Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 529
Filtrar
1.
Ultrason Sonochem ; 108: 106980, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38981338

RESUMEN

To obtain high-quality cherry products, ultrasound (US) combined with five chemical pretreatment techniques were used on cherry prior to radio frequency vacuum drying (RFV), including carboxymethyl cellulose coating (CMC), cellulase (CE), ethanol (EA), isomaltooligosaccharide (IMO), and potassium carbonate + ethyl oleate (PC + AEEO). The effect of different pretreatments (US-CMC, US-CE, US-EA, US-IMO, US-(PC + AEEO)) on the drying characteristics, quality properties, texture, and sensory evaluation of cherries was evaluated. Results showed that the dehydration time and energy consumption were decreased by 4.17 - 20.83 % and 3.22 - 19.34 %, respectively, and the contents of individual sugars, soluble solid, total phenolics (TPC), natural active substances, total flavonoids (TFC), and antioxidant properties (DPPH, ABTS and FRAP) were significantly increased after US combined with five chemical treatments (P < 0.05). Moreover, the pretreatment played important role in improving texture properties and surface color retention in the dried cherries. According to the sensory evaluation analysis, the dehydrated cherries pretreated with US-CMC exhibited the highest overall acceptance, texture, crispness, color, and sweet taste showed lower off-odor, bitter taste and sour taste compared to control and other pretreatments. The findings indicate that US-CMC pretreatment is a promising technique for increasing physicochemical qualities and dehydration rate of samples, which provides a novel strategy to processing of dried cherry.


Asunto(s)
Desecación , Prunus avium , Vacio , Desecación/métodos , Prunus avium/química , Ondas Ultrasónicas , Antioxidantes/química , Ondas de Radio , Manipulación de Alimentos/métodos , Calidad de los Alimentos , Gusto , Fenoles/análisis , Fenoles/química
2.
Nutrients ; 16(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39064791

RESUMEN

Earlier laboratory-based evidence has suggested that polyphenol-rich, decaffeinated whole coffee cherry extract (CCE) supports improvements in acute and long-term cognitive performance. To better understand CCE's potential to promote cognitive processing, we conducted a first-of-its-kind remote clinical trial. Participants were randomized into one of two intervention arms: placebo or 200 mg CCE. At the beginning of the study, participants were asked to complete a set of acute cognitive challenges as part of the baseline assessment. Tasks were nearly identical to those used in previous, laboratory-based research. Acute results support that CCE outperformed placebo, reducing omissions and improving accuracy, during working memory and inhibitory control tasks. Long-term results indicate that CCE outperformed placebo on a measure of accuracy. This contributes to the literature in three ways: (1) results improve upon previously reported robust and consistent findings in a real-world setting that a single-dose of CCE acutely improved cognitive performance; (2) results replicate previous laboratory findings but in a real-world setting that long-term CCE supplementation outperformed placebo on measures of accuracy in a working memory task; and (3) it serves as proof of concept of a novel remote clinical trial model that may provide real-world evidence of efficacy while increasing accessibility and cohort diversity.


Asunto(s)
Cognición , Memoria a Corto Plazo , Extractos Vegetales , Humanos , Memoria a Corto Plazo/efectos de los fármacos , Método Doble Ciego , Extractos Vegetales/farmacología , Masculino , Femenino , Adulto , Cognición/efectos de los fármacos , Adulto Joven , Prunus avium/química , Suplementos Dietéticos , Estudios Longitudinales , Inhibición Psicológica
3.
PLoS One ; 19(7): e0294098, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39046978

RESUMEN

The sweet cherry (Prunus avium) is among deciduous fruit trees with high economic value and its planting area is gradually expanding. However, little was known about its accurately suitable area in China. Herein, the potential distributions were modeled based on the MaxEnt model under the current conditions. Its performance was excellent, with AUCs >0.9 for model training and testing. The key environmental factors were the thermal factors (minimum temperature of the coldest month (bio06) from -14.5 to 4.5°C, the mean temperature of the warmest quarter (bio10) from 21.0 to 28.0°C), followed by the water factor (the annual precipitation (bio12) from 500 to 1200 mm), indicating that it is not resistant to cold and heat, nor is it resistant to drought or floods. The suitable area in China mainly is found in seven geographical regions including southwest China (eastern Sichuan, northeast and main urban areas of Chongqing, mid-western Guizhou and mid-northern Yunnan), northwest China (mid-southern Shaanxi, southern Ningxia mid-southern and eastern Gansu), northeast China (Coastal region of Liaoning), central China (most of Henan, mid-northern Hubei and central Hunan), north China (Beijing, Tianjing, mid-southern Shanxi), east China (Shanghai, Jiangsu, Shandong, central Zhejiang, central and northern Anhui and eastern Jiangxi) and south China (western Guangxi). Based on statistical analysis, these fourteen provinces or cities, namely, Shaanxi, Beijing, Tianjing, Shanxi, Hebei, Henan, Shanghai, Jiangsu, Shandong, Sichuan, Guizhou, Yunnan, Liaoning and Hubei were the main regions for current development and utilization while for the twelve provinces with higher moderate suitable areas, namely, Chongqing, Guizhou, Yunnan, Shaanxi, Ningxia, Liaoning, Hubei, Hunan, Zhejiang, Anhui, Jiangxi and Guangxi, we should supplement the appropriate irrigation and winter insulation facilities etc. Additionally, Hubei, Hunan, Anhui, also have been identified to have some potentially suitable areas. These information will help avoid the loss of human labor, material, and financial resources and provide a scientific basis for its current introduction, cultivation, and management.


Asunto(s)
Prunus avium , China , Temperatura , Modelos Teóricos , Sequías
4.
BMC Plant Biol ; 24(1): 536, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862890

RESUMEN

BACKGROUND: The heavy metal-associated isoprenylated plant protein (HIPP) is an important regulatory element in response to abiotic stresses, especially playing a key role in low-temperature response. RESULTS: This study investigated the potential function of PavHIPP16 up-regulated in sweet cherry under cold stress by heterologous overexpression in tobacco. The results showed that the overexpression (OE) lines' growth state was better than wild type (WT), and the germination rate, root length, and fresh weight of OE lines were significantly higher than those of WT. In addition, the relative conductivity and malondialdehyde (MDA) content of the OE of tobacco under low-temperature treatment were substantially lower than those of WT. In contrast, peroxidase (POD), superoxide dismutase (SOD), catalase (CAT) activities, hydrogen peroxide (H2O2), proline, soluble protein, and soluble sugar contents were significantly higher than those of WT. Yeast two-hybrid assay (Y2H) and luciferase complementation assay verified the interactions between PavbHLH106 and PavHIPP16, suggesting that these two proteins co-regulated the cold tolerance mechanism in plants. The research results indicated that the transgenic lines could perform better under low-temperature stress by increasing the antioxidant enzyme activity and osmoregulatory substance content of the transgenic plants. CONCLUSIONS: This study provides genetic resources for analyzing the biological functions of PavHIPPs, which is important for elucidating the mechanisms of cold resistance in sweet cherry.


Asunto(s)
Nicotiana , Proteínas de Plantas , Plantas Modificadas Genéticamente , Prunus avium , Nicotiana/genética , Nicotiana/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Prunus avium/genética , Prunus avium/fisiología , Prunus avium/metabolismo , Respuesta al Choque por Frío/genética , Frío , Regulación de la Expresión Génica de las Plantas
5.
Nutrients ; 16(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38892529

RESUMEN

Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. Therefore, there is increasing interest in dietary interventions to reduce risk factors associated with these conditions. Cherries and berries are rich sources of bioactive compounds and have attracted attention for their potential cardiovascular benefits. This review summarises the current research on the effects of cherry and berry consumption on cardiovascular health, including in vivo studies and clinical trials. These red fruits are rich in phenolic compounds, such as anthocyanins and flavonoids, which have multiple bioactive properties. These properties include antioxidant, anti-inflammatory, and vasodilatory effects. Studies suggest that regular consumption of these fruits may reduce inflammation and oxidative stress, leading to lower blood pressure, improved lipid profiles, and enhanced endothelial function. However, interpreting findings and establishing optimal dosages is a challenge due to the variability in fruit composition, processing methods, and study design. Despite these limitations, the evidence highlights the potential of cherries and berries as components of preventive strategies against CVD. Further research is needed to maximise their health benefits and improve clinical practice.


Asunto(s)
Antioxidantes , Enfermedades Cardiovasculares , Frutas , Fenoles , Prunus avium , Frutas/química , Humanos , Enfermedades Cardiovasculares/prevención & control , Prunus avium/química , Enfermedad Crónica/prevención & control , Flavonoides/farmacología , Antocianinas/farmacología , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios/farmacología
6.
Food Chem ; 455: 139989, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850969

RESUMEN

Cornelian cherry pomace is produced during the production of juice from this traditional superfood. Due to its high nutritive value, the by-product can be utilized as a source of bioactive compounds. The present study aimed to develop a sustainable methodology for the recovery of bioactive compounds based on the combination of atmospheric cold plasma (CAP) with ultrasound assisted extraction. The pomace was treated with cold plasma under different conditions. Cyclodextrin was used as green extraction enhancer due to its capacity to develop inclusion complexes with bioactive compounds. CAP pretreatment before extraction appeared to enhance the recovery of the target compounds. GC-MS analysis and in vitro digestion analysis conducted in order to evaluate the composition and the protentional bioavailability of the bioactive compounds. CHEMICALS COMPOUNDS: ß-cyclodextrin (PubChem CID: 444041), DPPH free radical (PubChem CID: 2735032), Trolox (PubChem CID: 40634), sodium carbonate (PubChem CID: 10340), gallic acid (PubChem CID: 370) potassium chloride (PubChem CID: 4873), sodium acetate (PubChem CID: 517045), loganic acid (PubChem CID: 89640), pyridine (PubChem CID: 1049, BSTFA(PubChem CID: 94358), potassium chloride (PubChem CID: 4873), ammonium carbonate (PubChem CID: 517111), calcium chloride dehydrate (PubChem CID: 24844), potassium dihydrogen phosphate (PubChem CID: 516951), magnesium chloride hexahydrate (PubChem CID: 24644), sodium hydrogen carbonate (PubChem CID: 516892), sodium chloride (PubChem CID: 5234).


Asunto(s)
Extractos Vegetales , Gases em Plasma , Gases em Plasma/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Frutas/química , Prunus avium/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Fraccionamiento Químico/métodos , Cromatografía de Gases y Espectrometría de Masas , Ultrasonido
7.
BMC Plant Biol ; 24(1): 574, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890583

RESUMEN

BACKGROUND: Fruit cracking impacts the quality of sweet cherry, significantly affecting its marketability due to increased susceptibility to injury, aesthetic flaws, and susceptibility to pathogens. The effect of 1% biofilm (Parka™) application regimes on fruit cracking and other quality parameters in the '0900 Ziraat' cherry cultivar was investigated in this study. Fruit sprayed with water were served as control (U1). Fruit treated only once with biofilm three, two and one week before the commercial harvest were considered as U2, U3 and U4, respectively. Fruit treated with biofilm three, two, and one week before harvest were considered as U5; three and two week before harvest as U6; two and one week before harvest as U7; and fruit treated three and one week before harvest as U8. RESULTS: In both measurement periods, the lower cracking index was obtained in biofilm-treated sweet cherry fruit. However, the firmness of biofilm-treated fruit was higher than that of the control fruit. The lowest respiration rate was observed in U7, while the highest weight was recorded in U4 and U5 than the control. The biofilm application decreased fruit coloration. The biofilm application also increased the soluble solids content of the fruit. The U2, U3 and U4 applications at harvest showed higher titratable acidity than the control. In both measurement periods, the vitamin C content of the U2, U5, U6, U7 and U8 applications was found to be higher than that of the control. The total monomeric anthocyanin of the U3 and U8 applications was higher than that of the control. Furthermore, the antioxidant activity of the U2, U3 and U5 in the DPPH, and the U7 and U8 in FRAP were measured higher thanthat of the control. CONCLUSIONS: The application of biofilms has the potential to mitigate fruit cracking, prolong postharvest life of sweet cherries, and enhance fruit firmness.


Asunto(s)
Biopelículas , Frutas , Prunus avium , Frutas/microbiología , Frutas/fisiología , Biopelículas/efectos de los fármacos , Prunus avium/fisiología , Prunus avium/efectos de los fármacos , Ácido Ascórbico/metabolismo
8.
Molecules ; 29(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930830

RESUMEN

The objective of this research was to optimize the natural deep eutectic solvent (NADES) extraction process from sour cherry kernels (Prunus cerasus L.). For polyphenol isolation, conventional solid-liquid extraction was employed using different concentrations of ethanol (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 96%), as well as the innovative NADES extraction technique. In the initial phase of the research, a screening of 10 different NADESs was conducted, while extraction was carried out under constant parameters (50 °C, 1:20 w/w, 60 min). NADES 4, composed of lactic acid and glucose in a molar ratio of 5:1, exhibited the highest efficiency in the polyphenol isolation. In the subsequent phase of the research, response surface methodology (RSM) was utilized to optimize the extraction process. Three independent variables, namely temperature, extraction time, and solid-liquid (S/L) ratio, were examined at three different levels. The extracted samples were analyzed for total phenol (TP) and antioxidant activity using the DPPH, ABTS, and FRAP assays. ANOVA and descriptive statistics (R2 and CV) were performed to fit the applied model. According to RSM, the optimal extraction conditions were determined as follows: temperature of 70 °C, extraction time of 161 min, and S/L ratio of 1:25 w/w.


Asunto(s)
Antioxidantes , Disolventes Eutécticos Profundos , Polifenoles , Prunus avium , Polifenoles/química , Polifenoles/aislamiento & purificación , Prunus avium/química , Antioxidantes/química , Antioxidantes/farmacología , Disolventes Eutécticos Profundos/química , Extractos Vegetales/química , Solventes/química
9.
Int J Biol Macromol ; 274(Pt 2): 133530, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945332

RESUMEN

To expand the utilization of gelatin and pectin derived from agricultural by-products, the composite films composed of gelatin, citrus pectin, cellulose nanofibers (CNF), and polyhexamethylene biguanide hydrochloride (PHMB) were prepared through the solvent casting method. Fourier infrared spectroscopy analysis verified the successful integration of CNF and PHMB into the gelatin-pectin matrix. The incorporation of CNF as a reinforcing agent substantially enhanced the barrier capabilities of the composite film. Moreover, the addition of PHMB, functioning as an antimicrobial agent, not only granted the film with antibacterial properties but also improved its physical characteristics and biodegradability. A water contact angle experiment revealed the film presented a certain degree of hydrophobicity. The optimal performances were attained with a composition in which CNF and PHMB constituted 8 % and 3 %, respectively, of the total weight of gelatin and pectin. As a packaging film, the composite film demonstrated its effectiveness by reducing the decay index and weight loss rate of sweet cherries during a 12-day storage period. In the soil degradation test, the composite film exhibited notable structural degradation by the 16th day. Consequently, the composite film will be used as an innovative and biodegradable packaging material to provide a sustainable solution for food packaging industries.


Asunto(s)
Biguanidas , Celulosa , Embalaje de Alimentos , Gelatina , Nanofibras , Pectinas , Gelatina/química , Pectinas/química , Nanofibras/química , Embalaje de Alimentos/métodos , Celulosa/química , Biguanidas/química , Prunus avium/química , Antibacterianos/química , Antibacterianos/farmacología
10.
Int J Biol Macromol ; 271(Pt 1): 132618, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795880

RESUMEN

High-temperature blanching (HTB) is the primary process that causes texture softening in frozen yellow peaches. The implementation of low-temperature blanching reduced pectin methyl esterification, increased pectin cross-linking, and mitigated pectin depolymerization during the subsequent HTB, leading to the superior texture of frozen yellow peaches with enhanced water holding capacity, higher fracture stress, and initial modulus. However, adding 2 % calcium lactate (w/v) during low-temperature blanching did not further improve the texture of frozen yellow peaches. Instead, it softened the texture by reducing Na2CO3-soluble pectin (NSP) and increasing water-soluble pectin (WSP) content. This study provided a theoretical basis for applying low-temperature blanching to improve the texture of frozen yellow peaches.


Asunto(s)
Congelación , Pectinas , Pectinas/química , Solubilidad , Agua/química , Frío , Lactatos/química , Compuestos de Calcio/química , Prunus avium/química , Carbonatos/química
11.
Diabetes Metab Syndr ; 18(5): 103026, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38759306

RESUMEN

AIMS: This study aimed to clarify the effectiveness of tart cherries on anthropometric, lipid, and glycemic indices. We also aimed to clarify the appropriate dosage for this effect and suggest directions for future studies. METHODS: PubMed, Scopus, and Web of Science were searched until May 2022. Twelve eligible trials were included. The pooled results were reported as weighted mean differences (WMD) and 95 % confidence intervals (CIs). The Cochrane risk of bias and GRADE tools were used to assess the risk of bias and certainty of the evidence, respectively. RESULTS: Tart cherry generally showed no significant effects on cardiometabolic risk factors. But subgroup analysis revealed that tart cherry significantly lowered total cholesterol (WMD: -0.33 mmol/l; 95 % CI: -0.55, -0.10), triglyceride (WMD: -0.19 mmol/l; 95 % CI: -0.26, -0.12), and low-density lipoprotein cholesterol (WMD: -0.36 mmol/l; 95 % CI: -0.58, -0.14), in unhealthy populations. Additionally, subgroup analysis indicated that the favorable effects of tart cherry were more pronounced in a single dose, longer duration, elderly, and obese individuals. Dose-response analysis revealed that 20 ml concentrate has the greatest effect in reducing total cholesterol (WMD: -0.40 mmol/l; 95 % CI: -0.61, -0.19), triglyceride (WMD: -0.23 mmol/l; 95 % CI: -0.33, -0.13), and elevating high-density lipoprotein cholesterol (WMD: 0.20 mmol/l; 95 % CI: 0.17, 0.22). CONCLUSIONS: Tart cherry supplementation did not have significant effects on anthropometric and glycemic indices, but can improve lipid profile, especially in a single dose, longer duration, and in elderly, obese, and unhealthy individuals.


Asunto(s)
Factores de Riesgo Cardiometabólico , Prunus avium , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/epidemiología , Relación Dosis-Respuesta a Droga , Pronóstico , Lípidos/sangre
12.
J Exp Bot ; 75(14): 4428-4452, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602443

RESUMEN

Understanding the process of Prunus species floral development is crucial for developing strategies to manipulate bloom time and prevent crop loss due to climate change. Here, we present a detailed examination of flower development from initiation until bloom for early- and late-blooming sour cherries (Prunus cerasus) from a population segregating for a major bloom time QTL on chromosome 4. Using a new staging system, we show floral buds from early-blooming trees were persistently more advanced than those from late-blooming siblings. A genomic DNA coverage analysis revealed the late-blooming haplotype of this QTL, k, is located on a subgenome originating from the late-blooming P. fruticosa progenitor. Transcriptome analyses identified many genes within this QTL as differentially expressed between early- and late-blooming trees during the vegetative-to-floral transition. From these, we identified candidate genes for the late bloom phenotype, including multiple transcription factors homologous to Reproductive Meristem B3 domain-containing proteins. Additionally, we determined that the basis of k in sour cherry is likely separate from candidate genes found in sweet cherry-suggesting several major regulators of bloom time are located on Prunus chromosome 4.


Asunto(s)
Flores , Prunus avium , Prunus avium/genética , Prunus avium/crecimiento & desarrollo , Prunus avium/fisiología , Flores/genética , Flores/crecimiento & desarrollo , Sitios de Carácter Cuantitativo , Estaciones del Año , Latencia en las Plantas/genética , Prunus/genética , Prunus/crecimiento & desarrollo , Prunus/fisiología
13.
Int J Biol Macromol ; 268(Pt 2): 131660, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636766

RESUMEN

The synergistic effects of phosphorylated zein nanoparticles (PZNP) and cellulose nanocrystals (CNC) in enhancing the wetting and barrier properties of chitosan hydrochloride (CHC)-based coating are investigated characterized by Fourier Transform Infrared Spectra (FTIR), X-ray Diffraction (XRD), atomic force microscopy and by investigating the mechanical properties, etc., with the aim of reducing cherry rain cracking. FTIR and XRD showed dual nanoparticles successfully implanted into CHC, CHC-PZNP-CNC combined moderate ductility (elongation at break: 7.8 %), maximum tensile strength (37.5 MPa). The addition of PZNP alone significantly improved wetting performance (Surface Tension, CHC: 55.3 vs. CHC-PZNP: 48.9 mN/m), while the addition of CNC alone led to a notable improvement in the water barrier properties of CHC (water vapor permeability, CHC: 6.75 × 10-10 vs. CHC-CNC: 5.76 × 10-10 gm-1 Pa-1 s-1). The final CHC-PZNP-CNC coating exhibited enhanced wettability (51.2 mN/m) and the strongest water-barrier property (5.32 × 10-10 gm-1 Pa-1 s-1), coupled with heightened surface hydrophobicity (water contact angle: 106.4°). Field testing demonstrated the efficacy of the CHC-PZNP-CNC coating in reducing cherry rain-cracking (Cracking Index, Control, 42.3 % vs. CHC-PZNP-CNC, 19.7 %; Cracking Ratio, Control, 34.6 % vs. CHC-PZNP-CNC, 15.8 %). The CHC-PZNP-CNC coating is a reliable option for preventing rain-induced cherry cracking.


Asunto(s)
Quitosano , Nanopartículas , Humectabilidad , Quitosano/química , Nanopartículas/química , Celulosa/química , Lluvia/química , Zeína/química , Resistencia a la Tracción , Agua/química , Prunus avium/química , Permeabilidad
14.
Nutrients ; 16(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38613057

RESUMEN

Evidence suggests that tart cherry (TC) supplementation has beneficial effects on health indices and recovery following strenuous exercise. However, little is known about the mechanisms and how TC might modulate the human metabolome. The aim of this study was to evaluate the influence of an acute high- and low-dose of Vistula TC supplementation on the metabolomic profile in humans. In a randomised, double-blind, placebo controlled, cross-over design, 12 healthy participants (nine male and three female; mean ± SD age, stature, and mass were 29 ± 7 years old, 1.75 ± 0.1 m, and 77.3 ± 10.5 kg, respectively) visited the laboratory on three separate occasions (high dose; HI, low dose; LO, or placebo), separated by at least seven days. After an overnight fast, a baseline venous blood sample was taken, followed by consumption of a standardised breakfast and dose conditions (HI, LO, or placebo). Subsequent blood draws were taken 1, 2, 3, 5, and 8 h post consumption. Following sample preparation, an untargeted metabolomics approach was adopted, and the extracts analysed by LCMS/MS. When all time points were collated, a principal component analysis showed a significant difference between the conditions (p < 0.05), such that the placebo trial had homogeneity, and HI showed greater heterogeneity. In a sub-group analysis, cyanidine-3-O-glucoside (C3G), cyanidine-3-O-rutinoside (C3R), and vanillic acid (VA) were detected in plasma and showed significant differences (p < 0.05) following acute consumption of Vistula TC, compared to the placebo group. These results provide evidence that phenolics are bioavailable in plasma and induce shifts in the metabolome following acute Vistula TC consumption. These data could be used to inform future intervention studies where changes in physiological outcomes could be influenced by metabolomic shifts following acute supplementation.


Asunto(s)
Prunus avium , Humanos , Femenino , Masculino , Adulto Joven , Adulto , Metaboloma , Metabolómica , Estatura , Desayuno
15.
Mol Plant Pathol ; 25(4): e13451, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38590135

RESUMEN

When compared with other phylogroups (PGs) of the Pseudomonas syringae species complex, P. syringae pv. syringae (Pss) strains within PG2 have a reduced repertoire of type III effectors (T3Es) but produce several phytotoxins. Effectors within the cherry pathogen Pss 9644 were grouped based on their frequency in strains from Prunus as the conserved effector locus (CEL) common to most P. syringae pathogens; a core of effectors common to PG2; a set of PRUNUS effectors common to cherry pathogens; and a FLEXIBLE set of T3Es. Pss 9644 also contains gene clusters for biosynthesis of toxins syringomycin, syringopeptin and syringolin A. After confirmation of virulence gene expression, mutants with a sequential series of T3E and toxin deletions were pathogenicity tested on wood, leaves and fruits of sweet cherry (Prunus avium) and leaves of ornamental cherry (Prunus incisa). The toxins had a key role in disease development in fruits but were less important in leaves and wood. An effectorless mutant retained some pathogenicity to fruit but not wood or leaves. Striking redundancy was observed amongst effector groups. The CEL effectors have important roles during the early stages of leaf infection and possibly acted synergistically with toxins in all tissues. Deletion of separate groups of T3Es had more effect in P. incisa than in P. avium. Mixed inocula were used to complement the toxin mutations in trans and indicated that strain mixtures may be important in the field. Our results highlight the niche-specific role of toxins in P. avium tissues and the complexity of effector redundancy in the pathogen Pss 9644.


Asunto(s)
Prunus avium , Prunus , Virulencia/genética , Pseudomonas syringae , Prunus avium/metabolismo , Frutas/metabolismo , Mutación/genética , Prunus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
16.
J Econ Entomol ; 117(3): 865-875, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38518118

RESUMEN

This study determined the seasonal population fluctuation of Myzus cerasi (Fabricius) (Hemiptera: Aphididae) in cherry orchards and the effect of different temperatures on the life-history parameters of these aphids under laboratory conditions. Our field results showed that the population fluctuations and densities of M. cerasi on cherry trees were positively affected by the temperature increase between seasons. Also, our laboratory results showed that M. cerasi survived and reproduced at all temperatures tested under laboratory conditions. Female longevity was observed as 19.00 ±â€…2.38, 18.72 ±â€…0.49, and 12.59 ±â€…0.74 days, and fecundity was 10.14 ±â€…2.26, 9.36 ±â€…0.59, and 7.27 ±â€…0.84 offspring/female at 20, 25, and 30 °C, respectively. Although the highest net reproductive rate (R0) was observed numerically at 25 °C (7.80 offspring/female), there was no significant difference compared to 20 °C (7.10 offspring/female). The highest intrinsic rate of increase (r) and the highest finite rate of increase (λ) were calculated at 30 °C (0.15 ±â€…0.01 and 1.16 ±â€…0.01 day-1, respectively), and there was no significant difference compared to 25 °C. The mean generation time (T) of M. cerasi showed a significant difference at all temperatures tested and decreased from 22.59 ±â€…0.33 days at 20 °C to 12.78 ±â€…0.37 days at 30 °C. Consequently, our results revealed that the seasonal population fluctuation and the life history of M. cerasi in the field and laboratory conditions were affected significantly by different temperatures. Our data obtained in the field and the laboratory will contribute to the understanding of M. cerasi biology and to the management of the pest.


Asunto(s)
Áfidos , Dinámica Poblacional , Estaciones del Año , Temperatura , Animales , Áfidos/fisiología , Áfidos/crecimiento & desarrollo , Femenino , Rasgos de la Historia de Vida , Masculino , Prunus avium/crecimiento & desarrollo , Longevidad , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Fertilidad , Reproducción
17.
Int J Biol Macromol ; 266(Pt 1): 130932, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527683

RESUMEN

The fabrication possibility of nanocomposite film from sweet cherry tree exudate gum (SCG) was studied. To improve SCG film properties, oxidation with hydrogen peroxide, ultraviolet irradiation (UV-A and UV-C), and TiO2 nanoparticles (T-NPs) were used. Hydrogen peroxide oxidation at higher amounts decreased the water vapor permeability (WVP) and thickness and increased the mechanical properties and transparency. In comparison with the UV-A, UV irradiation of the C-type increased permeability, and elongation at break (EAB) and thickness, but reduced the tensile strength (TS), solubility, and transparency. The permeability and tensile strength were increased and elongation at break was decreased at a longer time of irradiation. The transparency values of fabricated films ranged from 65.3 to 79.5 % and WVP were in the range of 2.32-4.72 (×10-10 g/m.s.Pa). The measured TS of the SCG films were between 2.2 and 5 MPa and the EAB of the SCG films was between 35 and 68.7 %. The FTIR spectrum and SEM images revealed that the treatments could affect the bonds and the smoothness of the film surface, respectively. Images provided by AFM showed that the roughness of the films was increased by the addition of T-NPs. The incorporation of T-NPs increased the TS and decreased EAB and WVP. These results indicated that oxidation, UV irradiation and nanomaterials incorporation could be used to improve SCG film properties that are related to food packaging material.


Asunto(s)
Peróxido de Hidrógeno , Nanopartículas , Oxidación-Reducción , Permeabilidad , Gomas de Plantas , Prunus avium , Titanio , Rayos Ultravioleta , Titanio/química , Peróxido de Hidrógeno/química , Nanopartículas/química , Gomas de Plantas/química , Prunus avium/química , Vapor , Nanocompuestos/química , Resistencia a la Tracción , Solubilidad
18.
Plant Cell Rep ; 43(4): 89, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462577

RESUMEN

KEY MESSAGE: This study provides novel insights into the evolution, diversification, and functions of melatonin biosynthesis genes in Prunus species, highlighting their potential role in regulating bud dormancy and abiotic stresses. The biosynthesis of melatonin (MEL) in plants is primarily governed by enzymatic reactions involving key enzymes such as serotonin N-acetyltransferase (SNAT), tryptamine 5-hydroxylase (T5H), N-acetylserotonin methyltransferase (ASMT) and tryptophan decarboxylase (TDC). In this study, we analyzed Melatonin genes in four Prunus species such as Prunus avium (Pavi), Prunus pusilliflora (Ppus), Prunus serulata (Pser), and Prunus persica (Pper) based on comparative genomics approach. Among the four Prunus species, a total of 29 TDCs, 998 T5Hs, 16 SNATs, and 115 ASMTs within the genome of four Prunus genomes. A thorough investigation of melatonin-related genes was carried out using systematic biological methods and comparative genomics. Through phylogenetic analysis, orthologous clusters, Go enrichment, syntenic relationship, and gene duplication analysis, we discovered both similarities and variations in Melatonin genes among these Prunus species. Additionally, our study revealed the existence of unique subgroup members in the Melatonin genes of these species, which were distinct from those found in Arabidopsis genes. Furthermore, the transcriptomic expression analysis revealed the potential significance of melatonin genes in bud dormancy regulation and abiotic stresses. Our extensive results offer valuable perspectives on the evolutionary patterns, intricate expansion, and functions of PavMEL genes. Given their promising attributes, PavTDCs, PavT5H, PavNAT, and three PavASMT genes warrant in-depth exploration as prime candidates for manipulating dormancy in sweet cherry. This was done to lay the foundation for future explorations into the structural and functional aspects of these factors in Prunus species. This study offers significant insights into the functions of ASMT, SNAT, T5H, and TDC genes and sheds light on their roles in Prunus avium. Moreover, it established a robust foundation for further exploration functional characterization of melatonin genes in fruit species.


Asunto(s)
Arabidopsis , Melatonina , Prunus avium , Prunus , Prunus avium/genética , Prunus avium/metabolismo , Prunus/genética , Prunus/metabolismo , 5-Metoxitriptamina , Melatonina/genética , Melatonina/metabolismo , Filogenia , Acetilserotonina O-Metiltransferasa/química , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Arabidopsis/genética , Genómica , Estrés Fisiológico/genética
19.
J Food Sci ; 89(4): 2359-2370, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38450786

RESUMEN

Sour cherry pomace is the largest byproduct of sour cherry processing with more than 0.4 million tonnes per year. In this study, sour cherry pomace powder (SCPP) has been treated individually or by a combination of microwave (MW), enzymatic hydrolysis, and high pressure to increase soluble dietary fiber (SDF) content. Then, the untreated or treated forms of SCPP, their SDF, and insoluble dietary fiber (IDF) isolates were added (5%) to the reduced-fat cake. Rheological, physical, and textural properties of the full-fat (50%) and the reduced-fat (25% fat) cakes enriched with dietary fiber (DF) were compared. SDF enrichment minimized the negative effect of fat reduction in the cake. Water absorption, mixing tolerance, hardness, and springiness values of the SDF-enriched samples were found as the lowest. Extensibility, energy, weight loss, and cohesiveness values were found to be the highest values with the addition of SDF. All treatments helped to decrease mixing tolerance, dough development, and stability time. MW was the critical treatment for DF modification. Individual MW-treated DF samples increased resistance to extension of the dough samples as compared to the untreated SDF, IDF, and SCPP. Nevertheless, SDF showed better performance in acting as a fat replacer than IDF and SCPP. PRACTICAL APPLICATION: The soluble dietary fiber (SDF) isolate minimized the negative effect of fat reduction in cakes. Water absorption and mixing tolerance of the dough were measured as the lowest. The hardness and springiness of soluble dietary fiber-enriched cakes were found to be the lowest. Extensibility and weight loss reached the highest value when SDF was used. Treatments helped decrease mixing tolerance, dough development, and stability time.


Asunto(s)
Prunus avium , Fibras de la Dieta/farmacología , Fenómenos Químicos , Pérdida de Peso , Agua
20.
Plant Biotechnol J ; 22(6): 1622-1635, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38415985

RESUMEN

Fruit firmness is an important trait in sweet cherry breeding because it directly positively influences fruit transportability, storage and shelf life. However, the underlying genes responsible and the molecular mechanisms that control fruit firmness remain unknown. In this study, we identified a candidate gene, PavSCPL, encoding a serine carboxypeptidase-like protein with natural allelic variation, that controls fruit firmness in sweet cherry using map-based cloning and functionally characterized PavSCPL during sweet cherry fruit softening. Genetic analysis revealed that fruit firmness in the 'Rainier' × 'Summit' F1 population was controlled by a single dominant gene. Bulked segregant analysis combined with fine mapping narrowed the candidate gene to a 473-kb region (7418778-7 891 914 bp) on chromosome 6 which included 72 genes. The candidate gene PavSCPL, and a null allele harbouring a 5244-bp insertion in the second exon that completely inactivated PavSCPL expression and resulted in the extra-hard-flesh phenotype, were identified by RNA-sequencing analysis and gene cloning. Quantitative RT-PCR analysis revealed that the PavSCPL expression level was increased with fruit softening. Virus-induced gene silencing of PavSCPL enhanced fruit firmness and suppressed the activities of certain pectin-degrading enzymes in the fruit. In addition, we developed functional molecular markers for PavSCPL and the Pavscpl5.2-k allele that co-segregated with the fruit firmness trait. Overall, this research identified a crucial functional gene for fruit firmness. The results provide insights into the genetic control and molecular mechanism of the fruit firmness trait and present useful molecular markers for molecular-assisted breeding for fruit firmness in sweet cherry.


Asunto(s)
Carboxipeptidasas , Frutas , Proteínas de Plantas , Prunus avium , Frutas/genética , Prunus avium/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Fenotipo , Regulación de la Expresión Génica de las Plantas , Mapeo Cromosómico , Alelos , Genes de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA