-crosslinking and nucleophilic substitution reaction. The cross-linking PS membranes underwent a reaction with 5,5-dimethylhydantoin (DMH), leading to the formation of polymeric N-halamine precursors (PS-DMH). These hydantoinyl groups within PS-DMH were then efficiently converted into biocidal N-halamine structures (PS-DMH-Cl) via a simple chlorination process. ATR-FTIR and XPS spectra were recorded to confirm the chemical composition of the as-prepared PS-DMH-Cl membranes. SEM analyses revealed that the chlorinated PS-DMH-Cl membranes displayed a rough surface with a multitude of humps. The effect of chlorination temperature and time on the oxidative chlorine content in the PS-DMH-Cl membranes was systematically studied. The antimicrobial assays demonstrated that the PS-DMH-Cl membranes could achieve a 6-log inactivation of E. coli and S. aureus within just 4 min of contact time. Additionally, the resulting PS-DMH-Cl membranes exhibited excellent stability and regenerability of the oxidative chlorine content.


Asunto(s)
Cloro , Escherichia coli , Membranas Artificiales , Staphylococcus aureus , Cloro/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Halogenación , Polímeros/química , Poliestirenos/química , Hidantoínas/química , Hidantoínas/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Aminas
12.
Sci Total Environ ; 946: 174386, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38960152

RESUMEN

Microplastics (MPs) have accumulated in the oceans, causing adverse effects on marine organisms and the environment. Biodegradable polylactic acid (PLA) is considered as an excellent substitute for traditional petroleum-based plastics, but it is difficult to degrade completely and easily become MPs in the marine environment. To test the ecological risk of bio-based PLA, we exposed thick-shelled mussels (Mytilus coruscus) to bio-based PLA and petroleum-based polystyrene (PS) (at 102, 104, and 106 particles/L) for 14 days. The significant increase in enzyme activities related to oxidative stress and immune response showed that mussels were under physiological stress after MP ingestion. While enzyme activities of nerve conduction and energy metabolism were significantly disturbed after exposure. Meanwhile, normal physiological activities in respiration, ingestion and assimilation were also suppressed in association with enzyme changes. The negative effects of PS and PLA in mussels were not differentiated, and further integration analysis of integrated biomarker response (IBR) and principal component analysis (PCA) also showed that PLA would induce adverse effects in mussels and ecological risks as PS, especially at environmental concentrations. Therefore, it is necessary to pay more attention to the environmental and ecological risk of bio-based MP PLA accumulating in the marine environment.


Asunto(s)
Microplásticos , Poliésteres , Poliestirenos , Contaminantes Químicos del Agua , Animales , Poliestirenos/toxicidad , Poliésteres/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Mytilus/efectos de los fármacos , Mytilus/fisiología , Petróleo/toxicidad
13.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063206

RESUMEN

Today, plastic pollution is one of the biggest threats to the environment and public health. In the tissues of exposed species, micro- and nano-fragments accumulate, leading to genotoxicity, altered metabolism, and decreased lifespan. A model to investigate the genotoxic and tumor-promoting potential of nanoplastics (NPs) is Drosophila melanogaster. Here we tested polystyrene, which is commonly used in food packaging, is not well recycled, and makes up at least 30% of landfills. In order to investigate the biological effects and carcinogenic potential of 100 µm polystyrene nanoparticles (PSNPs), we raised Oregon [R] wild-type flies on contaminated food. After prolonged exposure, fluorescent PSNPs accumulated in the gut and fat bodies. Furthermore, PSNP-fed flies showed considerable alterations in weight, developmental time, and lifespan, as well as a compromised ability to recover from starvation. Additionally, we noticed a decrease in motor activity in DNAlig4 mutants fed with PSNPs, which are known to be susceptible to dietary stressors. A qPCR molecular investigation of the larval intestines revealed a markedly elevated expression of the genes drice and p53, suggesting a response to cell damage. Lastly, we used warts-defective mutants to assess the carcinogenic potential of PSNPs and discovered that exposed flies had more aberrant masses than untreated ones. In summary, our findings support the notion that ingested nanopolystyrene triggers metabolic and genetic modifications in the exposed organisms, eventually delaying development and accelerating death and disease.


Asunto(s)
Drosophila melanogaster , Nanopartículas , Poliestirenos , Animales , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Poliestirenos/toxicidad , Nanopartículas/toxicidad , Nanopartículas/química , Carcinógenos/toxicidad , Larva/efectos de los fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Longevidad/efectos de los fármacos , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/efectos de los fármacos
14.
ACS Sens ; 9(7): 3633-3640, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38954649

RESUMEN

Current methods for detecting pipeline oil leaks depend primarily on optical detection, which can be slow and have deployment limitations. An alternative non-optical approach for earlier and faster detection of oil leaks would enable a rapid response and reduce the environmental impact of oil leaks. Here, we demonstrate that organic electrochemical transistors (OECTs) can be used as non-optical sensors for crude oil detection in subsea environments. OECTs are thin film electronic devices that can be used for sensing in a variety of environments, but they have not yet been tested for crude oil detection in subsea environments. We fabricated OECTs with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) as the channel and showed that coating the channel with a polystyrene film results in an OECT with a large and measurable response to oil. Oil that comes in contact with the device will adsorb onto the polystyrene film and increases the impedance at the electrolyte interface. We performed electrochemical impedance spectroscopy measurements to quantify the impedance across the device and found an optimal thickness for the polystyrene coating for the detection of oil. Under optimal device characteristics, as little as 10 µg of oil adsorbed on the channel surface produced a statistically significant change in the source-drain current. The OECTs were operable in seawater for the detection of oil, and we demonstrated that the devices can be transferred to flexible substrates which can be easily implemented in vehicles, pipelines, or other surfaces. This work demonstrates a low-cost device for oil detection in subsea environments and provides a new application of OECT sensors for sensing.


Asunto(s)
Técnicas Electroquímicas , Petróleo , Poliestirenos , Transistores Electrónicos , Petróleo/análisis , Poliestirenos/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Tiofenos
15.
Proc Natl Acad Sci U S A ; 121(28): e2403143121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959041

RESUMEN

Currently, the nanofluidic synapse can only perform basic neuromorphic pulse patterns. One immediate problem that needs to be addressed to further its capability of brain-like computing is the realization of a nanofluidic spiking device. Here, we report the use of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate membrane to achieve bionic ionic current-induced spiking. In addition to the simulation of various electrical pulse patterns, our synapse could produce transmembrane ionic current-induced spiking, which is highly analogous to biological action potentials with similar phases and excitability. Moreover, the spiking properties could be modulated by ions and neurochemicals. We expect that this work could contribute to biomimetic spiking computing in solution.


Asunto(s)
Potenciales de Acción , Poliestirenos , Sinapsis , Potenciales de Acción/fisiología , Sinapsis/fisiología , Poliestirenos/química , Nanotecnología/métodos , Nanotecnología/instrumentación
16.
Sci Total Environ ; 947: 174660, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986693

RESUMEN

With the accumulation of plastic waste in the environment, the toxicity of micro- and nano-plastics (MNPs) to microalgae has attracted increasing attention. However, the underlying toxic mechanisms of MNPs remain to be elucidated. In this study, we synthesized micro- and nano-scale of polystyrene MNPs (PS MNPs) to investigate their toxicity and toxic mechanisms in Chlamydomonas reinhardtii. We found that PS MNPs significantly inhibit the production of photosynthetic pigments and increase soluble protein content. The detailed analysis of results shows that both materials affect photosynthetic efficiency by damaging the donor side, reaction center, and electron transfer of photosystem II. Moreover, compared to PS MPs, PS NPs have a greater negative impact on algal cells. Analyzing the transcriptome of cells suggests that the most sensitive metabolic pathways in response to PS MNPs involve oxidative phosphorylation, biosynthesis of secondary metabolites, and photosynthesis. Especially, genes related to photosynthesis and oxidative phosphorylation showed significant changes in expression after exposure to PS MNPs. This study provided molecular-level insights into the toxic mechanisms of PS MNPs on microalgae.


Asunto(s)
Chlamydomonas reinhardtii , Fotosíntesis , Poliestirenos , Transcriptoma , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/metabolismo , Poliestirenos/toxicidad , Transcriptoma/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Perfilación de la Expresión Génica , Plásticos/toxicidad , Nanopartículas/toxicidad , Microalgas/efectos de los fármacos
17.
Plant Physiol Biochem ; 214: 108949, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053316

RESUMEN

Even though microplastics (MPs) and graphene nanomaterials (GNMs) have demonstrated individual toxicity towards aquatic organisms, the knowledge gap lies in the lack of understanding regarding their combined toxicity. The difference between the combined toxicity of MPs and GNMs, in contrast to their individual toxicities, and furthermore, the elucidation of the mechanism of this combined toxicity are scientific questions that remain to be addressed. In this study, we examined the individual and combined toxicity of three polystyrene microplastics (MPs) with different functional groups-unmodified, carboxyl-modified (COOH-), and amino-modified (NH2-) MPs-in combination with reduced graphene oxide (RGO) on the freshwater microalga Scenedesmus obliquus. More importantly, we explored the cellular and molecular mechanisms responsible for the observed toxicity. The results indicated that the growth inhibition toxicity of RGO, either alone or in combination with the three MPs, against S. obliquus increased gradually with higher particle concentrations. The mitigating effect of MPs-NH2 on RGO-induced toxicity was most significant at a higher concentration, surpassing the effect of unmodified MPs. However, the MPs-COOH did not exhibit a substantial impact on the toxicity of RGO. Unmodified MPs and MPs-COOH aggravated the inhibition effects of RGO on the cell membrane integrity and oxidative stress-related biomarkers. Additionally, MPs-COOH exhibited a stronger inhibition effect on RGO-induced biomarkers compared to unmodified MPs. In contrast, the MPs-NH2 alleviated the inhibition effect of RGO on the biomarkers. Furthermore, the presence of differently functionalized MPs did not significantly affect RGO-induced oxidative stress and photosynthesis-related gene expression in S. obliquus, indicating a limited ability to modulate RGO genotoxicity at the molecular level. These findings can offer a more accurate understanding of the combined risks posed by these micro- and nano-materials and assist in designing more effective mitigation strategies.


Asunto(s)
Grafito , Microplásticos , Scenedesmus , Grafito/toxicidad , Scenedesmus/efectos de los fármacos , Scenedesmus/metabolismo , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Microalgas/efectos de los fármacos , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Poliestirenos/toxicidad , Poliestirenos/química
18.
ACS Appl Mater Interfaces ; 16(28): 35912-35924, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38976770

RESUMEN

The extracellular matrix (ECM) shapes the stem cell fate during differentiation by exerting relevant biophysical cues. However, the mechanism of stem cell fate decisions in response to ECM-backed complex biophysical cues has not been fully understood due to the lack of versatile ECMs. Here, we designed two versatile ECMs using colloidal self-assembly technology to probe the mechanisms of their effects on mechanotransduction and stem cell fate regulation. Binary colloidal crystals (BCC) with a hexagonally close-packed structure, composed of silica (5 µm) and polystyrene (0.4 µm) particles as well as a polydimethylsiloxane-embedded BCC (BCCP), were fabricated. They have defined surface chemistry, roughness, stiffness, ion release, and protein adsorption properties, which can modulate the cell adhesion, proliferation, and differentiation of human adipose-derived stem cells (hASCs). On the BCC, hASCs preferred osteogenesis at an early stage but showed a higher tendency toward adipogenesis at later stages. In contrast, the results of BCCP diverged from those of BCC, suggesting a unique regulation of ECM-dependent mechanotransduction. The BCC-mediated cell adhesion reduced the size of the focal adhesion complex, accompanying an ordered spatial organization and cytoskeletal rearrangement. This morphological restriction led to the modulation of mechanosensitive transcription factors, such as c-FOS, the enrichment of transcripts in specific signaling pathways such as PI3K/AKT, and the activation of the Hippo signaling pathway. Epigenetic analyses showed changes in histone modifications across different substrates, suggesting that chromatin remodeling participated in BCC-mediated mechanotransduction. This study demonstrates that BCCs are versatile artificial ECMs that can regulate human stem cells' fate through unique biological signaling, which is beneficial in biomaterial design and stem cell engineering.


Asunto(s)
Diferenciación Celular , Coloides , Epigénesis Genética , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Coloides/química , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacología , Adhesión Celular/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Dióxido de Silicio/química , Poliestirenos/química , Proliferación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos
19.
J Contam Hydrol ; 265: 104395, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39018629

RESUMEN

Microplastics (MPs) are emerging contaminants that are attracting increasing interest from researchers, and the safety of drinking water is greatly affected by their transportation during filtration. Polystyrene (PS) was selected as a representative MPs, and three filter media (quartz sand, zeolite, and anthracite) commonly found in water plants were used. The retention patterns of PS-MPs by various filter media under various background water quality conditions were methodically investigated with the aid of DLVO theory and colloidal filtration theory. The results show that the different structures and elemental compositions of the three filter media cause them to exhibit different surface roughnesses and surface potentials. A greater surface roughness of the filter media can provide more deposition sites for PS-MPs, and the greater surface roughness of zeolite and anthracite significantly enhances their ability to inhibit the migration of PS-MPs compared with that of quartz sand. However, surface roughness is not the only factor affecting the migration of MPs. The lower absolute value of the surface potential of anthracite causes the DLVO energy between it and PS-MPs to be significantly lower than that between zeolite and PS-MPs, which results in stronger retention of PS-MPs by anthracite, which has a lower surface roughness, than zeolite, which has a higher surface roughness. The transport of PS-MPs in the medium is affected by the combination of the surface roughness of the filter media and the DLVO energy. Under the same operating conditions, the retention efficiencies of the three filter materials for PS-MPs followed the order of quartz sand < zeolite < anthracite. Additionally, the conditions of the solution markedly influenced the transport ability of PS-MPs within the simulated filter column. The transport PS-MPs in the simulated filter column decreased with increasing solution ionic strength and cation valence. Naturally, dissolved organic matter promoted the transfer of PS-MPs in the filter layer, and humic acid had a much stronger facilitating impact than fulvic acid. The study findings might offer helpful insight for improving the ability of filter units ability to retain MPs.


Asunto(s)
Filtración , Microplásticos , Poliestirenos , Zeolitas , Zeolitas/química , Poliestirenos/química , Microplásticos/química , Cuarzo/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Arena/química , Purificación del Agua/métodos , Propiedades de Superficie
20.
J Environ Manage ; 367: 121880, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059307

RESUMEN

Plastic weathering in the natural environment is a dynamic and complex process, where the release of microplastics, nanoplastics and additives poses potential threats to ecosystems. Understanding the release of different weathering products from plastics is crucial for predicting and assessing the environmental hazards of plastics. This study systematically explored these phenomena by exposing polystyrene (PS) to UV irradiation and mechanical agitation for different durations (1 day, 5 days, 10 days, 20 days). The degree of aging, yellowing, brittleness, and the abundance of carbonyl (CO) functional groups in PS were all gradually increasing over time. The weathering pattern of PS surfaces manifested as initial particle oxidation followed by later cracks or flakes formation. The release of products was positively correlated with the aging degree of plastics, as well as among the various released products. Laser infrared and Raman tests indicated that, for microplastics, the size range of 10-20 µm consistently dominated over time, while the primary size range of nanoplastics shifted towards smaller sizes. Additives and other soluble products were prone to release from weathering plastics, with 20 different chemicals detected after 20 d. The release of plastic additives was closely related to aging time, additive type, and quantity. This study contributes to our understanding of the weathering process of plastics, clarifies the release patterns of products over time, and the relationships among different products. It helps predict and assess the environmental pollution caused by plastics.


Asunto(s)
Microplásticos , Plásticos , Poliestirenos , Poliestirenos/química , Microplásticos/química , Plásticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA