Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 789
Filtrar
1.
Braz J Biol ; 84: e279154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109712

RESUMEN

An increase in genetic diversity of bread wheat caused by spring x winter forms leads to an alteration of genetic control of maturity time. Maturity time (MAT) is one of major yield components in wheat, which has two components: the heading date (HD) and grain-filling period (GFP). Using the Illumina Infinium 25k platform we analyzed the genetic control of the HD, GFP and MAT in the F2 and F2:3 populations from a cross between late-ripening spring/winter line 124-1 and spring wheat cultivar Novosibirskaya 31, possessing the same allelic composition of the VRN1 and PPD-D1 genes. The phenotypic evaluation of the populations studied was performed during three years. A total of 17 QTLs were mapped, out of which 4 QTLs for MAT or its components were confirmed over two years. Two common MAT and HD QTLs were identified on the 4A chromosome, and two loci controlling GFP and MAT were found on 6B chromosome. An environmentally stable HD QTL QHd.icg-7B.1 was associated with the FT-B1 gene having a non-synonymous polymorphism [G/C] in its coding region. A novel НD QTL was identified on 7D chromosome. QTL dissection allowed to propose putative genes for QMat.icg4-A and QMat.icg6-B, namely the SPL family gene (TraesCS4A02G359500) and the TCP transcription factor (TraesCS6B02G462100), respectively. The results of this study provide information for further investigation into wheat development.


Asunto(s)
Fenotipo , Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Grano Comestible/genética , Factores de Tiempo , Estaciones del Año
2.
Genes (Basel) ; 15(7)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39062669

RESUMEN

Wheat (Triticum aestivum L.) production is adversely impacted by Septoria nodorum blotch (SNB), a fungal disease caused by Parastagonospora nodorum. Wheat breeders are constantly up against this biotic challenge as they try to create resistant cultivars. The genome-wide association study (GWAS) has become an efficient tool for identifying molecular markers linked with SNB resistance. This technique is used to acquire an understanding of the genetic basis of resistance and to facilitate marker-assisted selection. In the current study, a total of 174 bread wheat accessions from South Asia and CIMMYT were assessed for SNB reactions at the seedling stage in three greenhouse experiments at CIMMYT, Mexico. The results indicated that 129 genotypes were resistant to SNB, 39 were moderately resistant, and only 6 were moderately susceptible. The Genotyping Illumina Infinium 15K Bead Chip was used, and 11,184 SNP markers were utilized to identify marker-trait associations (MTAs) after filtering. Multiple tests confirmed the existence of significant MTAs on chromosomes 5B, 5A, and 3D, and the ones at Tsn1 on 5B were the most stable and conferred the highest phenotypic variation. The resistant genotypes identified in this study could be cultivated in South Asian countries as a preventative measure against the spread of SNB. This work also identified molecular markers of SNB resistance that could be used in future wheat breeding projects.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas , Plantones , Triticum , Triticum/genética , Triticum/microbiología , Resistencia a la Enfermedad/genética , Ascomicetos/patogenicidad , Ascomicetos/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Plantones/genética , Plantones/microbiología , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Marcadores Genéticos , Genotipo
3.
Hum Mol Genet ; 33(19): 1660-1670, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-38981621

RESUMEN

Early or late pubertal onset can lead to disease in adulthood, including cancer, obesity, type 2 diabetes, metabolic disorders, bone fractures, and psychopathologies. Thus, knowing the age at which puberty is attained is crucial as it can serve as a risk factor for future diseases. Pubertal development is divided into five stages of sexual maturation in boys and girls according to the standardized Tanner scale. We performed genome-wide association studies (GWAS) on the "Growth and Obesity Chilean Cohort Study" cohort composed of admixed children with mainly European and Native American ancestry. Using joint models that integrate time-to-event data with longitudinal trajectories of body mass index (BMI), we identified genetic variants associated with phenotypic transitions between pairs of Tanner stages. We identified $42$ novel significant associations, most of them in boys. The GWAS on Tanner $3\rightarrow 4$ transition in boys captured an association peak around the growth-related genes LARS2 and LIMD1 genes, the former of which causes ovarian dysfunction when mutated. The associated variants are expression and splicing Quantitative Trait Loci regulating gene expression and alternative splicing in multiple tissues. Further, higher individual Native American genetic ancestry proportions predicted a significantly earlier puberty onset in boys but not in girls. Finally, the joint models identified a longitudinal BMI parameter significantly associated with several Tanner stages' transitions, confirming the association of BMI with pubertal timing.


Asunto(s)
Índice de Masa Corporal , Estudio de Asociación del Genoma Completo , Pubertad , Humanos , Masculino , Pubertad/genética , Femenino , Chile , Niño , Adolescente , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo , Maduración Sexual/genética , Estudios de Cohortes , Obesidad/genética
4.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38967061

RESUMEN

The objectives of the present study were to estimate the heritability for daily methane emission (CH4) and residual daily methane emission (CH4res) in Nellore cattle, as well as to perform genome-wide association studies (GWAS) to identify genomic regions and candidate genes influencing the genetic variation of CH4 and CH4res. Methane emission phenotypes of 743 Nellore animals belonging to 3 breeding programs were evaluated. CH4 was measured using the sulfur hexafluoride (SF6) tracer technique (which involves an SF6 permeation tube introduced into the rumen, and an appropriate apparatus on each animal), and CH4res was obtained as the difference between observed CH4 and CH4 adjusted for dry matter intake. A total of 6,252 genotyped individuals were used for genomic analyses. Data were analyzed with a univariate animal model by the single-step GBLUP method using the average information restricted maximum likelihood (AIREML) algorithm. The effects of single nucleotide polymorphisms (SNPs) were obtained using a single-step GWAS approach. Candidate genes were identified based on genomic windows associated with quantitative trait loci (QTLs) related to the 2 traits. Annotation of QTLs and identification of candidate genes were based on the initial and final coordinates of each genomic window considering the bovine genome ARS-UCD1.2 assembly. Heritability estimates were of moderate to high magnitude, being 0.42 ±â€…0.09 for CH4 and 0.21 ±â€…0.09 for CH4res, indicating that these traits will respond rapidly to genetic selection. GWAS revealed 11 and 15 SNPs that were significantly associated (P < 10-6) with genetic variation of CH4 and CH4res, respectively. QTLs associated with feed efficiency, residual feed intake, body weight, and height overlapped with significant markers for the traits evaluated. Ten candidate genes were present in the regions of significant SNPs; 3 were associated with CH4 and 7 with CH4res. The identified genes are related to different functions such as modulation of the rumen microbiota, fatty acid production, and lipid metabolism. CH4 and CH4res presented sufficient genetic variation and may respond rapidly to selection. Therefore, these traits can be included in animal breeding programs aimed at reducing enteric methane emissions across generations.


Genetic selection designed to reduce the amount of enteric methane emission from livestock is a mitigation strategy to ensure more sustainable production over generations since genetic gains are cumulative. Brazil is a large producer of beef, and the Nellore breed (Bos taurus indicus) plays a very important role in this production. There are a few studies evaluating genetic and genomic aspects of enteric methane emission in Nellore cattle. The objectives of the present study were to estimate the heritability of daily methane emission (CH4) and residual daily methane emission (CH4res) in Nellore cattle, as well as to identify genomic regions and candidate genes associated with genetic variation of these traits. The heritability estimates for CH4 and CH4res were of moderate to high magnitude (0.42 ±â€…0.09 and 0.21 ±â€…0.09, respectively). Genome-wide association analyses revealed new loci associated with methane emission in Nellore cattle on chromosomes 5, 11, 17, and 20, where 10 candidate genes were identified, 3 for CH4 and 7 for CH4res. The 2 traits possess sufficient genetic variability to be included as selection criteria in breeding programs.


Asunto(s)
Estudio de Asociación del Genoma Completo , Metano , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , Metano/metabolismo , Estudio de Asociación del Genoma Completo/veterinaria , Sitios de Carácter Cuantitativo , Masculino , Femenino , Genotipo , Cruzamiento , Fenotipo
5.
BMC Genomics ; 25(1): 623, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902640

RESUMEN

BACKGROUND: The genotype-by-environment interaction (GxE) in beef cattle can be investigated using reaction norm models to assess environmental sensitivity and, combined with genome-wide association studies (GWAS), to map genomic regions related to animal adaptation. Including genetic markers from whole-genome sequencing in reaction norm (RN) models allows us to identify high-resolution candidate genes across environmental gradients through GWAS. Hence, we performed a GWAS via the RN approach using whole-genome sequencing data, focusing on mapping candidate genes associated with the expression of reproductive and growth traits in Nellore cattle. For this purpose, we used phenotypic data for age at first calving (AFC), scrotal circumference (SC), post-weaning weight gain (PWG), and yearling weight (YW). A total of 20,000 males and 7,159 females genotyped with 770k were imputed to the whole sequence (29 M). After quality control and linkage disequilibrium (LD) pruning, there remained ∼ 2.41 M SNPs for SC, PWG, and YW and ∼ 5.06 M SNPs for AFC. RESULTS: Significant SNPs were identified on Bos taurus autosomes (BTA) 10, 11, 14, 18, 19, 20, 21, 24, 25 and 27 for AFC and on BTA 4, 5 and 8 for SC. For growth traits, significant SNP markers were identified on BTA 3, 5 and 20 for YW and PWG. A total of 56 positional candidate genes were identified for AFC, 9 for SC, 3 for PWG, and 24 for YW. The significant SNPs detected for the reaction norm coefficients in Nellore cattle were found to be associated with growth, adaptative, and reproductive traits. These candidate genes are involved in biological mechanisms related to lipid metabolism, immune response, mitogen-activated protein kinase (MAPK) signaling pathway, and energy and phosphate metabolism. CONCLUSIONS: GWAS results highlighted differences in the physiological processes linked to lipid metabolism, immune response, MAPK signaling pathway, and energy and phosphate metabolism, providing insights into how different environmental conditions interact with specific genes affecting animal adaptation, productivity, and reproductive performance. The shared genomic regions between the intercept and slope are directly implicated in the regulation of growth and reproductive traits in Nellore cattle raised under different environmental conditions.


Asunto(s)
Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Reproducción , Secuenciación Completa del Genoma , Animales , Bovinos/genética , Bovinos/crecimiento & desarrollo , Reproducción/genética , Femenino , Masculino , Genotipo , Fenotipo , Sitios de Carácter Cuantitativo , Desequilibrio de Ligamiento
6.
PLoS Genet ; 20(6): e1011313, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38870230

RESUMEN

A quarter of humanity is estimated to have been exposed to Mycobacterium tuberculosis (Mtb) with a 5-10% risk of developing tuberculosis (TB) disease. Variability in responses to Mtb infection could be due to host or pathogen heterogeneity. Here, we focused on host genetic variation in a Peruvian population and its associations with gene regulation in monocyte-derived macrophages and dendritic cells (DCs). We recruited former household contacts of TB patients who previously progressed to TB (cases, n = 63) or did not progress to TB (controls, n = 63). Transcriptomic profiling of monocyte-derived DCs and macrophages measured the impact of genetic variants on gene expression by identifying expression quantitative trait loci (eQTL). We identified 330 and 257 eQTL genes in DCs and macrophages (False Discovery Rate (FDR) < 0.05), respectively. Four genes in DCs showed interaction between eQTL variants and TB progression status. The top eQTL interaction for a protein-coding gene was with FAH, the gene encoding fumarylacetoacetate hydrolase, which mediates the last step in mammalian tyrosine catabolism. FAH expression was associated with genetic regulatory variation in cases but not controls. Using public transcriptomic and epigenomic data of Mtb-infected monocyte-derived dendritic cells, we found that Mtb infection results in FAH downregulation and DNA methylation changes in the locus. Overall, this study demonstrates effects of genetic variation on gene expression levels that are dependent on history of infectious disease and highlights a candidate pathogenic mechanism through pathogen-response genes. Furthermore, our results point to tyrosine metabolism and related candidate TB progression pathways for further investigation.


Asunto(s)
Células Dendríticas , Macrófagos , Mycobacterium tuberculosis , Sitios de Carácter Cuantitativo , Tuberculosis , Humanos , Perú , Tuberculosis/genética , Tuberculosis/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/patogenicidad , Mycobacterium tuberculosis/genética , Femenino , Células Dendríticas/metabolismo , Masculino , Adulto , Predisposición Genética a la Enfermedad , Variación Genética , Regulación de la Expresión Génica , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Perfilación de la Expresión Génica
7.
BMC Plant Biol ; 24(1): 562, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877425

RESUMEN

BACKGROUND: On tropical regions, phosphorus (P) fixation onto aluminum and iron oxides in soil clays restricts P diffusion from the soil to the root surface, limiting crop yields. While increased root surface area favors P uptake under low-P availability, the relationship between the three-dimensional arrangement of the root system and P efficiency remains elusive. Here, we simultaneously assessed allelic effects of loci associated with a variety of root and P efficiency traits, in addition to grain yield under low-P availability, using multi-trait genome-wide association. We also set out to establish the relationship between root architectural traits assessed in hydroponics and in a low-P soil. Our goal was to better understand the influence of root morphology and architecture in sorghum performance under low-P availability. RESULT: In general, the same alleles of associated SNPs increased root and P efficiency traits including grain yield in a low-P soil. We found that sorghum P efficiency relies on pleiotropic loci affecting root traits, which enhance grain yield under low-P availability. Root systems with enhanced surface area stemming from lateral root proliferation mostly up to 40 cm soil depth are important for sorghum adaptation to low-P soils, indicating that differences in root morphology leading to enhanced P uptake occur exactly in the soil layer where P is found at the highest concentration. CONCLUSION: Integrated QTLs detected in different mapping populations now provide a comprehensive molecular genetic framework for P efficiency studies in sorghum. This indicated extensive conservation of P efficiency QTL across populations and emphasized the terminal portion of chromosome 3 as an important region for P efficiency in sorghum. Increases in root surface area via enhancement of lateral root development is a relevant trait for sorghum low-P soil adaptation, impacting the overall architecture of the sorghum root system. In turn, particularly concerning the critical trait for water and nutrient uptake, root surface area, root system development in deeper soil layers does not occur at the expense of shallow rooting, which may be a key reason leading to the distinctive sorghum adaptation to tropical soils with multiple abiotic stresses including low P availability and drought.


Asunto(s)
Estudio de Asociación del Genoma Completo , Fósforo , Raíces de Plantas , Sitios de Carácter Cuantitativo , Sorghum , Sorghum/genética , Sorghum/metabolismo , Sorghum/crecimiento & desarrollo , Fósforo/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/anatomía & histología , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple , Suelo/química , Fenotipo
8.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38771704

RESUMEN

The ability of organisms to adapt to sudden extreme environmental changes produces some of the most drastic examples of rapid phenotypic evolution. The Mexican Tetra, Astyanax mexicanus, is abundant in the surface waters of northeastern Mexico, but repeated colonizations of cave environments have resulted in the independent evolution of troglomorphic phenotypes in several populations. Here, we present three chromosome-scale assemblies of this species, for one surface and two cave populations, enabling the first whole-genome comparisons between independently evolved cave populations to evaluate the genetic basis for the evolution of adaptation to the cave environment. Our assemblies represent the highest quality of sequence completeness with predicted protein-coding and noncoding gene metrics far surpassing prior resources and, to our knowledge, all long-read assembled teleost genomes, including zebrafish. Whole-genome synteny alignments show highly conserved gene order among cave forms in contrast to a higher number of chromosomal rearrangements when compared with other phylogenetically close or distant teleost species. By phylogenetically assessing gene orthology across distant branches of amniotes, we discover gene orthogroups unique to A. mexicanus. When compared with a representative surface fish genome, we find a rich amount of structural sequence diversity, defined here as the number and size of insertions and deletions as well as expanding and contracting repeats across cave forms. These new more complete genomic resources ensure higher trait resolution for comparative, functional, developmental, and genetic studies of drastic trait differences within a species.


Asunto(s)
Cuevas , Characidae , Cromosomas , Animales , Characidae/genética , Cromosomas/genética , Filogenia , Genoma , Genómica/métodos , Variación Genética , Sitios de Carácter Cuantitativo , Sintenía , Fenotipo
9.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38775627

RESUMEN

Bananas (Musa spp.) are an essential fruit worldwide and rank as the fourth most significant food crop for addressing malnutrition due to their rich nutrients and starch content. The potential of their genetic diversity remains untapped due to limited molecular breeding tools. Our study examined a phenotypically diverse group of 124 accessions from the Colombian Musaceae Collection conserved in AGROSAVIA. We assessed 12 traits categorized into morphology, fruit quality, and yield, alongside sequence data. Our sequencing efforts provided valuable insights, with an average depth of about 7× per accession, resulting in 187,133 single-nucleotide polymorphisms (SNPs) against Musa acuminata (A genome) and 220,451 against Musa balbisiana (B genome). Population structure analysis grouped samples into four and five clusters based on the reference genome. By using different association models, we identified marker-trait associations (MTAs). The mixed linear model revealed four MTAs, while the Bayesian-information and linkage-disequilibrium iteratively nested keyway and fixed and random model for circulating probability unification models identified 82 and 70 MTAs, respectively. We identified 38 and 40 candidate genes in linkage proximity to significant MTAs for the A genome and B genome, respectively. Our findings provide insights into the genetic underpinnings of morphology, fruit quality, and yield. Once validated, the SNP markers and candidate genes can potentially drive advancements in genomic-guided breeding strategies to enhance banana crop improvement.


Asunto(s)
Frutas , Estudio de Asociación del Genoma Completo , Musa , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Musa/genética , Frutas/genética , Genoma de Planta , Fenotipo , Desequilibrio de Ligamiento , Genes de Plantas , Carácter Cuantitativo Heredable
10.
BMC Genomics ; 25(1): 467, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741036

RESUMEN

BACKGROUND: Heat stress (HS) poses significant threats to the sustainability of livestock production. Genetically improving heat tolerance could enhance animal welfare and minimize production losses during HS events. Measuring phenotypic indicators of HS response and understanding their genetic background are crucial steps to optimize breeding schemes for improved climatic resilience. The identification of genomic regions and candidate genes influencing the traits of interest, including variants with pleiotropic effects, enables the refinement of genotyping panels used to perform genomic prediction of breeding values and contributes to unraveling the biological mechanisms influencing heat stress response. Therefore, the main objectives of this study were to identify genomic regions, candidate genes, and potential pleiotropic variants significantly associated with indicators of HS response in lactating sows using imputed whole-genome sequence (WGS) data. Phenotypic records for 18 traits and genomic information from 1,645 lactating sows were available for the study. The genotypes from the PorcineSNP50K panel containing 50,703 single nucleotide polymorphisms (SNPs) were imputed to WGS and after quality control, 1,622 animals and 7,065,922 SNPs were included in the analyses. RESULTS: A total of 1,388 unique SNPs located on sixteen chromosomes were found to be associated with 11 traits. Twenty gene ontology terms and 11 biological pathways were shown to be associated with variability in ear skin temperature, shoulder skin temperature, rump skin temperature, tail skin temperature, respiration rate, panting score, vaginal temperature automatically measured every 10 min, vaginal temperature measured at 0800 h, hair density score, body condition score, and ear area. Seven, five, six, two, seven, 15, and 14 genes with potential pleiotropic effects were identified for indicators of skin temperature, vaginal temperature, animal temperature, respiration rate, thermoregulatory traits, anatomical traits, and all traits, respectively. CONCLUSIONS: Physiological and anatomical indicators of HS response in lactating sows are heritable but highly polygenic. The candidate genes found are associated with important gene ontology terms and biological pathways related to heat shock protein activities, immune response, and cellular oxidative stress. Many of the candidate genes with pleiotropic effects are involved in catalytic activities to reduce cell damage from oxidative stress and cellular mechanisms related to immune response.


Asunto(s)
Respuesta al Choque Térmico , Lactancia , Polimorfismo de Nucleótido Simple , Animales , Femenino , Respuesta al Choque Térmico/genética , Lactancia/genética , Porcinos/genética , Fenotipo , Sitios de Carácter Cuantitativo , Genotipo , Genómica
11.
Braz J Biol ; 84: e282495, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747865

RESUMEN

Rice (Oryza sativa L.) grown in many countries around the world with different climatic conditions and a huge number of environmental stresses, both biotic (fungi, bacteria, viruses, insects) and abiotic (cold, drought, salinity) limit rice productivity. In this regard, breeders and scientists are trying to create rice lines that are resistant to multiple stresses. The aim of this work was to screen and select cold and blast resistant rice breeding lines (RBLs) using molecular markers. Molecular screening of RBLs and parental varieties to cold tolerance was carried out using markers RM24545, RM1377, RM231 and RM569 associated with QTLs (qPSST-3, qPSST-7, qPSST-9). It was discovered that the presence of three QTLs characterizes the cold resistance of studied genotypes, and the absence of one of them leads to cold sensitivity. As a result, 21 cold-resistant out of the 28 studied RBLs were identified. These cold resistant 21 RBLs were further tested to blast resistance using markers Pi-ta, Pita3, Z56592, 195R-1, NMSMPi9-1, TRS26, Pikh MAS, MSM6, 9871.T7E2b, RM224 and RM1233. It was revealed that 16 RBLs from 21 studied lines contain 5-6 blast resistance genes. In accordance with the blast resistance strategy, the presence of 5 or more genes ensures the formation of stable resistance to Magnaporthe oryzae. Thus, 16 lines resistant to multiple stresses, such as cold and blast disease were developed. It should be noted that 6 of these selected lines are high-yielding, which is very important in rice breeding program. These RBLs can be used in breeding process as starting lines, germplasm exchange as a source of resistant genes for the development of new rice varieties resistant to multiple stress factors.


Asunto(s)
Oryza , Fitomejoramiento , Estrés Fisiológico , Oryza/genética , Oryza/microbiología , Oryza/fisiología , Estrés Fisiológico/genética , Resistencia a la Enfermedad/genética , Sitios de Carácter Cuantitativo/genética , Genotipo , Marcadores Genéticos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Frío
12.
Sci Rep ; 14(1): 10094, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698200

RESUMEN

Intramuscular fat (IMF) and backfat thickness (BFT) are critical economic traits impacting meat quality. However, the genetic variants controlling these traits need to be better understood. To advance knowledge in this area, we integrated RNA-seq and single nucleotide polymorphisms (SNPs) identified in genomic and transcriptomic data to generate a linkage disequilibrium filtered panel of 553,581 variants. Expression quantitative trait loci (eQTL) analysis revealed 36,916 cis-eQTLs and 14,408 trans-eQTLs. Association analysis resulted in three eQTLs associated with BFT and 24 with IMF. Functional enrichment analysis of genes regulated by these 27 eQTLs revealed noteworthy pathways that can play a fundamental role in lipid metabolism and fat deposition, such as immune response, cytoskeleton remodeling, iron transport, and phospholipid metabolism. We next used ATAC-Seq assay to identify and overlap eQTL and open chromatin regions. Six eQTLs were in regulatory regions, four in predicted insulators and possible CCCTC-binding factor DNA binding sites, one in an active enhancer region, and the last in a low signal region. Our results provided novel insights into the transcriptional regulation of IMF and BFT, unraveling putative regulatory variants.


Asunto(s)
Cromatina , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Animales , Bovinos , Cromatina/genética , Cromatina/metabolismo , Tejido Adiposo/metabolismo , Mutación , Desequilibrio de Ligamiento , Estudio de Asociación del Genoma Completo , Regulación de la Expresión Génica , Metabolismo de los Lípidos/genética
13.
Genome ; 67(7): 233-242, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579337

RESUMEN

Indicine cattle breeds are adapted to the tropical climate, and their coat plays an important role in this process. Coat color influences thermoregulation and the adhesion of ectoparasites and may be associated with productive and reproductive traits. Furthermore, coat color is used for breed qualification, with breeders preferring certain colors. The Gir cattle is characterized by a wide variety of coat colors. Therefore, we performed genome-wide association studies to identify candidate genes for coat color in Gir cattle. Different phenotype scenarios were considered in the analyses and regions were identified on eight chromosomes. Some regions and many candidate genes are influencing coat color in the Gir cattle, which was found to be a polygenic trait. The candidate genes identified have been associated with white spotting patterns and base coat color in cattle and other species. In addition, a possible epistatic effect on coat color determination in the Gir cattle was suggested. This is the first published study that identified genomic regions and listed candidate genes associated with coat color in Gir cattle. The findings provided a better understanding of the genetic architecture of the trait in the breed and will allow to guide future fine-mapping studies for the development of genetic markers for selection.


Asunto(s)
Estudio de Asociación del Genoma Completo , Bovinos/genética , Animales , Fenotipo , Color del Cabello/genética , Polimorfismo de Nucleótido Simple , Pigmentación/genética , Genoma , Cruzamiento , Sitios de Carácter Cuantitativo
14.
Sci Rep ; 14(1): 8431, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600135

RESUMEN

A panel comprising of 84 Turkish winter wheat landraces (LR) and 73 modern varieties (MV) was analyzed with genome wide association study (GWAS) to identify genes/genomic regions associated with increased yield under favorable and drought conditions. In addition, selective sweep analysis was conducted to detect signatures of selection in the winter wheat genome driving the differentiation between LR and MV, to gather an understanding of genomic regions linked to adaptation and yield improvement. The panel was genotyped with 25 K wheat SNP array and phenotyped for agronomic traits for two growing seasons (2018 and 2019) in Konya, Turkey. Year 2018 was treated as drought environment due to very low precipitation prior to heading whereas year 2019 was considered as a favorable season. GWAS conducted with SNPs and haplotype blocks using mixed linear model identified 18 genomic regions in the vicinities of known genes i.e., TaERF3-3A, TaERF3-3B, DEP1-5A, FRIZZY PANICLE-2D, TaSnRK23-1A, TaAGL6-A, TaARF12-2A, TaARF12-2B, WAPO1, TaSPL16-7D, TaTGW6-A1, KAT-2B, TaOGT1, TaSPL21-6B, TaSBEIb, trs1/WFZP-A, TaCwi-A1-2A and TaPIN1-7A associated with grain yield (GY) and yield related traits. Haplotype-based GWAS identified five haplotype blocks (H1A-42, H2A-71, H4A-48, H7B-123 and H7B-124), with the favorable haplotypes showing a yield increase of > 700 kg/ha in the drought season. SNP-based GWAS, detected only one larger effect genomic region on chromosome 7B, in common with haplotype-based GWAS. On an average, the percentage variation (PV) explained by haplotypes was 8.0% higher than PV explained by SNPs for all the investigated traits. Selective sweep analysis detected 39 signatures of selection between LR and MV of which 15 were within proximity of known functional genes controlling flowering (PRR-A1, PPR-D1, TaHd1-6B), GY and GY components (TaSus2-2B, TaGS2-B1, AG1-1A/WAG1-1A, DUO-A1, DUO-B1, AG2-3A/WAG2-3A, TaLAX1, TaSnRK210-4A, FBP, TaLAX1, TaPIL1 and AP3-1-7A/WPA3-7A) and 10 regions underlying various transcription factors and regulatory genes. The study outcomes contribute to utilization of LR in breeding winter wheat.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Triticum/genética , Estaciones del Año , Sitios de Carácter Cuantitativo , Sequías , Turquía , Fitomejoramiento , Fenotipo , Grano Comestible/genética , Genómica
15.
Sci Rep ; 14(1): 9205, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649738

RESUMEN

Quinoa (Chenopodium quinoa Willd.), an Andean crop, is a facultative halophyte food crop recognized globally for its high nutritional value and plasticity to adapt to harsh conditions. We conducted a genome-wide association study on a diverse set of quinoa germplasm accessions. These accessions were evaluated for the following agronomic and biochemical traits: days to 50% flowering (DTF), plant height (PH), panicle length (PL), stem diameter (SD), seed yield (SY), grain diameter (GD), and thousand-grain weight (TGW). These accessions underwent genotyping-by-sequencing using the DNBSeq-G400R platform. Among all evaluated traits, TGW represented maximum broad-sense heritability. Our study revealed average SNP density of ≈ 3.11 SNPs/10 kb for the whole genome, with the lowest and highest on chromosomes Cq1B and Cq9A, respectively. Principal component analysis clustered the quinoa population in three main clusters, one clearly representing lowland Chilean accessions, whereas the other two groups corresponded to germplasm from the highlands of Peru and Bolivia. In our germplasm set, we estimated linkage disequilibrium decay to be ≈ 118.5 kb. Marker-trait analyses revealed major and consistent effect associations for DTF on chromosomes 3A, 4B, 5B, 6A, 7A, 7B and 8B, with phenotypic variance explained (PVE) as high as 19.15%. Nine associations across eight chromosomes were also found for saponin content with 20% PVE by qSPN5A.1. More QTLs were identified for PL and TGW on multiple chromosomal locations. We identified putative candidate genes in the genomic regions associated with DTF and saponin content. The consistent and major-effect genomic associations can be used in fast-tracking quinoa breeding for wider adaptation across marginal environments.


Asunto(s)
Chenopodium quinoa , Genoma de Planta , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Fenotipo , Perú , Genotipo , Bolivia , Cromosomas de las Plantas/genética , Carácter Cuantitativo Heredable
16.
PLoS One ; 19(4): e0301937, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662691

RESUMEN

Genomic regions related to tropical adaptability are of paramount importance for animal breeding nowadays, especially in the context of global climate change. Moreover, understanding the genomic architecture of these regions may be very relevant for aiding breeding programs in choosing the best selection scheme for tropical adaptation and/or implementing a crossbreeding scheme. The composite MONTANA TROPICAL® population was developed by crossing cattle of four different biological types to improve production in harsh environments. Pedigree and genotype data (51962 SNPs) from 3215 MONTANA TROPICAL® cattle were used to i) characterize the population structure; ii) identify signatures of selection with complementary approaches, i.e. Integrated Haplotype Score (iHS) and Runs of Homozygosity (ROH); and iii) understand genes and traits related to each selected region. The population structure based on principal components had a weak relationship with the genetic contribution of the different biological types. Clustering analyses (ADMIXTURE) showed different clusters according to the number of generations within the composite population. Considering results of both selection signatures approaches, we identified only one consensus region on chromosome 20 (35399405-40329703 bp). Genes in this region are related to immune function, regulation of epithelial cell differentiation, and cell response to ionizing radiation. This region harbors the slick locus which is related to slick hair and epidermis anatomy, both of which are related to heat stress adaptation. Also, QTLs in this region were related to feed intake, milk yield, mastitis, reproduction, and slick hair coat. The signatures of selection detected here arose in a few generations after crossbreeding between contrasting breeds. Therefore, it shows how important this genomic region may be for these animals to thrive in tropical conditions. Further investigations on sequencing this region can identify candidate genes for animal breeding and/or gene editing to tackle the challenges of climate change.


Asunto(s)
Polimorfismo de Nucleótido Simple , Clima Tropical , Animales , Bovinos/genética , Selección Genética , Adaptación Fisiológica/genética , Montana , Femenino , Genoma , Masculino , Genómica/métodos , Haplotipos , Cruzamiento , Genotipo , Carne Roja , Sitios de Carácter Cuantitativo
17.
Mamm Genome ; 35(2): 186-200, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38480585

RESUMEN

Approximately 80% of the world's cattle are raised in regions with a high risk of tick-borne diseases, resulting in significant economic losses due to parasitism by Rhipicephalus (Boophilus) microplus. However, the lack of a systemic biology approach hampers a comprehensive understanding of tick-host interactions that mediate tick resistance phenotypes. Here, we conducted a genome-wide association study (GWAS) of 2933 Braford cattle and found 340 single-nucleotide polymorphisms (SNPs) associated with tick counts. Gene expression analyses were performed on skin samples obtained from previously tick-exposed heifers with extremely high or low estimated breeding values for R. microplus counts. Evaluations were performed both before and after artificial infestation with ticks. Differentially expressed genes were found within 1-Mb windows centered at significant SNPs from GWAS. A total of 330 genes were related to the breakdown of homeostasis that was induced by larval attachment to bovine skin. Enrichment analysis pointed to a key role of proteolysis and signal transduction via JAK/STAT, NFKB and WNT/beta catenin signaling pathways. Integrative analysis on matrixEQTL revealed two cis-eQTLs and four significant SNPs in the genes peptidyl arginine deiminase type IV (PADI4) and LOC11449251. The integration of genomic data from QTL maps and transcriptome analyses has identified a set of twelve key genes that show significant associations with tick loads. These genes could be key candidates to improve the accuracy of genomic predictions for tick resistance in Braford cattle.


Asunto(s)
Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Rhipicephalus , Infestaciones por Garrapatas , Animales , Bovinos , Rhipicephalus/genética , Rhipicephalus/fisiología , Infestaciones por Garrapatas/veterinaria , Infestaciones por Garrapatas/genética , Infestaciones por Garrapatas/parasitología , Infestaciones por Garrapatas/inmunología , Resistencia a la Enfermedad/genética , Biología de Sistemas , Enfermedades de los Bovinos/genética , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/parasitología , Sitios de Carácter Cuantitativo , Femenino , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología
18.
BMC Genomics ; 25(1): 14, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166730

RESUMEN

BACKGROUND: Mapping expression quantitative trait loci (eQTLs) in skeletal muscle tissue in pigs is crucial for understanding the relationship between genetic variation and phenotypic expression of carcass traits in meat animals. Therefore, the primary objective of this study was to evaluate the impact of different sets of single nucleotide polymorphisms (SNP), including scenarios removing SNPs pruned for linkage disequilibrium (LD) and SNPs derived from SNP chip arrays and RNA-seq data from liver, brain, and skeletal muscle tissues, on the identification of eQTLs in the Longissimus lumborum tissue, associated with carcass and body composition traits in Large White pigs. The SNPs identified from muscle mRNA were combined with SNPs identified in the brain and liver tissue transcriptomes, as well as SNPs from the GGP Porcine 50 K SNP chip array. Cis- and trans-eQTLs were identified based on the skeletal muscle gene expression level, followed by functional genomic analyses and statistical associations with carcass and body composition traits in Large White pigs. RESULTS: The number of cis- and trans-eQTLs identified across different sets of SNPs (scenarios) ranged from 261 to 2,539 and from 29 to 13,721, respectively. Furthermore, 6,180 genes were modulated by eQTLs in at least one of the scenarios evaluated. The eQTLs identified were not significantly associated with carcass and body composition traits but were significantly enriched for many traits in the "Meat and Carcass" type QTL. The scenarios with the highest number of cis- (n = 304) and trans- (n = 5,993) modulated genes were the unpruned and LD-pruned SNP set scenarios identified from the muscle transcriptome. These genes include 84 transcription factor coding genes. CONCLUSIONS: After LD pruning, the set of SNPs identified based on the transcriptome of the skeletal muscle tissue of pigs resulted in the highest number of genes modulated by eQTLs. Most eQTLs are of the trans type and are associated with genes influencing complex traits in pigs, such as transcription factors and enhancers. Furthermore, the incorporation of SNPs from other genomic regions to the set of SNPs identified in the porcine skeletal muscle transcriptome contributed to the identification of eQTLs that had not been identified based on the porcine skeletal muscle transcriptome alone.


Asunto(s)
Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Porcinos/genética , Animales , Fenotipo , Músculo Esquelético/metabolismo , Estudio de Asociación del Genoma Completo , Composición Corporal/genética
19.
BMC Genom Data ; 24(1): 80, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110866

RESUMEN

BACKGROUND: Genomewide prediction estimates the genomic breeding values of selection candidates which can be utilized for population improvement and cultivar development. Ridge regression and deep learning-based selection models were implemented for yield and agronomic traits of 204 chile pepper genotypes evaluated in multi-environment trials in New Mexico, USA. RESULTS: Accuracy of prediction differed across different models under ten-fold cross-validations, where high prediction accuracy was observed for highly heritable traits such as plant height and plant width. No model was superior across traits using 14,922 SNP markers for genomewide selection. Bayesian ridge regression had the highest average accuracy for first pod date (0.77) and total yield per plant (0.33). Multilayer perceptron (MLP) was the most superior for flowering time (0.76) and plant height (0.73), whereas the genomic BLUP model had the highest accuracy for plant width (0.62). Using a subset of 7,690 SNP loci resulting from grouping markers based on linkage disequilibrium coefficients resulted in improved accuracy for first pod date, ten pod weight, and total yield per plant, even under a relatively small training population size for MLP and random forest models. Genomic and ridge regression BLUP models were sufficient for optimal prediction accuracies for small training population size. Combining phenotypic selection and genomewide selection resulted in improved selection response for yield-related traits, indicating that integrated approaches can result in improved gains achieved through selection. CONCLUSIONS: Accuracy values for ridge regression and deep learning prediction models demonstrate the potential of implementing genomewide selection for genetic improvement in chile pepper breeding programs. Ultimately, a large training data is relevant for improved genomic selection accuracy for the deep learning models.


Asunto(s)
Capsicum , Aprendizaje Profundo , Capsicum/genética , Herencia Multifactorial , Teorema de Bayes , Sitios de Carácter Cuantitativo , Selección Genética , Fitomejoramiento
20.
Genet Sel Evol ; 55(1): 81, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990289

RESUMEN

BACKGROUND: Host resilience (HR) to parasites can affect the performance of animals. Therefore, the aim of this study was to present a detailed investigation of the genetic mechanisms of HR to ticks (TICK), gastrointestinal nematodes (GIN), and Eimeria spp. (EIM) in Nellore cattle that were raised under natural infestation and a prophylactic parasite control strategy. In our study, HR was defined as the slope coefficient of body weight (BW) when TICK, GIN, and EIM burdens were used as environmental gradients in random regression models. In total, 1712 animals were evaluated at five measurement events (ME) at an average age of 331, 385, 443, 498, and 555 days, which generated 7307 body weight (BW) records. Of the 1712 animals, 1075 genotyped animals were used in genome-wide association studies to identify genomic regions associated with HR. RESULTS: Posterior means of the heritability estimates for BW ranged from 0.09 to 0.54 across parasites and ME. The single nucleotide polymorphism (SNP)-derived heritability for BW at each ME ranged from a low (0.09 at ME.331) to a moderate value (0.23 at ME.555). Those estimates show that genetic progress can be achieved for BW through selection. Both genetic and genomic associations between BW and HR to TICK, GIN, and EIM confirmed that parasite infestation impacted the performance of animals. Selection for BW under an environment with a controlled parasite burden is an alternative to improve both, BW and HR. There was no impact of age of measurement on the estimates of genetic variance for HR. Five quantitative trait loci (QTL) were associated with HR to EIM but none with HR to TICK and to GIN. These QTL contain genes that were previously shown to be associated with the production of antibody modulators and chemokines that are released in the intestinal epithelium. CONCLUSIONS: Selection for BW under natural infestation and controlled parasite burden, via prophylactic parasite control, contributes to the identification of animals that are resilient to nematodes and Eimeria ssp. Although we verified that sufficient genetic variation existed for HR, we did not find any genes associated with mechanisms that could justify the expression of HR to TICK and GIN.


Asunto(s)
Estudio de Asociación del Genoma Completo , Parásitos , Animales , Bovinos/genética , Estudio de Asociación del Genoma Completo/veterinaria , Sitios de Carácter Cuantitativo , Genotipo , Parásitos/genética , Peso Corporal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA