Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.359
Filtrar
1.
Sci Adv ; 10(27): eadm9740, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959309

RESUMEN

Micrococcal nuclease sequencing is the state-of-the-art method for determining chromatin structure and nucleosome positioning. Data analysis is complex due to the AT-dependent sequence bias of the endonuclease and the requirement for high sequencing depth. Here, we present the nucleosome-based MNase accessibility (nucMACC) pipeline unveiling the regulatory chromatin landscape by measuring nucleosome accessibility and stability. The nucMACC pipeline represents a systematic and genome-wide approach for detecting unstable ("fragile") nucleosomes. We have characterized the regulatory nucleosome landscape in Drosophila melanogaster, Saccharomyces cerevisiae, and mammals. Two functionally distinct sets of promoters were characterized, one associated with an unstable nucleosome and the other being nucleosome depleted. We show that unstable nucleosomes present intermediate states of nucleosome remodeling, preparing inducible genes for transcriptional activation in response to stimuli or stress. The presence of unstable nucleosomes correlates with RNA polymerase II proximal pausing. The nucMACC pipeline offers unparalleled precision and depth in nucleosome research and is a valuable tool for future nucleosome studies.


Asunto(s)
Drosophila melanogaster , Nucleasa Microcócica , Nucleosomas , Saccharomyces cerevisiae , Nucleosomas/metabolismo , Nucleosomas/genética , Animales , Nucleasa Microcócica/metabolismo , Drosophila melanogaster/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ensamble y Desensamble de Cromatina , Genoma , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Cromatina/genética , Cromatina/metabolismo , Análisis de Secuencia de ADN/métodos
2.
Sci Adv ; 10(27): eadn9423, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968349

RESUMEN

DNA origami nanostructures (DOs) are promising tools for applications including drug delivery, biosensing, detecting biomolecules, and probing chromatin substructures. Targeting these nanodevices to mammalian cell nuclei could provide impactful approaches for probing, visualizing, and controlling biomolecular processes within live cells. We present an approach to deliver DOs into live-cell nuclei. We show that these DOs do not undergo detectable structural degradation in cell culture media or cell extracts for 24 hours. To deliver DOs into the nuclei of human U2OS cells, we conjugated 30-nanometer DO nanorods with an antibody raised against a nuclear factor, specifically the largest subunit of RNA polymerase II (Pol II). We find that DOs remain structurally intact in cells for 24 hours, including inside the nucleus. We demonstrate that electroporated anti-Pol II antibody-conjugated DOs are piggybacked into nuclei and exhibit subdiffusive motion inside the nucleus. Our results establish interfacing DOs with a nuclear factor as an effective method to deliver nanodevices into live-cell nuclei.


Asunto(s)
Núcleo Celular , ADN , Nanoestructuras , Núcleo Celular/metabolismo , Humanos , ADN/química , ADN/metabolismo , Nanoestructuras/química , ARN Polimerasa II/metabolismo , Línea Celular Tumoral , Nanotubos/química
3.
Nat Commun ; 15(1): 5393, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918438

RESUMEN

Although our understanding of the involvement of heterochromatin architectural factors in shaping nuclear organization is improving, there is still ongoing debate regarding the role of active genes in this process. In this study, we utilize publicly-available Micro-C data from mouse embryonic stem cells to investigate the relationship between gene transcription and 3D gene folding. Our analysis uncovers a nonmonotonic - globally positive - correlation between intragenic contact density and Pol II occupancy, independent of cohesin-based loop extrusion. Through the development of a biophysical model integrating the role of transcription dynamics within a polymer model of chromosome organization, we demonstrate that Pol II-mediated attractive interactions with limited valency between transcribed regions yield quantitative predictions consistent with chromosome-conformation-capture and live-imaging experiments. Our work provides compelling evidence that transcriptional activity shapes the 4D genome through Pol II-mediated micro-compartmentalization.


Asunto(s)
Células Madre Embrionarias de Ratones , ARN Polimerasa II , Transcripción Genética , Animales , Ratones , Células Madre Embrionarias de Ratones/metabolismo , ARN Polimerasa II/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Cohesinas , Heterocromatina/metabolismo , Heterocromatina/genética , Cromosomas/metabolismo , Cromatina/metabolismo , Cromatina/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica
4.
PLoS Pathog ; 20(6): e1012329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900816

RESUMEN

Coronavirus (CoV) nonstructural protein 1 (nsp1) is considered a pathogenic factor due to its ability to inhibit host antiviral responses by inducing general shutoff of host protein synthesis. Nsp1 is expressed by α- and ß-CoVs, but its functions and strategies to induce host shutoff are not fully elucidated. We compared the nsp1s from two ß-CoVs (SARS-CoV and SARS-CoV-2) and two α-CoVs (NL63 and 229E) and found that NL63 nsp1 has the strongest shutoff activity. Unlike SARS-CoV nsp1s, which bind to 40S ribosomes and block translation of cellular mRNA, NL63 nsp1 did not inhibit translation of mRNAs transfected into cells. Instead, NL63 nsp1 localized to the nucleus and specifically inhibited transcription of genes under an RNA polymerase II (RNAPII) promoter. Further analysis revealed that NL63 nsp1 induces degradation of the largest subunit of RNAPII, Rpb1. This degradation was detected regardless of the phosphorylation state of Rpb1 and was blocked by the proteasome inhibitor MG132. We also found that Rpb1 was ubiquitinated in NL63-infected cells, and inhibition of ubiquitination by a ubiquitin activating enzyme inhibitor (TAK243) prevented degradation of Rpb1 in virus-infected cells. These data reveal an unrecognized strategy of host shutoff by human α-CoV NL63: targeting host transcription by inducing Rpb1 degradation to prevent host protein expression. Our study indicates that viruses within the same family can use completely distinct mechanisms to regulate host antiviral responses.


Asunto(s)
Biosíntesis de Proteínas , ARN Polimerasa II , Proteínas no Estructurales Virales , Humanos , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , ARN Polimerasa II/metabolismo , Coronavirus Humano NL63/metabolismo , SARS-CoV-2 , Células HEK293
5.
STAR Protoc ; 5(2): 103099, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38824639

RESUMEN

The MS2-PP7 two-color live-imaging system provides insights into the spatiotemporal dynamics of nascent transcripts at tagged loci. Here, we present a protocol to quantitatively measure the rate of RNA polymerase II elongation for each actively transcribing nucleus in living Drosophila embryos. The elongation rate is calculated by measuring the effective distance and the time elapsed between MS2 and PP7 trajectories. We describe steps for preparing embryo samples, performing live imaging, and measuring the elongation rate. For complete details on the use and execution of this protocol, please refer to Keller et al.1.


Asunto(s)
Embrión no Mamífero , ARN Polimerasa II , Animales , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Embrión no Mamífero/metabolismo , Drosophila/embriología , Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
6.
Nat Commun ; 15(1): 5113, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879529

RESUMEN

Factor-dependent termination uses molecular motors to remodel transcription machineries, but the associated mechanisms, especially in eukaryotes, are poorly understood. Here we use single-molecule fluorescence assays to characterize in real time the composition and the catalytic states of Saccharomyces cerevisiae transcription termination complexes remodeled by Sen1 helicase. We confirm that Sen1 takes the RNA transcript as its substrate and translocates along it by hydrolyzing multiple ATPs to form an intermediate with a stalled RNA polymerase II (Pol II) transcription elongation complex (TEC). We show that this intermediate dissociates upon hydrolysis of a single ATP leading to dissociation of Sen1 and RNA, after which Sen1 remains bound to the RNA. We find that Pol II ends up in a variety of states: dissociating from the DNA substrate, which is facilitated by transcription bubble rewinding, being retained to the DNA substrate, or diffusing along the DNA substrate. Our results provide a complete quantitative framework for understanding the mechanism of Sen1-dependent transcription termination in eukaryotes.


Asunto(s)
Adenosina Trifosfato , ADN Helicasas , ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Imagen Individual de Molécula , Terminación de la Transcripción Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN Polimerasa II/metabolismo , Adenosina Trifosfato/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Imagen Individual de Molécula/métodos , ARN Helicasas/metabolismo , ARN Helicasas/genética , Transcripción Genética , ARN de Hongos/metabolismo , ARN de Hongos/genética , ADN de Hongos/metabolismo , ADN de Hongos/genética , Hidrólisis
7.
PLoS One ; 19(6): e0298965, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38829854

RESUMEN

Familial Dysautonomia (FD) is a rare disease caused by ELP1 exon 20 skipping. Here we clarify the role of RNA Polymerase II (RNAPII) and chromatin on this splicing event. A slow RNAPII mutant and chromatin-modifying chemicals that reduce the rate of RNAPII elongation induce exon skipping whereas chemicals that create a more relaxed chromatin exon inclusion. In the brain of a mouse transgenic for the human FD-ELP1 we observed on this gene an age-dependent decrease in the RNAPII density profile that was most pronounced on the alternative exon, a robust increase in the repressive marks H3K27me3 and H3K9me3 and a decrease of H3K27Ac, together with a progressive reduction in ELP1 exon 20 inclusion level. In HEK 293T cells, selective drug-induced demethylation of H3K27 increased RNAPII elongation on ELP1 and SMN2, promoted the inclusion of the corresponding alternative exons, and, by RNA-sequencing analysis, induced changes in several alternative splicing events. These data suggest a co-transcriptional model of splicing regulation in which age-dependent changes in H3K27me3/Ac modify the rate of RNAPII elongation and affect processing of ELP1 alternative exon 20.


Asunto(s)
Empalme Alternativo , Cromatina , Disautonomía Familiar , Exones , ARN Polimerasa II , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Disautonomía Familiar/genética , Disautonomía Familiar/metabolismo , Humanos , Exones/genética , Animales , Cromatina/metabolismo , Cromatina/genética , Ratones , Células HEK293 , Histonas/metabolismo , Ratones Transgénicos , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo , Cinética , Empalme del ARN , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
8.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38843934

RESUMEN

RNA-binding proteins are frequently deregulated in cancer and emerge as effectors of the DNA damage response (DDR). The non-POU domain-containing octamer-binding protein NONO/p54nrb is a multifunctional RNA-binding protein that not only modulates the production and processing of mRNA, but also promotes the repair of DNA double-strand breaks (DSBs). Here, we investigate the impact of Nono deletion in the murine KP (KRas G12D , Trp53 -/- ) cell-based lung cancer model. We show that the deletion of Nono impairs the response to DNA damage induced by the topoisomerase II inhibitor etoposide or the radiomimetic drug bleomycin. Nono-deficient KP (KPN) cells display hyperactivation of DSB signalling and high levels of DSBs. The defects in the DDR are accompanied by reduced RNA polymerase II promoter occupancy, impaired nascent RNA synthesis, and attenuated induction of the DDR factor growth arrest and DNA damage-inducible beta (Gadd45b). Our data characterise Gadd45b as a putative Nono-dependent effector of the DDR and suggest that Nono mediates a genome-protective crosstalk of the DDR with the RNA metabolism via induction of Gadd45b.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas de Unión al ARN , Animales , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Roturas del ADN de Doble Cadena , Antígenos de Diferenciación/metabolismo , Antígenos de Diferenciación/genética , Bleomicina/farmacología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Etopósido/farmacología , Transducción de Señal , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , ARN Polimerasa II/metabolismo , Humanos , Proteinas GADD45
9.
Nat Commun ; 15(1): 4716, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830843

RESUMEN

BRCA2 is a tumor suppressor protein responsible for safeguarding the cellular genome from replication stress and genotoxicity, but the specific mechanism(s) by which this is achieved to prevent early oncogenesis remains unclear. Here, we provide evidence that BRCA2 acts as a critical suppressor of head-on transcription-replication conflicts (HO-TRCs). Using Okazaki-fragment sequencing (Ok-seq) and computational analysis, we identified origins (dormant origins) that are activated near the transcription termination sites (TTS) of highly expressed, long genes in response to replication stress. Dormant origins are a source for HO-TRCs, and drug treatments that inhibit dormant origin firing led to a reduction in HO-TRCs, R-loop formation, and DNA damage. Using super-resolution microscopy, we showed that HO-TRC events track with elongating RNA polymerase II, but not with transcription initiation. Importantly, RNase H2 is recruited to sites of HO-TRCs in a BRCA2-dependent manner to help alleviate toxic R-loops associated with HO-TRCs. Collectively, our results provide a mechanistic basis for how BRCA2 shields against genomic instability by preventing HO-TRCs through both direct and indirect means occurring at predetermined genomic sites based on the pre-cancer transcriptome.


Asunto(s)
Proteína BRCA2 , Replicación del ADN , ARN Polimerasa II , Ribonucleasa H , Humanos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Ribonucleasa H/metabolismo , Ribonucleasa H/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Terminación de la Transcripción Genética , Daño del ADN , Origen de Réplica , Estructuras R-Loop , Línea Celular Tumoral
10.
Proc Natl Acad Sci U S A ; 121(24): e2404383121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38843184

RESUMEN

Transcription is extremely important for cellular processes but can be hindered by RNA polymerase II (RNAPII) pausing and stalling. Cockayne syndrome protein B (CSB) promotes the progression of paused RNAPII or initiates transcription-coupled nucleotide excision repair (TC-NER) to remove stalled RNAPII. However, the specific mechanism by which CSB initiates TC-NER upon damage remains unclear. In this study, we identified the indispensable role of the ARK2N-CK2 complex in the CSB-mediated initiation of TC-NER. The ARK2N-CK2 complex is recruited to damage sites through CSB and then phosphorylates CSB. Phosphorylation of CSB enhances its binding to stalled RNAPII, prolonging the association of CSB with chromatin and promoting CSA-mediated ubiquitination of stalled RNAPII. Consistent with this finding, Ark2n-/- mice exhibit a phenotype resembling Cockayne syndrome. These findings shed light on the pivotal role of the ARK2N-CK2 complex in governing the fate of RNAPII through CSB, bridging a critical gap necessary for initiating TC-NER.


Asunto(s)
Síndrome de Cockayne , ADN Helicasas , Enzimas Reparadoras del ADN , Reparación del ADN , Proteínas de Unión a Poli-ADP-Ribosa , ARN Polimerasa II , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Humanos , Animales , Ratones , ADN Helicasas/metabolismo , ADN Helicasas/genética , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Transcripción Genética , Fosforilación , Quinasa de la Caseína II/metabolismo , Quinasa de la Caseína II/genética , Ratones Noqueados , Daño del ADN , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Cromatina/metabolismo , Ubiquitinación , Reparación por Escisión
11.
Mol Cell ; 84(12): 2272-2286.e7, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38851185

RESUMEN

The interconnections between co-transcriptional regulation, chromatin environment, and transcriptional output remain poorly understood. Here, we investigate the mechanism underlying RNA 3' processing-mediated Polycomb silencing of Arabidopsis FLOWERING LOCUS C (FLC). We show a requirement for ANTHESIS PROMOTING FACTOR 1 (APRF1), a homolog of yeast Swd2 and human WDR82, known to regulate RNA polymerase II (RNA Pol II) during transcription termination. APRF1 interacts with TYPE ONE SERINE/THREONINE PROTEIN PHOSPHATASE 4 (TOPP4) (yeast Glc7/human PP1) and LUMINIDEPENDENS (LD), the latter showing structural features found in Ref2/PNUTS, all components of the yeast and human phosphatase module of the CPF 3' end-processing machinery. LD has been shown to co-associate in vivo with the histone H3 K4 demethylase FLOWERING LOCUS D (FLD). This work shows how the APRF1/LD-mediated polyadenylation/termination process influences subsequent rounds of transcription by changing the local chromatin environment at FLC.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cromatina , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas de Dominio MADS , ARN Polimerasa II , Terminación de la Transcripción Genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimología , Cromatina/metabolismo , Cromatina/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Histonas/metabolismo , Histonas/genética , Histona Desacetilasas
12.
Mol Cell ; 84(12): 2255-2271.e9, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38851186

RESUMEN

The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Histonas , Proteínas de Dominio MADS , Complejo Represivo Polycomb 2 , ARN Polimerasa II , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Histonas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Transcripción Genética , Poliadenilación , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Terminación de la Transcripción Genética , Cromatina/metabolismo , Cromatina/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
13.
Nat Commun ; 15(1): 5151, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886382

RESUMEN

RNA Polymerase (RNAP) II transcription on non-coding repetitive satellite DNAs plays an important role in chromosome segregation, but a little is known about the regulation of satellite transcription. We here show that Topoisomerase I (TopI), not TopII, promotes the transcription of α-satellite DNAs, the main type of satellite DNAs on human centromeres. Mechanistically, TopI localizes to centromeres, binds RNAP II and facilitates RNAP II elongation. Interestingly, in response to DNA double-stranded breaks (DSBs), α-satellite transcription is dramatically stimulated in a DNA damage checkpoint-independent but TopI-dependent manner, and these DSB-induced α-satellite RNAs form into strong speckles in the nucleus. Remarkably, TopI-dependent satellite transcription also exists in mouse 3T3 and Drosophila S2 cells and in Drosophila larval imaginal wing discs and tumor tissues. Altogether, our findings herein reveal an evolutionally conserved mechanism with TopI as a key player for the regulation of satellite transcription at both cellular and animal levels.


Asunto(s)
Centrómero , ADN-Topoisomerasas de Tipo I , ADN Satélite , ARN Polimerasa II , Transcripción Genética , Animales , ADN Satélite/genética , ADN Satélite/metabolismo , Humanos , Centrómero/metabolismo , Ratones , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo I/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Roturas del ADN de Doble Cadena , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Evolución Molecular
14.
Cell Rep ; 43(6): 114242, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38768033

RESUMEN

Terminal differentiation requires massive restructuring of the transcriptome. During intestinal differentiation, the expression patterns of nearly 4,000 genes are altered as cells transition from progenitor cells in crypts to differentiated cells in villi. We identify dynamic occupancy of RNA polymerase II (Pol II) to gene promoters as the primary driver of transcriptomic shifts during intestinal differentiation in vivo. Changes in enhancer-promoter looping interactions accompany dynamic Pol II occupancy and are dependent upon HNF4, a pro-differentiation transcription factor. Using genetic loss-of-function, chromatin immunoprecipitation sequencing (ChIP-seq), and immunoprecipitation (IP) mass spectrometry, we demonstrate that HNF4 collaborates with chromatin remodelers and loop-stabilizing proteins and facilitates Pol II occupancy at hundreds of genes pivotal to differentiation. We also explore alternate mechanisms that drive differentiation gene expression and find that pause-release of Pol II and post-transcriptional mRNA stability regulate smaller subsets of differentially expressed genes. These studies provide insights into the mechanisms of differentiation in renewing adult tissue.


Asunto(s)
Diferenciación Celular , Factor Nuclear 4 del Hepatocito , ARN Polimerasa II , ARN Polimerasa II/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Animales , Ratones , Intestinos , Regiones Promotoras Genéticas , Elementos de Facilitación Genéticos/genética
15.
Genome Biol ; 25(1): 126, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773641

RESUMEN

BACKGROUND: DNA replication progression can be affected by the presence of physical barriers like the RNA polymerases, leading to replication stress and DNA damage. Nonetheless, we do not know how transcription influences overall DNA replication progression. RESULTS: To characterize sites where DNA replication forks stall and pause, we establish a genome-wide approach to identify them. This approach uses multiple timepoints during S-phase to identify replication fork/stalling hotspots as replication progresses through the genome. These sites are typically associated with increased DNA damage, overlapped with fragile sites and with breakpoints of rearrangements identified in cancers but do not overlap with replication origins. Overlaying these sites with a genome-wide analysis of RNA polymerase II transcription, we find that replication fork stalling/pausing sites inside genes are directly related to transcription progression and activity. Indeed, we find that slowing down transcription elongation slows down directly replication progression through genes. This indicates that transcription and replication can coexist over the same regions. Importantly, rearrangements found in cancers overlapping transcription-replication collision sites are detected in non-transformed cells and increase following treatment with ATM and ATR inhibitors. At the same time, we find instances where transcription activity favors replication progression because it reduces histone density. CONCLUSIONS: Altogether, our findings highlight how transcription and replication overlap during S-phase, with both positive and negative consequences for replication fork progression and genome stability by the coexistence of these two processes.


Asunto(s)
Replicación del ADN , ARN Polimerasa II , Transcripción Genética , ARN Polimerasa II/metabolismo , Humanos , Fase S/genética , Daño del ADN , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Genoma Humano , Origen de Réplica
16.
J Comput Biol ; 31(6): 589-596, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768423

RESUMEN

Chromatin conformation capture technologies permit the study of chromatin spatial organization on a genome-wide scale at a variety of resolutions. Despite the increasing precision and resolution of high-throughput chromatin conformation capture (Hi-C) methods, it remains challenging to conclusively link transcriptional activity to spatial organizational phenomena. We have developed a clique-based approach for analyzing Hi-C data that helps identify chromosomal hotspots that feature considerable enrichment of chromatin annotations for transcriptional start sites and, building on previously published work, show that these chromosomal hotspots are not only significantly enriched in RNA polymerase II binding sites as identified by the ENCODE project, but also identify a noticeable increase in FANTOM5 and GTEx transcription within our identified cliques across a variety of tissue types. From the obtained data, we surmise that our cliques are a suitable method for identifying transcription factories in Hi-C data, and outline further extensions to the method that may make it useful for locating regions of increased transcriptional activity in datasets where in-depth expression or polymerase data may not be available.


Asunto(s)
Cromatina , ARN Polimerasa II , Sitio de Iniciación de la Transcripción , Transcripción Genética , Cromatina/genética , Cromatina/metabolismo , Humanos , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Redes Reguladoras de Genes , Sitios de Unión
17.
Nucleic Acids Res ; 52(12): 6850-6865, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38726870

RESUMEN

The ZFX transcriptional activator binds to CpG island promoters, with a major peak at ∼200-250 bp downstream from transcription start sites. Because ZFX binds within the transcribed region, we investigated whether it regulates transcriptional elongation. We used GRO-seq to show that loss or reduction of ZFX increased Pol2 pausing at ZFX-regulated promoters. To further investigate the mechanisms by which ZFX regulates transcription, we determined regions of the protein needed for transactivation and for recruitment to the chromatin. Interestingly, although ZFX has 13 grouped zinc fingers, deletion of the first 11 fingers produces a protein that can still bind to chromatin and activate transcription. We next used TurboID-MS to detect ZFX-interacting proteins, identifying ZNF593, as well as proteins that interact with the N-terminal transactivation domain (which included histone modifying proteins), and proteins that interact with ZFX when it is bound to the chromatin (which included TAFs and other histone modifying proteins). Our studies support a model in which ZFX enhances elongation at target promoters by recruiting H4 acetylation complexes and reducing pausing.


Asunto(s)
Cromatina , Histonas , Regiones Promotoras Genéticas , Acetilación , Histonas/metabolismo , Humanos , Cromatina/metabolismo , ARN Polimerasa II/metabolismo , Dedos de Zinc , Unión Proteica , Activación Transcripcional , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Islas de CpG , Animales
18.
Nucleic Acids Res ; 52(12): 6866-6885, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38783162

RESUMEN

The genomes of Leishmania and trypanosomes are organized into polycistronic transcription units flanked by a modified DNA base J involved in promoting RNA polymerase II (Pol II) termination. We recently characterized a Leishmania complex containing a J-binding protein, PP1 protein phosphatase 1, and PP1 regulatory protein (PNUTS) that controls transcription termination potentially via dephosphorylation of Pol II by PP1. While T. brucei contains eight PP1 isoforms, none purified with the PNUTS complex, complicating the analysis of PP1 function in termination. We now demonstrate that the PP1-binding motif of TbPNUTS is required for function in termination in vivo and that TbPP1-1 modulates Pol II termination in T. brucei and dephosphorylation of the large subunit of Pol II. PP1-1 knock-down results in increased cellular levels of phosphorylated RPB1 accompanied by readthrough transcription and aberrant transcription of the chromosome by Pol II, including Pol I transcribed loci that are typically silent, such as telomeric VSG expression sites involved in antigenic variation. These results provide important insights into the mechanism underlying Pol II transcription termination in primitive eukaryotes that rely on polycistronic transcription and maintain allelic exclusion of VSG genes.


Asunto(s)
Alelos , Proteína Fosfatasa 1 , Proteínas Protozoarias , ARN Polimerasa II , Terminación de la Transcripción Genética , Trypanosoma brucei brucei , Glicoproteínas Variantes de Superficie de Trypanosoma , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/enzimología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Fosforilación , Transcripción Genética
19.
Nat Commun ; 15(1): 4460, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796517

RESUMEN

In plants, the plant-specific RNA polymerase V (Pol V) transcripts non-coding RNAs and provides a docking platform for the association of accessory proteins in the RNA-directed DNA methylation (RdDM) pathway. Various components have been uncovered that are involved in the process of DNA methylation, but it is still not clear how the transcription of Pol V is regulated. Here, we report that the conserved RNA polymerase II (Pol II) elongator, SPT6L, binds to thousands of intergenic regions in a Pol II-independent manner. The intergenic enrichment of SPT6L, interestingly, co-occupies with the largest subunit of Pol V (NRPE1) and mutation of SPT6L leads to the reduction of DNA methylation but not Pol V enrichment. Furthermore, the association of SPT6L at Pol V loci is dependent on the Pol V associated factor, SPT5L, rather than the presence of Pol V, and the interaction between SPT6L and NRPE1 is compromised in spt5l. Finally, Pol V RIP-seq reveals that SPT6L is required to maintain the amount and length of Pol V transcripts. Our findings thus uncover the critical role of a Pol II conserved elongator in Pol V mediated DNA methylation and transcription, and shed light on the mutual regulation between Pol V and II in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN , ARN Polimerasas Dirigidas por ADN , Regulación de la Expresión Génica de las Plantas , ARN Polimerasa II , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Mutación , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , ARN de Planta/metabolismo , ARN de Planta/genética , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética
20.
Mol Genet Genomics ; 299(1): 59, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38796829

RESUMEN

RECQL5 is a member of the conserved RecQ family of DNA helicases involved in the maintenance of genome stability that is specifically found in higher eukaryotes and associates with the elongating RNA polymerase II. To expand our understanding of its function we expressed human RECQL5 in the yeast Saccharomyces cerevisiae, which does not have a RECQL5 ortholog. We found that RECQL5 expression leads to cell growth inhibition, increased genotoxic sensitivity and transcription-associated hyperrecombination. Chromatin immunoprecipitation and transcriptomic analysis of yeast cells expressing human RECQL5 shows that this is recruited to transcribed genes and although it causes only a weak impact on gene expression, in particular at G + C-rich genes, it leads to a transcription termination defect detected as readthrough transcription. The data indicate that the interaction between RNAPII and RECQL5 is conserved from yeast to humans. Unexpectedly, however, the RECQL5-ID mutant, previously shown to have reduced the association with RNAPII in vitro, associates with the transcribing polymerase in cells. As a result, expression of RECQL5-ID leads to similar although weaker phenotypes than wild-type RECQL5 that could be transcription-mediated. Altogether, the data suggests that RECQL5 has the intrinsic ability to function in transcription-dependent and independent genome dynamics in S. cerevisiae.


Asunto(s)
Inestabilidad Genómica , RecQ Helicasas , Saccharomyces cerevisiae , Transcripción Genética , Saccharomyces cerevisiae/genética , Inestabilidad Genómica/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Humanos , Transcripción Genética/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...