Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.292
Filtrar
1.
Clin Lab ; 70(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38965970

RESUMEN

BACKGROUND: In this study, we aimed to identify the hub genes responsible for increased vascular endothelial cell permeability. METHODS: We applied the weighted Gene Expression Omnibus (GEO) database to mine dataset GSE178331 and ob-tained the most relevant high-throughput sequenced genes for an increased permeability of vascular endothelial cells due to inflammation. We constructed two weighted gene co-expression network analysis (WGCNA) networks, and the differential expression of high-throughput sequenced genes related to endothelial cell permeability were screened from the GEO database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on the differential genes. Their degree values were obtained from the topological properties of protein-protein interaction (PPI) networks of differential genes, and the hub genes associated with an increased endothelial cell permeability were analyzed. Reverse transcription-polymerase chain reaction (RT-PCR) and western blotting techniques were used to detect the presence of these hub genes in TNF-α induced mRNA and the protein expression in endothelial cells. RESULTS: In total, 1,475 differential genes were mainly enriched in the cell adhesion and TNF-α signaling pathway. With TNF-α inducing an increase in the endothelial cell permeability and significantly increasing mRNA and protein expression levels, we identified three hub genes, namely PTGS2, ICAM1, and SNAI1. There was a significant difference in the high-dose TNF-α group and in the low-dose TNF-α group compared to the control group, in the endothelial cell permeability experiment (p = 0.008 vs. p = 0.02). Measurement of mRNA and protein levels of PTGS2, ICAM1, and SNAI1 by western blotting analysis showed that there was a significant impact on TNF-α and that there was a significant dose-dependent relationship (p < 0.05 vs. p < 0.01). CONCLUSIONS: The three hub genes identified through bioinformatics analyses in the present study may serve as biomarkers of increased vascular endothelial cell permeability. The findings offer valuable insights into the progress and mechanism of vascular endothelial cell permeability.


Asunto(s)
Biología Computacional , Células Endoteliales , Redes Reguladoras de Genes , Mapas de Interacción de Proteínas , Factor de Necrosis Tumoral alfa , Humanos , Biología Computacional/métodos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Permeabilidad Capilar , Transducción de Señal , Bases de Datos Genéticas , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ontología de Genes
2.
J Gene Med ; 26(7): e3710, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967229

RESUMEN

BACKGROUND: Patients with non-small cell lung cancer (NSCLC) are susceptible to coronavirus disease-2019 (COVID-19), but current treatments are limited. Icariside II (IS), a flavonoid compound derived from the plant epimedin, showed anti-cancer,anti-inflammation and immunoregulation effects. The present study aimed to evaluate the possible effect and underlying mechanisms of IS on NSCLC patients with COVID-19 (NSCLC/COVID-19). METHODS: NSCLC/COVID-19 targets were defined as the common targets of NSCLC (collected from The Cancer Genome Atlas database) and COVID-19 targets (collected from disease database of Genecards, OMIM, and NCBI). The correlations of NSCLC/COVID-19 targets and survival rates in patients with NSCLC were analyzed using the survival R package. Prognostic analyses were performed using univariate and multivariate Cox proportional hazards regression models. Furthermore, the targets in IS treatment of NSCLC/COVID-19 were defined as the overlapping targets of IS (predicted from drug database of TMSCP, HERBs, SwissTarget Prediction) and NSCLC/COVID-19 targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of these treatment targets were performed aiming to understand the biological process, cellular component, molecular function and signaling pathway. The hub targets were analyzed by a protein-protein interaction network and the binding capacity with IS was characterized by molecular docking. RESULTS: The hub targets for IS in the treatment of NSCLC/COVID-19 includes F2, SELE, MMP1, MMP2, AGTR1 and AGTR2, and the molecular docking results showed that the above target proteins had a good binding degree to IS. Network pharmacology showed that IS might affect the leucocytes migration, inflammation response and active oxygen species metabolic process, as well as regulate the interleukin-17, tumor necrosus factor and hypoxia-inducible factor-1 signaling pathway in NSCLC/COVID-19. CONCLUSIONS: IS may enhance the therapeutic efficacy of current clinical anti-inflammatory and anti-cancer therapy to benefit patients with NSCLC combined with COVID-19.


Asunto(s)
COVID-19 , Carcinoma de Pulmón de Células no Pequeñas , Flavonoides , Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Farmacología en Red , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , COVID-19/virología , COVID-19/metabolismo , Flavonoides/uso terapéutico , Flavonoides/química , Flavonoides/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Tratamiento Farmacológico de COVID-19 , Mapas de Interacción de Proteínas/efectos de los fármacos , Pronóstico
3.
J Immunol Res ; 2024: 6908968, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957433

RESUMEN

Background: Kidney transplantation (KT) is the best treatment for end-stage renal disease. Although long and short-term survival rates for the graft have improved significantly with the development of immunosuppressants, acute rejection (AR) remains a major risk factor attacking the graft and patients. The innate immune response plays an important role in rejection. Therefore, our objective is to determine the biomarkers of congenital immunity associated with AR after KT and provide support for future research. Materials and Methods: A differential expression genes (DEGs) analysis was performed based on the dataset GSE174020 from the NCBI gene Expression Synthesis Database (GEO) and then combined with the GSE5099 M1 macrophage-related gene identified in the Molecular Signatures Database. We then identified genes in DEGs associated with M1 macrophages defined as DEM1Gs and performed gene ontology (GO) and Kyoto Encyclopedia of Genomes (KEGG) enrichment analysis. Cibersort was used to analyze the immune cell infiltration during AR. At the same time, we used the protein-protein interaction (PPI) network and Cytoscape software to determine the key genes. Dataset, GSE14328 derived from pediatric patients, GSE138043 and GSE9493 derived from adult patients, were used to verify Hub genes. Additional verification was the rat KT model, which was used to perform HE staining, immunohistochemical staining, and Western Blot. Hub genes were searched in the HPA database to confirm their expression. Finally, we construct the interaction network of transcription factor (TF)-Hub genes and miRNA-Hub genes. Results: Compared to the normal group, 366 genes were upregulated, and 423 genes were downregulated in the AR group. Then, 106 genes related to M1 macrophages were found among these genes. GO and KEGG enrichment analysis showed that these genes are mainly involved in cytokine binding, antigen binding, NK cell-mediated cytotoxicity, activation of immune receptors and immune response, and activation of the inflammatory NF-κB signaling pathway. Two Hub genes, namely CCR7 and CD48, were identified by PPI and Cytoscape analysis. They have been verified in external validation sets, originated from both pediatric patients and adult patients, and animal experiments. In the HPA database, CCR7 and CD48 are mainly expressed in T cells, B cells, macrophages, and tissues where these immune cells are distributed. In addition to immunoinfiltration, CD4+T, CD8+T, NK cells, NKT cells, and monocytes increased significantly in the AR group, which was highly consistent with the results of Hub gene screening. Finally, we predicted that 19 TFs and 32 miRNAs might interact with the Hub gene. Conclusions: Through a comprehensive bioinformatic analysis, our findings may provide predictive and therapeutic targets for AR after KT.


Asunto(s)
Antígeno CD48 , Rechazo de Injerto , Trasplante de Riñón , Macrófagos , Mapas de Interacción de Proteínas , Receptores CCR7 , Humanos , Rechazo de Injerto/inmunología , Rechazo de Injerto/genética , Trasplante de Riñón/efectos adversos , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Niño , Ratas , Receptores CCR7/genética , Receptores CCR7/metabolismo , Antígeno CD48/genética , Antígeno CD48/metabolismo , Perfilación de la Expresión Génica , Biomarcadores , Biología Computacional/métodos , Masculino , Redes Reguladoras de Genes , Bases de Datos Genéticas , Ontología de Genes , Modelos Animales de Enfermedad , Femenino , MicroARNs/genética
4.
Front Endocrinol (Lausanne) ; 15: 1414908, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989000

RESUMEN

Background: Lipodystrophy is a rare disease that is poorly diagnosed due to its low prevalence and frequent phenotypic heterogeneity. The main therapeutic measures for patients with clinical lipodystrophy are aimed at improving general metabolic complications such as diabetes mellitus, insulin resistance, and hypertriglyceridemia. Therefore, there is an urgent need to find new biomarkers to aid in the diagnosis and targeted treatment of patients with congenital generalized lipodystrophy (CGL). Methods: Dataset GSE159337 was obtained via the Gene Expression Omnibus database. First, differentially expressed genes (DEGs) between CGL and control samples were yielded via differential expression analysis and were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment to explore the functional pathways. Next, protein-protein interaction analysis and the MCC algorithm were implemented to yield candidate genes, which were then subjected to receiver operating characteristic (ROC) analysis to identify biomarkers with an area under the curve value exceeding 0.8. Moreover, random forest (RF), logistic regression, and support vector machine (SVM) analyses were carried out to assess the diagnostic ability of biomarkers for CGL. Finally, the small-molecule drugs targeting biomarkers were predicted, and ibuprofen was further validated in lipodystrophy mice. Results: A total of 71 DEGs in GSE159337 were sifted out and were involved in immune receptor activity, immune response-regulating signaling pathway, and secretory granule membrane. Moreover, CXCR2, TNFSF10, NLRC4, CCR2, CEACAM3, TLR10, TNFAIP3, and JUN were considered as biomarkers by performing ROC analysis on 10 candidate genes. Meanwhile, RF, logistic regression, and SVM analyses further described that those biomarkers had an excellent diagnosis capability for CGL. Eventually, the drug-gene network included ibuprofen-CXCR1, ibuprofen-CXCR1, cenicriviroc-CCR2, fenofibrate-JUN, and other relationship pairs. Ibuprofen treatment was also validated to downregulate CXCR1 and CXCR2 in peripheral blood mononuclear cells (PBMCs) and improve glucose tolerance, hypertriglyceridemia, hepatic steatosis, and liver inflammation in lipodystrophy mice. Conclusion: Eight biomarkers, namely, CXCR2, TNFSF10, NLRC4, CCR2, CEACAM3, TLR10, TNFAIP3, and JUN, were identified through bioinformatic analyses, and ibuprofen targeting CXCR1 and CXCR2 in PBMCs was shown to improve metabolic disturbance in lipodystrophy, contributing to studies related to the diagnosis and treatment of lipodystrophy.


Asunto(s)
Biología Computacional , Animales , Ratones , Biología Computacional/métodos , Humanos , Lipodistrofia/genética , Lipodistrofia/tratamiento farmacológico , Lipodistrofia/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análisis , Masculino , Mapas de Interacción de Proteínas , Perfilación de la Expresión Génica , Ratones Endogámicos C57BL
5.
Chin Clin Oncol ; 13(3): 32, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38984486

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths globally. To reduce HCC-related mortality, early diagnosis and therapeutic improvement are essential. Hub differentially expressed genes (HubGs) may serve as potential diagnostic and prognostic biomarkers, also offering therapeutic targets for precise therapies. Therefore, we aimed to identify top-ranked hub genes for the diagnosis, prognosis, and therapy of HCC. METHODS: Through a systematic literature review, 202 HCC-related HubGs were derived from 59 studies, yet consistent detection across these was lacking. Then, we identified top-ranked HubGs (tHubGs) by integrated bioinformatics analysis, highlighting their functions, pathways, and regulators that might be more representative of the diagnosis, prognosis, and therapies of HCC. RESULTS: In this study, eight HubGs (CDK1, AURKA, CDC20, CCNB2, TOP2A, PLK1, BUB1B, and BIRC5) were identified as the tHubGs through the protein-protein interaction (PPI) network and survival analysis. Their differential expression in different stages of HCC, validated using The Cancer Genome Atlas (TCGA) Program database, suggests their potential as early HCC markers. The enrichment analyses revealed some important roles in HCC-related biological processes (BPs), molecular functions (MFs), cellular components (CCs), and signaling pathways. Moreover, the gene regulatory network analysis highlighted key transcription factors (TFs) and microRNAs (miRNAs) that regulate these tHubGs at transcriptional and post-transcriptional. Finally, we selected three drugs (CD437, avrainvillamide, and LRRK2-IN-1) as candidate drugs for HCC treatment as they showed strong binding with all of our proposed and published protein receptors. CONCLUSIONS: The findings of this study may provide valuable resources for early diagnosis, prognosis, and therapies for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Pronóstico , Mapas de Interacción de Proteínas , Biología Computacional/métodos , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica
6.
Sci Rep ; 14(1): 15853, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982082

RESUMEN

Influenza (Flu) is a severe health, medical, and economic problem, but no medication that has excellent outcomes and lowers the occurrence of these problems is now available. GanghuoQingwenGranules (GHQWG) is a common Chinese herbal formula for the treatment of influenza (flu). However, its methods of action remain unknown. We used network pharmacology, molecular docking, and molecular dynamics simulation techniques to investigate the pharmacological mechanism of GHQWG in flu. TCMSP and various types of literature were used to obtain active molecules and targets of GHQWG. Flu-related targets were found in the Online Mendelian Inheritance in Man (OMIM) database, the DisFeNET database, the Therapeutic Target Database (TTD), and the DrugBank database. To screen the key targets, a protein-protein interaction (PPI) network was constructed. DAVID was used to analyze GO and KEGG pathway enrichment. Target tissue and organ distribution was assessed. Molecular docking was used to evaluate interactions between possible targets and active molecules. For the ideal core protein-compound complexes obtained using molecular docking, a molecular dynamics simulation was performed. In total, 90 active molecules and 312 GHQWG targets were discovered. The PPI network's topology highlighted six key targets. GHQWG's effects are mediated via genes involved in inflammation, apoptosis, and oxidative stress, as well as the TNF and IL-17 signaling pathways, according to GO and KEGG pathway enrichment analysis. Molecular docking and molecular dynamics simulations demonstrated that the active compounds and tested targets had strong binding capabilities. This analysis accurately predicts the effective components, possible targets, and pathways involved in GHQWG flu treatment. We proposed a novel study strategy for future studies on the molecular processes of GHQWG in flu treatment. Furthermore, the possible active components provide a dependable source for flu drug screening.


Asunto(s)
Medicamentos Herbarios Chinos , Gripe Humana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Humanos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Mapas de Interacción de Proteínas/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Antivirales/uso terapéutico
7.
Methods Mol Biol ; 2836: 253-281, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38995545

RESUMEN

Interactomics is bringing a deluge of data regarding protein-protein interactions (PPIs) which are involved in various molecular processes in all types of cells. However, this information does not easily translate into direct and precise molecular interfaces. This limits our understanding of each interaction network and prevents their efficient modulation. A lot of the detected interactions involve recognition of short linear motifs (SLiMs) by a folded domain while others rely on domain-domain interactions. Functional SLiMs hide among a lot of spurious ones, making deeper analysis of interactomes tedious. Hence, actual contacts and direct interactions are difficult to identify.Consequently, there is a need for user-friendly bioinformatic tools, enabling rapid molecular and structural analysis of SLiM-based PPIs in a protein network. In this chapter, we describe the use of the new webserver SLiMAn to help digging into SLiM-based PPIs in an interactive fashion.


Asunto(s)
Biología Computacional , Internet , Mapeo de Interacción de Proteínas , Programas Informáticos , Mapeo de Interacción de Proteínas/métodos , Biología Computacional/métodos , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/metabolismo , Mapas de Interacción de Proteínas , Secuencias de Aminoácidos , Humanos , Bases de Datos de Proteínas , Unión Proteica
8.
Ren Fail ; 46(2): 2371059, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38946402

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) have been shown to play critical roles in the initiation and progression of chronic glomerulonephritis (CGN), while their role from mesangial cells in contributing to the pathogenesis of CGN is rarely understood. Our study aims to explore the potential functions of mesangial cell-derived circRNAs using RNA sequencing (RNA-seq) and bioinformatics analysis. METHODS: Mouse mesangial cells (MMCs) were stimulated by lipopolysaccharide (LPS) to establish an in vitro model of CGN. Pro-inflammatory cytokines and cell cycle stages were detected by Enzyme-linked immunosorbent assay (ELISA) and Flow Cytometry experiment, respectively. Subsequently, differentially expressed circRNAs (DE-circRNAs) were identified by RNA-seq. GEO microarrays were used to identify differentially expressed mRNAs (DE-mRNAs) between CGN and healthy populations. Weighted co-expression network analysis (WGCNA) was utilized to explore clinically significant modules of CGN. CircRNA-associated CeRNA networks were constructed by bioinformatics analysis. The hub mRNAs from CeRNA network were identified using LASSO algorithms. Furthermore, utilizing protein-protein interaction (PPI), gene ontology (GO), pathway enrichment (KEGG), and GSEA analyses to explore the potential biological function of target genes from CeRNA network. In addition, we investigated the relationships between immune cells and hub mRNAs from CeRNA network using CIBERSORT. RESULTS: The expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α was drastically increased in LPS-induced MMCs. The number of cells decreased significantly in the G1 phase but increased significantly in the S/G2 phase. A total of 6 DE-mRNAs were determined by RNA-seq, including 4 up-regulated circRNAs and 2 down-regulated circRNAs. WGCNA analysis identified 1747 DE-mRNAs of the turquoise module from CGN people in the GEO database. Then, the CeRNA networks, including 6 circRNAs, 38 miRNAs, and 80 mRNAs, were successfully constructed. The results of GO and KEGG analyses revealed that the target mRNAs were mainly enriched in immune, infection, and inflammation-related pathways. Furthermore, three hub mRNAs (BOC, MLST8, and HMGCS2) from the CeRNA network were screened using LASSO algorithms. GSEA analysis revealed that hub mRNAs were implicated in a great deal of immune system responses and inflammatory pathways, including IL-5 production, MAPK signaling pathway, and JAK-STAT signaling pathway. Moreover, according to an evaluation of immune infiltration, hub mRNAs have statistical correlations with neutrophils, plasma cells, monocytes, and follicular helper T cells. CONCLUSIONS: Our findings provide fundamental and novel insights for further investigations into the role of mesangial cell-derived circRNAs in CGN pathogenesis.


Asunto(s)
Biología Computacional , Glomerulonefritis , Células Mesangiales , ARN Circular , ARN Circular/genética , ARN Circular/metabolismo , Animales , Ratones , Células Mesangiales/metabolismo , Glomerulonefritis/genética , Glomerulonefritis/metabolismo , Análisis de Secuencia de ARN , Redes Reguladoras de Genes , ARN Mensajero/metabolismo , ARN Mensajero/genética , Mapas de Interacción de Proteínas/genética , Enfermedad Crónica , Citocinas/metabolismo , Lipopolisacáridos/farmacología , Perfilación de la Expresión Génica , Modelos Animales de Enfermedad
9.
Physiol Plant ; 176(4): e14416, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952344

RESUMEN

Under changing climatic conditions, plants are simultaneously facing conflicting stresses in nature. Plants can sense different stresses, induce systematic ROS signals, and regulate transcriptomic, hormonal, and stomatal responses. We performed transcriptome analysis to reveal the integrative stress response regulatory mechanism underlying heavy metal stress alone or in combination with heat and drought conditions in pitaya (dragon fruit). A total of 70 genes were identified from 31,130 transcripts with conserved differential expression. Furthermore, weighted gene co-expression network analysis (WGCNA) identified trait-associated modules. By integrating information from three modules and protein-protein interaction (PPI) networks, we identified 10 interconnected genes associated with the multifaceted defense mechanism employed by pitaya against co-occurring stresses. To further confirm the reliability of the results, we performed a comparative analysis of 350 genes identified by three trait modules and 70 conserved genes exhibiting their dynamic expression under all treatments. Differential expression pattern of genes and comparative analysis, have proven instrumental in identifying ten putative structural genes. These ten genes were annotated as PLAT/LH2, CAT, MLP, HSP, PB1, PLA, NAC, HMA, and CER1 transcription factors involved in antioxidant activity, defense response, MAPK signaling, detoxification of metals and regulating the crosstalk between the complex pathways. Predictive analysis of putative candidate genes, potentially governing single, double, and multifactorial stress response, by several signaling systems and molecular patterns. These findings represent a valuable resource for pitaya breeding programs, offering the potential to develop resilient "super pitaya" plants.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Frutas/genética , Frutas/efectos de los fármacos , Frutas/metabolismo , Vanadio/farmacología , Estrés Fisiológico/genética , Caragana/genética , Caragana/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas , Perfilación de la Expresión Génica , Sequías , Transcriptoma/genética , Transcriptoma/efectos de los fármacos , Cactaceae
10.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 316-323, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38953254

RESUMEN

Objective To investigate the expression levels of selenoprotein genes in the patients with coronavirus disease 2019 (COVID-19) and the possible regulatory mechanisms.Methods The dataset GSE177477 was obtained from the Gene Expression Omnibus,consisting of a symptomatic group (n=11),an asymptomatic group (n=18),and a healthy control group (n=18).The dataset was preprocessed to screen the differentially expressed genes (DEG) related to COVID-19,and gene ontology functional annotation and Kyoto encyclopedia of genes and genomes enrichment analysis were performed for the DEGs.The protein-protein interaction network of DEGs was established,and multivariate Logistic regression was employed to analyze the effects of selenoprotein genes on the presence/absence of symptoms in the patients with COVID-19.Results Compared with the healthy control,the symptomatic COVID-19 patients presented up-regulated expression of GPX1,GPX4,GPX6,DIO2,TXNRD1,SELENOF,SELENOK,SELENOS,SELENOT,and SELENOW and down-regulated expression of TXNRD2 and SELENON (all P<0.05).The asymptomatic patients showcased up-regulated expression of GPX2,SELENOI,SELENOO,SELENOS,SELENOT,and SELENOW and down-regulated expression of SELP (all P<0.05).The results of multivariate Logistic regression analysis showed that the abnormally high expression of GPX1 (OR=0.067,95%CI=0.005-0.904,P=0.042) and SELENON (OR=56.663,95%CI=3.114-856.999,P=0.006) was the risk factor for symptomatic COVID-19,and the abnormally high expression of SELP was a risk factor for asymptomatic COVID-19 (OR=15.000,95%CI=2.537-88.701,P=0.003).Conclusions Selenoprotein genes with differential expression are involved in the regulation of COVID-19 development.The findings provide a new reference for the prevention and treatment of COVID-19.


Asunto(s)
COVID-19 , Selenoproteínas , Humanos , Selenoproteínas/genética , Selenoproteínas/metabolismo , COVID-19/genética , COVID-19/metabolismo , SARS-CoV-2 , Mapas de Interacción de Proteínas/genética
11.
J Obstet Gynaecol ; 44(1): 2373951, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38963237

RESUMEN

BACKGROUND: The expression and function of coexpression genes of M1 macrophage in cervical cancer have not been identified. And the CXCL9-expressing tumour-associated macrophage has been poorly reported in cervical cancer. METHODS: To clarify the regulatory gene network of M1 macrophage in cervical cancer, we downloaded gene expression profiles of cervical cancer patients in TCGA database to identify M1 macrophage coexpression genes. Then we constructed the protein-protein interaction networks by STRING database and performed functional enrichment analysis to investigate the biological effects of the coexpression genes. Next, we used multiple bioinformatics databases and experiments to overall investigate coexpression gene CXCL9, including western blot assay and immunohistochemistry assay, GeneMANIA, Kaplan-Meier Plotter, Xenashiny, TISCH2, ACLBI, HPA, TISIDB, GSCA and cBioPortal databases. RESULTS: There were 77 positive coexpression genes and 5 negative coexpression genes in M1 macrophage. The coexpression genes in M1 macrophage participated in the production and function of chemokines and chemokine receptors. Especially, CXCL9 was positively correlated with M1 macrophage infiltration levels in cervical cancer. CXCL9 expression would significantly decrease and high CXCL9 levels were linked to good prognosis in the cervical cancer tumour patients, it manifestly expressed in blood immune cells, and was positively related to immune checkpoints. CXCL9 amplification was the most common type of mutation. The CXCL9 gene interaction network could regulate immune-related signalling pathways, and CXCL9 amplification was the most common mutation type in cervical cancer. Meanwhile, CXCL9 may had clinical significance for the drug response in cervical cancer, possibly mediating resistance to chemotherapy and targeted drug therapy. CONCLUSION: Our findings may provide new insight into the M1 macrophage coexpression gene network and molecular mechanisms in cervical cancer, and indicated that M1 macrophage association gene CXCL9 may serve as a good prognostic gene and a potential therapeutic target for cervical cancer therapies.


Cervical cancer is a common gynaecological malignancy, investigating the precise gene expression regulation of M1 macrophage is crucial for understanding the changes in the immune microenvironment of cervical cancer. In our study, a total of 82 coexpression genes with M1 macrophages were identified, and these genes were involved in the production and biological processes of chemokines and chemokine receptors. Especially, the chemokine CXCL9 was positively correlated with M1 macrophage infiltration levels in cervical cancer. CXCL9 as a protective factor, it manifestly expressed in blood immune cells, and was positively related to immune checkpoints. CXCL9 amplification was the most common type of mutation. And CXCL9 expression could have an effect on the sensitivity of some chemicals or targeted drugs against cervical cancer. These findings may provide new insight into the M1 macrophage coexpression gene network and molecular mechanisms, and shed light on the role of CXCL9 in cervical cancer.


Asunto(s)
Quimiocina CXCL9 , Neoplasias del Cuello Uterino , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Humanos , Femenino , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Regulación Neoplásica de la Expresión Génica , Macrófagos/metabolismo , Pronóstico , Redes Reguladoras de Genes , Mapas de Interacción de Proteínas/genética , Biología Computacional , Macrófagos Asociados a Tumores/metabolismo , Perfilación de la Expresión Génica , Bases de Datos Genéticas
12.
J Coll Physicians Surg Pak ; 34(7): 805-810, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38978245

RESUMEN

OBJECTIVE: To investigate the variability in the expression profile of genes associated with polymyositis (PM), explore the potential molecular mechanisms underlying PM, and predict novel targets for intervention. STUDY DESIGN: Descriptive study. Place and Duration of the Study: Department of Rheumatology, Taizhou Municipal Hospital, Taizhou, China, from August to November 2023. METHODOLOGY: Three microarray datasets (GSE3112, GSE39454, and GSE128470) were extracted from the gene expression omnibus (GEO). The analysis of this research involved identifying the differentially expressed genes (DEGs) in PM compared to normal samples. Enrichment analysis, gene-microRNA, gene-transcription factor (TF), and protein-protein interaction (PPI) network studies were conducted to identify hub genes and relevant pathways. Additionally, the drug-gene interaction database (DGIdb) was used to predict therapeutic medications. RESULTS: Eighty-eight DEGs were identified. The enrichment analysis results highlighted the significant involvement of downregulated DEGs in antigen processing and presentation. Based on the PPI networks, seven hub genes with high connectivity degrees were selected including a cluster of differentiation 74 (CD74), human leukocyte antigen (HLA)-DPA1, HLA-B, guanylate-binding protein 1 (GBP1), recombinant 2', 5'-oligoadenylate synthetase 1 (OAS1), HLA-C, and HLA-E. CONCLUSION: This research screened-out core genes, projected prospective therapeutic medications, discovered DEGs between PM and normal samples, and offered fresh perspectives for additional research into the possible mechanism and therapeutic targets of PM. KEY WORDS: Polymyositis, DEGs, Hub genes, Bioinformatics, Potential therapeutic agents.


Asunto(s)
Perfilación de la Expresión Génica , Polimiositis , Mapas de Interacción de Proteínas , Humanos , Polimiositis/genética , Polimiositis/tratamiento farmacológico , Redes Reguladoras de Genes , Biología Computacional , MicroARNs/genética , Bases de Datos Genéticas , Transcriptoma
13.
Sci Rep ; 14(1): 15578, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971817

RESUMEN

There is a growing body of evidence suggesting that Hashimoto's thyroiditis (HT) may contribute to an increased risk of papillary thyroid carcinoma (PTC). However, the exact relationship between HT and PTC is still not fully understood. The objective of this study was to identify potential common biomarkers that may be associated with both PTC and HT. Three microarray datasets from the GEO database and RNA-seq dataset from TCGA database were collected to identify shared differentially expressed genes (DEGs) between HT and PTC. A total of 101 genes was identified as common DEGs, primarily enriched inflammation- and immune-related pathways through GO and KEGG analysis. We performed protein-protein interaction analysis and identified six significant modules comprising a total of 29 genes. Subsequently, tree hub genes (CD53, FCER1G, TYROBP) were selected using random forest (RF) algorithms for the development of three diagnostic models. The artificial neural network (ANN) model demonstrates superior performance. Notably, CD53 exerted the greatest influence on the ANN model output. We analyzed the protein expressions of the three genes using the Human Protein Atlas database. Moreover, we observed various dysregulated immune cells that were significantly associated with the hub genes through immune infiltration analysis. Immunofluorescence staining confirmed the differential expression of CD53, FCER1G, and TYROBP, as well as the results of immune infiltration analysis. Lastly, we hypothesise that benzylpenicilloyl polylysine and aspirinmay be effective in the treatment of HT and PTC and may prevent HT carcinogenesis. This study indicates that CD53, FCER1G, and TYROBP play a role in the development of HT and PTC, and may contribute to the progression of HT to PTC. These hub genes could potentially serve as diagnostic markers and therapeutic targets for PTC and HT.


Asunto(s)
Biomarcadores de Tumor , Biología Computacional , Enfermedad de Hashimoto , Aprendizaje Automático , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Enfermedad de Hashimoto/genética , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/diagnóstico , Biología Computacional/métodos , Biomarcadores de Tumor/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/diagnóstico , Mapas de Interacción de Proteínas/genética , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Redes Neurales de la Computación
14.
Sci Rep ; 14(1): 15600, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971916

RESUMEN

Binding of Staphylococcus aureus protein A (SPA) to osteoblasts induces apoptosis and inhibits bone formation. Bone marrow-derived mesenchymal stem cells (BMSCs) have the ability to differentiate into bone, fat and cartilage. Therefore, it was important to analyze the molecular mechanism of SPA on osteogenic differentiation. We introduced transcript sequence data to screen out differentially expressed genes (DEGs) related to SPA-interfered BMSC. Protein-protein interaction (PPI) network of DEGs was established to screen biomarkers associated with SPA-interfered BMSC. Receiver operating characteristic (ROC) curve was plotted to evaluate the ability of biomarkers to discriminate between two groups of samples. Finally, we performed GSEA and regulatory analysis based on biomarkers. We identified 321 DEGs. Subsequently, 6 biomarkers (Cenpf, Kntc1, Nek2, Asf1b, Troap and Kif14) were identified by hubba algorithm in PPI. ROC analysis showed that six biomarkers could clearly discriminate between normal differentiated and SPA-interfered BMSC. Moreover, we found that these biomarkers were mainly enriched in the pyrimidine metabolism pathway. We also constructed '71 circRNAs-14 miRNAs-5 mRNAs' and '10 lncRNAs-5 miRNAs-2 mRNAs' networks. Kntc1 and Asf1b genes were associated with rno-miR-3571. Nek2 and Asf1b genes were associated with rno-miR-497-5p. Finally, we found significantly lower expression of six biomarkers in the SPA-interfered group compared to the normal group by RT-qPCR. Overall, we obtained 6 biomarkers (Cenpf, Kntc1, Nek2, Asf1b, Troap, and Kif14) related to SPA-interfered BMSC, which provided a theoretical basis to explore the key factors of SPA affecting osteogenic differentiation.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Osteogénesis , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Osteogénesis/genética , Diferenciación Celular/genética , Humanos , Biomarcadores/metabolismo , Quinasas Relacionadas con NIMA/metabolismo , Quinasas Relacionadas con NIMA/genética , Mapas de Interacción de Proteínas/genética , MicroARNs/genética , MicroARNs/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes
15.
Medicine (Baltimore) ; 103(27): e38877, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968466

RESUMEN

BACKGROUND: Both ischemic stroke (IS) and myocardial infarction (MI) are caused by vascular occlusion that results in ischemia. While there may be similarities in their mechanisms, the potential relationship between these 2 diseases has not been comprehensively analyzed. Therefore, this study explored the commonalities in the pathogenesis of IS and MI. METHODS: Datasets for IS (GSE58294, GSE16561) and MI (GSE60993, GSE61144) were downloaded from the Gene Expression Omnibus database. Transcriptome data from each of the 4 datasets were analyzed using bioinformatics, and the differentially expressed genes (DEGs) shared between IS and MI were identified and subsequently visualized using a Venn diagram. A protein-protein interaction (PPI) network was constructed using the Interacting Gene Retrieval Tool database, and identification of key core genes was performed using CytoHubba. Gene Ontology (GO) term annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the shared DEGs were conducted using prediction and network analysis methods, and the functions of the hub genes were determined using Metascape. RESULTS: The analysis revealed 116 and 1321 DEGs in the IS and MI datasets, respectively. Of the 75 DEGs shared between IS and MI, 56 were upregulated and 19 were downregulated. Furthermore, 15 core genes - S100a12, Hp, Clec4d, Cd163, Mmp9, Ormdl3, Il2rb, Orm1, Irak3, Tlr5, Lrg1, Clec4e, Clec5a, Mcemp1, and Ly96 - were identified. GO enrichment analysis of the DEGs showed that they were mainly involved in the biological functions of neutrophil degranulation, neutrophil activation during immune response, and cytokine secretion. KEGG analysis showed enrichment in pathways pertaining to Salmonella infection, Legionellosis, and inflammatory bowel disease. Finally, the core gene-transcription factor, gene-microRNA, and small-molecule relationships were predicted. CONCLUSION: These core genes may provide a novel theoretical basis for the diagnosis and treatment of IS and MI.


Asunto(s)
Accidente Cerebrovascular Isquémico , Infarto del Miocardio , Mapas de Interacción de Proteínas , Humanos , Infarto del Miocardio/genética , Accidente Cerebrovascular Isquémico/genética , Mapas de Interacción de Proteínas/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Bases de Datos Genéticas , Redes Reguladoras de Genes , Transcriptoma/genética , Ontología de Genes
16.
Medicine (Baltimore) ; 103(27): e38695, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968517

RESUMEN

This study aimed to identify hub genes and elucidate the molecular mechanisms underlying low bone mineral density (BMD) in perimenopausal women. R software was used to normalize the dataset and screen the gene set associated with BMD in perimenopausal women from the Gene Expression Omnibus database. Cytoscape software was used to identify 7 critical genes. Gene enrichment analysis and protein interaction was employed to further analyze the core genes, and the CIBERSORT deconvolution algorithm was used to perform immune infiltration analysis of 22 immune genes in the samples. Furthermore, an analysis of the immune correlations of 7 crucial genes was conducted. Subsequently, a receiver operating characteristic curve was constructed to assess the diagnostic efficacy of these essential genes. A total of 171 differentially expressed genes were identified that were primarily implicated in the signaling pathways associated with apoptosis. Seven crucial genes (CAMP, MMP8, HMOX1, CTNNB1, ELANE, AKT1, and CEACAM8) were effectively filtered. The predominant functions of these genes were enriched in specific granules. The pivotal genes displayed robust associations with activated dendritic cells. The developed risk model showed a remarkable level of precision, as evidenced by an area under the curve of 0.8407 and C-index of 0.854. The present study successfully identified 7 crucial genes that are significantly associated with low BMD in perimenopausal women. Consequently, this research offers a solid theoretical foundation for clinical risk prediction, drug sensitivity analysis, and the development of targeted drugs specifically tailored for addressing low BMD in perimenopausal women.


Asunto(s)
Densidad Ósea , Biología Computacional , Perimenopausia , Humanos , Femenino , Biología Computacional/métodos , Perimenopausia/genética , Densidad Ósea/genética , Medición de Riesgo/métodos , Persona de Mediana Edad , Curva ROC , Mapas de Interacción de Proteínas/genética
17.
Medicine (Baltimore) ; 103(27): e38699, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968529

RESUMEN

Investigations into the therapeutic potential of Astragalus Mongholicus (AM, huáng qí) and Largehead Atractylodes (LA, bái zhú) reveal significant efficacy in mitigating the onset and progression of knee osteoarthritis (KOA), albeit with an elusive mechanistic understanding. This study delineates the primary bioactive constituents and their molecular targets within the AM-LA synergy by harnessing the comprehensive Traditional Chinese Medicine (TCM) network databases, including TCMSP, TCMID, and ETCM. Furthermore, an analysis of 3 gene expression datasets, sourced from the gene expression omnibus database, facilitated the identification of differential genes associated with KOA. Integrating these findings with data from 5 predominant databases yielded a refined list of KOA-associated targets, which were subsequently aligned with the gene signatures corresponding to AM and LA treatment. Through this alignment, specific molecular targets pertinent to the AM-LA therapeutic axis were elucidated. The construction of a protein-protein interaction network, leveraging the shared genetic markers between KOA pathology and AM-LA intervention, enabled the identification of pivotal molecular targets via the topological analysis facilitated by CytoNCA plugins. Subsequent GO and KEGG enrichment analyses fostered the development of a holistic herbal-ingredient-target network and a core target-signal pathway network. Molecular docking techniques were employed to validate the interaction between 5 central molecular targets and their corresponding active compounds within the AM-LA complex. Our findings suggest that the AM-LA combination modulates key biological processes, including cellular activity, reactive oxygen species modification, metabolic regulation, and the activation of systemic immunity. By either augmenting or attenuating crucial signaling pathways, such as MAPK, calcium, and PI3K/AKT pathways, the AM-LA dyad orchestrates a comprehensive regulatory effect on immune-inflammatory responses, cellular proliferation, differentiation, apoptosis, and antioxidant defenses, offering a novel therapeutic avenue for KOA management. This study, underpinned by gene expression omnibus gene chip analyses and network pharmacology, advances our understanding of the molecular underpinnings governing the inhibitory effects of AM and LA on KOA progression, laying the groundwork for future explorations into the active components and mechanistic pathways of TCM in KOA treatment.


Asunto(s)
Atractylodes , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Osteoartritis de la Rodilla , Atractylodes/química , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/genética , Farmacología en Red/métodos , Humanos , Mapas de Interacción de Proteínas , Planta del Astrágalo/química , Medicina Tradicional China/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Astragalus propinquus
18.
Sci Rep ; 14(1): 15656, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977885

RESUMEN

The aim of current study was to identify closely linked QTLs and candidate genes related to germination indices under control, salinity and drought conditions in barley. A total of nine (a major), 28 (eight major) and 34 (five major) closely linked QTLs were mapped on the seven chromosomes in response to control, drought and salinity conditions using genome-wide composite interval mapping, respectively. The major QTLs can be used in marker-assisted selection (MAS) projects to increase tolerance to drought and salinity stresses during the germination. Overall, 422 unique candidate genes were associated with most major QTLs. Moreover, gene ontology analysis showed that candidate genes mostly involved in biological process related to signal transduction and response to stimulus in the pathway of resistance to drought and salinity stresses. Also, the protein-protein interaction network was identified 10 genes. Furthermore, 10 genes were associated with receptor-like kinase family. In addition, 16 transcription factors were detected. Three transcription factors including B3, bHLH, and FAR1 had the most encoding genes. Totally, 60 microRNAs were traced to regulate the target genes. Finally, the key genes are a suitable and reliable source for future studies to improve resistance to abiotic stress during the germination of barley.


Asunto(s)
Mapeo Cromosómico , Sequías , Germinación , Hordeum , Sitios de Carácter Cuantitativo , Estrés Salino , Hordeum/genética , Hordeum/crecimiento & desarrollo , Germinación/genética , Estrés Salino/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Mapas de Interacción de Proteínas/genética , Salinidad , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromosomas de las Plantas/genética , MicroARNs/genética
19.
J Mol Neurosci ; 74(3): 68, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995420

RESUMEN

Ischemic stroke is the leading cause of long-term disability in adults, accounting for 80% of stroke cases. Diffusion weighted imaging (DWI) examination is the main test for acute ischemic stroke, but in recent years, several studies have shown that some patients show negative DWI examination after the onset of ischemic stroke with symptoms of significant neurological deficits. In this study, we investigated potential biomarkers related to immune metabolism in the peripheral blood of DWI-negative versus DWI-positive patients after ischemic stroke and explored their possible regulatory processes in ischemic stroke. The datasets related to ischemic stroke were downloaded from the GEO database, immune-related genes and metabolism-related genes were obtained from the ImmPort database and MSigDB database, respectively, and immune-related differential genes were obtained based on immune scores using the algorithm of the R software package "GSVA." Candidate genes were selected based on intersections, hub genes were screened using the algorithm in Cytoscape software, and finally, GeneMANIA analysis, GSEA enrichment analysis, subcellular localization, gene transcription factor and gene-drug interaction networks, and disease correlation analyses were performed for the hub genes. Five hub genes (GART, TYMS, PPAT, CTPS1, and PAICS) were obtained by PPI network analysis and software analysis. Among them, PPAT and PAICS may be the real hub genes with consistent and significantly differentiated results from the discovery and validation sets. The functions of these hub genes may be related to pathways such as nucleotide biosynthetic processes. The constructed hub gene ceRNA network showed that hsa-10a-5p is the key miRNA connecting PAICS and multiple lncRNAs in this study. Differential genes related to immunity and metabolism in DWI-negative and DWI-positive patients after IS were identified using bioinformatics analysis, and their pathways and related TF-RNAs, miRNAs, and lncRNAs were identified. These genes may be considered effective targets for the diagnosis and treatment of ischemic stroke.


Asunto(s)
Biomarcadores , Accidente Cerebrovascular Isquémico , Humanos , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/sangre , Accidente Cerebrovascular Isquémico/metabolismo , Imagen de Difusión por Resonancia Magnética/métodos , Mapas de Interacción de Proteínas , Redes Reguladoras de Genes
20.
Bull Math Biol ; 86(9): 105, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995438

RESUMEN

The growing complexity of biological data has spurred the development of innovative computational techniques to extract meaningful information and uncover hidden patterns within vast datasets. Biological networks, such as gene regulatory networks and protein-protein interaction networks, hold critical insights into biological features' connections and functions. Integrating and analyzing high-dimensional data, particularly in gene expression studies, stands prominent among the challenges in deciphering these networks. Clustering methods play a crucial role in addressing these challenges, with spectral clustering emerging as a potent unsupervised technique considering intrinsic geometric structures. However, spectral clustering's user-defined cluster number can lead to inconsistent and sometimes orthogonal clustering regimes. We propose the Multi-layer Bundling (MLB) method to address this limitation, combining multiple prominent clustering regimes to offer a comprehensive data view. We call the outcome clusters "bundles". This approach refines clustering outcomes, unravels hierarchical organization, and identifies bridge elements mediating communication between network components. By layering clustering results, MLB provides a global-to-local view of biological feature clusters enabling insights into intricate biological systems. Furthermore, the method enhances bundle network predictions by integrating the bundle co-cluster matrix with the affinity matrix. The versatility of MLB extends beyond biological networks, making it applicable to various domains where understanding complex relationships and patterns is needed.


Asunto(s)
Algoritmos , Biología Computacional , Redes Reguladoras de Genes , Conceptos Matemáticos , Mapas de Interacción de Proteínas , Análisis por Conglomerados , Humanos , Modelos Biológicos , Perfilación de la Expresión Génica/estadística & datos numéricos , Perfilación de la Expresión Génica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...