Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.103
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999946

RESUMEN

The tumor cells reprogram their metabolism to cover their high bioenergetic demands for maintaining uncontrolled growth. This response can be mediated by cytokines such as IL-2, which binds to its receptor and activates the JAK/STAT pathway. Some reports show a correlation between the JAK/STAT pathway and cellular metabolism, since the constitutive activation of STAT proteins promotes glycolysis through the transcriptional activation of genes related to energetic metabolism. However, the role of STAT proteins in the metabolic switch induced by cytokines in cervical cancer remains poorly understood. In this study, we analyzed the effect of IL-2 on the metabolic switch and the role of STAT5 in this response. Our results show that IL-2 induces cervical cancer cell proliferation and the tyrosine phosphorylation of STAT5. Also, it induces an increase in lactate secretion and the ratio of NAD+/NADH, which suggest a metabolic reprogramming of their metabolism. When STAT5 was silenced, the lactate secretion and the NAD+/NADH ratio decreased. Also, the expression of HIF1α and GLUT1 decreased. These results indicate that STAT5 regulates IL-2-induced cell proliferation and the metabolic shift to aerobic glycolysis by regulating genes related to energy metabolism. Our results suggest that STAT proteins modulate the metabolic switch in cervical cancer cells to attend to their high demand of energy required for cell growth and proliferation.


Asunto(s)
Proliferación Celular , Interleucina-2 , Factor de Transcripción STAT5 , Neoplasias del Cuello Uterino , Humanos , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/genética , Femenino , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Interleucina-2/metabolismo , Interleucina-2/farmacología , Glucólisis/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Fosforilación/efectos de los fármacos , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , NAD/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Transducción de Señal/efectos de los fármacos , Ácido Láctico/metabolismo
2.
Endocrinology ; 165(7)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38728240

RESUMEN

GH acts in numerous organs expressing the GH receptor (GHR), including the brain. However, the mechanisms behind the brain's permeability to GH and how this hormone accesses different brain regions remain unclear. It is well-known that an acute GH administration induces phosphorylation of the signal transducer and activator of transcription 5 (pSTAT5) in the mouse brain. Thus, the pattern of pSTAT5 immunoreactive cells was analyzed at different time points after IP or intracerebroventricular GH injections. After a systemic GH injection, the first cells expressing pSTAT5 were those near circumventricular organs, such as arcuate nucleus neurons adjacent to the median eminence. Both systemic and central GH injections induced a medial-to-lateral pattern of pSTAT5 immunoreactivity over time because GH-responsive cells were initially observed in periventricular areas and were progressively detected in lateral brain structures. Very few choroid plexus cells exhibited GH-induced pSTAT5. Additionally, Ghr mRNA was poorly expressed in the mouse choroid plexus. In contrast, some tanycytes lining the floor of the third ventricle expressed Ghr mRNA and exhibited GH-induced pSTAT5. The transport of radiolabeled GH into the hypothalamus did not differ between wild-type and dwarf Ghr knockout mice, indicating that GH transport into the mouse brain is GHR independent. Also, single-photon emission computed tomography confirmed that radiolabeled GH rapidly reaches the ventral part of the tuberal hypothalamus. In conclusion, our study provides novel and valuable information about the pattern and mechanisms behind GH transport into the mouse brain.


Asunto(s)
Encéfalo , Hormona del Crecimiento , Receptores de Somatotropina , Factor de Transcripción STAT5 , Animales , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/genética , Encéfalo/metabolismo , Hormona del Crecimiento/metabolismo , Ratones , Receptores de Somatotropina/metabolismo , Receptores de Somatotropina/genética , Masculino , Ratones Noqueados , Ratones Endogámicos C57BL , Fosforilación , Plexo Coroideo/metabolismo , Hipotálamo/metabolismo , Inyecciones Intraventriculares
3.
J Vet Med Sci ; 86(7): 816-823, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38777776

RESUMEN

Signal transducers and activators of transcription (STATs) are a family of transcription factors involved in various normal physiological cellular processes. Moreover, STATs have been recently identified as novel therapeutic targets for various human tumors. STAT3, STAT5a, and STAT6 have been suggested to be involved in tumorigenesis in human breast cancer. Owing to the similarity between feline mammary carcinomas (FMCs) and human breast cancers, these factors may play an important role in FMCs. However, studies on the expression of STATs in animal tumors are limited. Therefore, in this study, we aimed to characterize the expression of total STAT5 (tSTAT5) and phosphorylated STAT5 (pSTAT5) in FMCs, feline mammary adenomas, non-neoplastic proliferative mammary gland lesions, and normal feline mammary glands using immunohistochemistry. High expression of tSTAT5 was observed in the cytoplasm of all the samples assessed in this study. Moreover, high expression of tSTAT5 was observed in the nucleus; however, its levels varied depending on the lesion. The percentage of pSTAT5-nuclear positive cells varied among normal feline mammary glands (40.1 ± 25.1%), and non-neoplastic lesions, including mammary hyperplasia (43.2 ± 28.6%) and fibroadenomatous changes (18.0 ± 13.6%). Moreover, the percentage of pSTAT5-nuclear-positive cells in feline mammary adenomas was 24.5 ± 19.2%, which was significantly reduced in feline mammary carcinomas (2.4 ± 5.6%), regardless of histopathological subtype. This study suggests that decreased STAT5 activity may be involved in the development and malignant progression of feline mammary carcinomas.


Asunto(s)
Enfermedades de los Gatos , Neoplasias Mamarias Animales , Factor de Transcripción STAT5 , Animales , Gatos , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/genética , Femenino , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/patología , Enfermedades de los Gatos/metabolismo , Enfermedades de los Gatos/patología , Fosforilación , Regulación Neoplásica de la Expresión Génica , Inmunohistoquímica/veterinaria , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología
4.
J Exp Clin Cancer Res ; 43(1): 144, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745318

RESUMEN

BACKGROUND: Neuroendocrine prostate cancer (NEPC) is a lethal subset of prostate cancer which is characterized by neuroendocrine differentiation and loss of androgen receptor (AR) signaling. Growing evidence reveals that cell lineage plasticity is crucial in the failure of NEPC therapies. Although studies suggest the involvement of the neural transcription factor PAX6 in drug resistance, its specific role in NEPC remains unclear. METHODS: The expression of PAX6 in NEPC was identified via bioinformatics and immunohistochemistry. CCK8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay were used to illustrate the key role of PAX6 in the progression of in vitro. ChIP and Dual-luciferase reporter assays were conducted to confirm the binding sequences of AR in the promoter region of PAX6, as well as the binding sequences of PAX6 in the promoter regions of STAT5A and MET. For in vivo validation, the xenograft model representing NEPC subtype underwent pathological analysis to verify the significant role of PAX6 in disease progression. Complementary diagnoses were established through public clinical datasets and transcriptome sequencing of specific cell lines. ATAC-seq was used to detect the chromatin accessibility of specific cell lines. RESULTS: PAX6 expression was significantly elevated in NEPC and negatively regulated by AR signaling. Activation of PAX6 in non-NEPC cells led to NE trans-differentiation, while knock-down of PAX6 in NEPC cells inhibited the development and progression of NEPC. Importantly, loss of AR resulted in an enhanced expression of PAX6, which reprogramed the lineage plasticity of prostate cancer cells to develop NE phenotypes through the MET/STAT5A signaling pathway. Through ATAC-seq, we found that a high expression level of PAX6 elicited enhanced chromatin accessibility, mainly through attenuation of H4K20me3, which typically causes chromatin silence in cancer cells. CONCLUSION: This study reveals a novel neural transcription factor PAX6 could drive NEPC progression and suggest that it might serve as a potential therapeutic target for the management of NEPC.


Asunto(s)
Cromatina , Factor de Transcripción PAX6 , Neoplasias de la Próstata , Factor de Transcripción STAT5 , Humanos , Masculino , Factor de Transcripción PAX6/metabolismo , Factor de Transcripción PAX6/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Ratones , Animales , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/genética , Cromatina/metabolismo , Cromatina/genética , Fenotipo , Línea Celular Tumoral , Transducción de Señal , Regulación Neoplásica de la Expresión Génica
5.
Cell Commun Signal ; 22(1): 254, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702781

RESUMEN

IL-3/STAT5 signaling pathway is crucial for the development and activation of immune cells, contributing to the cellular response to infections and inflammatory stimuli. Dysregulation of the IL-3/STAT5 signaling have been associated with inflammatory and autoimmune diseases characterized by inflammatory cell infiltration and organ damage. IL-3 receptor α (IL-3Rα) specifically binds to IL-3 and initiates intracellular signaling, resulting in the phosphorylation of STAT5. However, the regulatory mechanisms of IL-3Rα remain unclear. Here, we identified the E3 ubiquitin ligase RNF128 as a negative regulator of IL-3/STAT5 signaling by targeting IL-3Rα for lysosomal degradation. RNF128 was shown to selectively bind to IL-3Rα, without interacting with the common beta chain IL-3Rß, which shares the subunit with GM-CSF. The deficiency of Rnf128 had no effect on GM-CSF-induced phosphorylation of Stat5, but it resulted in heightened Il-3-triggered activation of Stat5 and increased transcription of the Id1, Pim1, and Cd69 genes. Furthermore, we found that RNF128 promoted the K27-linked polyubiquitination of IL-3Rα in a ligase activity-dependent manner, ultimately facilitating its degradation through the lysosomal pathway. RNF128 inhibited the activation and chemotaxis of macrophages in response to LPS stimulation, thereby attenuating excessive inflammatory responses. Collectively, these results reveal that RNF128 negatively regulates the IL-3/STAT5 signaling pathway by facilitating K27-linked polyubiquitination of IL-3Rα. This study uncovers E3 ubiquitin ligase RNF128 as a novel regulator of the IL-3/STAT5 signaling pathway, providing potential molecular targets for the treatment of inflammatory diseases.


Asunto(s)
Interleucina-3 , Factor de Transcripción STAT5 , Transducción de Señal , Ubiquitina-Proteína Ligasas , Ubiquitinación , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Humanos , Animales , Interleucina-3/metabolismo , Ratones , Lisosomas/metabolismo , Células HEK293 , Fosforilación , Receptores de Interleucina-3/metabolismo , Receptores de Interleucina-3/genética
6.
J Clin Invest ; 134(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618957

RESUMEN

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. Mutations in IL7R have been analyzed genetically, but downstream effector functions such as STAT5A and STAT5B hyperactivation are poorly understood. Here, we studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset and compared it with STAT5A hyperactive variants in transgenic mice. Enhanced STAT5 activity caused disrupted T cell development and promoted an early T cell progenitor-ALL phenotype, with upregulation of genes involved in T cell receptor (TCR) signaling, even in absence of surface TCR. Importantly, TCR pathway genes were overexpressed in human T-ALL and mature T cell cancers and activation of TCR pathway kinases was STAT5 dependent. We confirmed STAT5 binding to these genes using ChIP-Seq analysis in human T-ALL cells, which were sensitive to pharmacologic inhibition by dual STAT3/5 degraders or ZAP70 tyrosine kinase blockers in vitro and in vivo. We provide genetic and biochemical proof that STAT5A and STAT5B hyperactivation can initiate T-ALL through TCR pathway hijacking and suggest similar mechanisms for other T cell cancers. Thus, STAT5 or TCR component blockade are targeted therapy options, particularly in patients with chemoresistant clones carrying STAT5BN642H.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Humanos , Ratones , Ratones Transgénicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Tirosina Quinasas , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal , Factor de Transcripción STAT5/genética
7.
Int Immunopharmacol ; 133: 112166, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678673

RESUMEN

Dendritic cells (DCs) are specialized antigen-presenting cells that play an important role in inducing and maintaining immune tolerance. The altered distribution and/or function of DCs contributes to defective tolerance in autoimmune diseases such as type 1 diabetes (T1D). In human T1D and in NOD mouse models, DCs share some defects and are often described as less tolerogenic and excessively immunogenic. In the NOD mouse model, the autoimmune response is associated with a defect in the Stat5b signaling pathway. We have reported that expressing a constitutively active form of Stat5b in DCs of transgenic NOD mice (NOD.Stat5b-CA), re-established their tolerogenic function, restored autoimmune tolerance and conferred protection from diabetes. However, the role and molecular mechanisms of Stat5b signaling in regulating splenic conventional DCs tolerogenic signature remained unclear. In this study, we reported that, compared to immunogenic splenic DCs of NOD, splenic DCs of NOD.Stat5b-CA mice exhibited a tolerogenic profile marked by elevated PD-L1 and PD-L2 expression, reduced pro-inflammatory cytokine production, increased frequency of the cDC2 subset and decreased frequency of the cDC1 subset. This tolerogenic profile was associated with increased Ezh2 and IRF4 but decreased IRF8 expression. We also found an upregulation of PD-L1 in the cDC1 subset and high PD-L1 and PD-L2 expression in cDC2 of NOD.Stat5b-CA mice. Mechanistically, we demonstrated that Ezh2 plays an important role in the maintenance of high PD-L1 expression in cDC1 and cDC2 subsets and that Ezh2 inhibition resulted in PD-L1 but not PD-L2 downregulation which was more drastic in the cDC2 subset. Additionally, Ezh2 inhibition severely reduced the cDC2 subset and increased the cDC1 subset and Stat5b-CA.DC pro-inflammatory cytokine production. Together our data suggest that the Stat5b-Ezh2 axis is critical for the maintenance of tolerogenic high PD-L1-expressing cDC2 and autoimmune tolerance in NOD.Stat5b-CA mice.


Asunto(s)
Antígeno B7-H1 , Células Dendríticas , Diabetes Mellitus Tipo 1 , Proteína Potenciadora del Homólogo Zeste 2 , Factor de Transcripción STAT5 , Animales , Femenino , Humanos , Ratones , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/inmunología , Diabetes Mellitus Tipo 1/inmunología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Tolerancia Inmunológica , Ratones Endogámicos NOD , Ratones Transgénicos , Transducción de Señal , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/genética
8.
Am J Hematol ; 99(6): 1108-1118, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563187

RESUMEN

We investigated using a custom NGS panel of 149 genes the mutational landscape of 64 consecutive adult patients with tyrosine kinase fusion-negative hypereosinophilia (HE)/hypereosinophilic syndrome (HES) harboring features suggestive of myeloid neoplasm. At least one mutation was reported in 50/64 (78%) patients (compared to 8/44 (18%) patients with idiopathic HE/HES/HEUS used as controls; p < .001). Thirty-five patients (54%) had at least one mutation involving the JAK-STAT pathway, including STAT5B (n = 18, among which the hotspot N642H, n = 13), JAK1 (indels in exon 13, n = 5; V658F/L, n = 2), and JAK2 (V617F, n = 6; indels in exon 13, n = 2). Other previously undescribed somatic mutations were also found in JAK2, JAK1, STAT5B, and STAT5A, including three patients who shared the same STAT5A V707fs mutation and features consistent with primary polycythemia. Nearly all JAK-STAT mutations were preceded by (or associated with) myelodysplasia-related gene mutations, especially in RNA-splicing genes or chromatin modifiers. In multivariate analysis, neurologic involvement (hazard ratio [HR] 4.95 [1.87-13.13]; p = .001), anemia (HR 5.50 [2.24-13.49]; p < .001), and the presence of a high-risk mutation (as per the molecular international prognosis scoring system: HR 6.87 [2.39-19.72]; p < .001) were independently associated with impaired overall survival. While corticosteroids were ineffective in all treated JAK-STAT-mutated patients, ruxolitinib showed positive hematological responses including in STAT5A-mutated patients. These findings emphasize the usefulness of NGS for the workup of tyrosine kinase fusion-negative HE/HES patients and support the use of JAK inhibitors in this setting. Updated classifications could consider patients with JAK-STAT mutations and eosinophilia as a new "gene mutated-entity" that could be differentiated from CEL, NOS, and idiopathic HES.


Asunto(s)
Síndrome Hipereosinofílico , Mutación , Factor de Transcripción STAT5 , Humanos , Síndrome Hipereosinofílico/genética , Síndrome Hipereosinofílico/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Factor de Transcripción STAT5/genética , Janus Quinasa 2/genética , Transducción de Señal , Janus Quinasa 1/genética , Anciano de 80 o más Años , Pirimidinas/uso terapéutico , Adulto Joven
9.
J Interferon Cytokine Res ; 44(4): 178-189, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579140

RESUMEN

Chronic myeloid leukemia (CML) is a clonal myeloproliferative hematological disease characterized by the chimeric breakpoint-cluster region/Abelson kinase1 (BCR::ABL1) oncoprotein; playing a pivotal role in CML molecular pathology, diagnosis, treatment, and possible resistance arising from the success and tolerance of tyrosine kinase inhibitor (TKI)-based therapy. The transcription factor STAT5 constitutive signaling, which is influenced by the cytokine signaling network, triggers BCR::ABL1-based CML pathogenesis and is also relevant to acquired TKI resistance. The unsuccessful therapeutic approaches targeting BCR::ABL1, in particular third-line therapy with ponatinib, still need to be further developed with alternative combination strategies to overcome drug resistance. As treatment with the STAT5 inhibitor pimozide in combination with ponatinib resulted in an efficient and synergistic therapeutic approach in TKI-resistant CML cells, this study focused on identifying the underlying amplification of ponatinib response mechanisms by determining different cytokine expression profiles in parental and ponatinib-resistant CML cells, in vitro. The results showed that expression of interleukin (IL) 1B, IL9, and IL12A-B was increased by 2-fold, while IL18 was downregulated by 2-fold in the ponatinib-resistant cells compared to sensitive ones. Importantly, ponatinib treatment upregulated the expression of 21 of the 23 interferon and IL genes in the ponatinib-resistant cells, while treatment with pimozide or a combination dose resulted in a reduction in the expression of 19 different cytokine genes, such as for example, inflammatory cytokines, IL1A-B and IL6 or cytokine genes associated with supporting tumor progression, leukemia stem cell growth or poor survival, such as IL3, IL8, IL9, IL10, IL12, or IL15. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results showed that the genes were mainly enriched in the regulation of receptor signaling through the Janus kinase/signal transducer and activator of transcription pathway, cytokine-cytokine receptor interaction, and hematopoietic cell lineage. Protein-protein interaction analysis showed that IL2, IL6, IL15, IFNG, and others appeared in the top lists of pathways, indicating their high centrality and importance in the network. Therefore, pimozide could be a promising agent to support TKI therapies in ponatinib resistance. This research would help to clarify the role of cytokines in ponatinib resistance and advance the development of new therapeutics to utilize the STAT5 inhibitor pimozide in combination with TKIs.


Asunto(s)
Imidazoles , Leucemia Mielógena Crónica BCR-ABL Positiva , Pimozida , Piridazinas , Humanos , Pimozida/farmacología , Pimozida/uso terapéutico , Citocinas/metabolismo , Resistencia a Antineoplásicos/genética , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Interleucina-15/metabolismo , Interleucina-15/uso terapéutico , Interleucina-6/metabolismo , Interleucina-9/metabolismo , Interleucina-9/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología
11.
Blood ; 143(24): 2474-2489, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38498036

RESUMEN

ABSTRACT: Patients with T- and natural killer (NK)-cell neoplasms frequently have somatic STAT5B gain-of-function mutations. The most frequent STAT5B mutation is STAT5BN642H, which is known to drive murine T-cell leukemia, although its role in NK-cell malignancies is unclear. Introduction of the STAT5BN642H mutation into human NK-cell lines enhances their potential to induce leukemia in mice. We have generated a mouse model that enables tissue-specific expression of STAT5BN642H and have selectively expressed the mutated STAT5B in hematopoietic cells (N642Hvav/+) or exclusively in NK cells (N642HNK/NK). All N642Hvav/+ mice rapidly develop an aggressive T/NKT-cell leukemia, whereas N642HNK/NK mice display an indolent NK-large granular lymphocytic leukemia (NK-LGLL) that progresses to an aggressive leukemia with age. Samples from patients with NK-cell leukemia have a distinctive transcriptional signature driven by mutant STAT5B, which overlaps with that of murine leukemic N642HNK/NK NK cells. To our knowledge, we have generated the first reliable STAT5BN642H-driven preclinical mouse model that displays an indolent NK-LGLL progressing to aggressive NK-cell leukemia. This novel in vivo tool will enable us to explore the transition from an indolent to an aggressive disease and will thus permit the study of prevention and treatment options for NK-cell malignancies.


Asunto(s)
Células Asesinas Naturales , Leucemia Linfocítica Granular Grande , Factor de Transcripción STAT5 , Animales , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Ratones , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Humanos , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/patología , Modelos Animales de Enfermedad , Linaje de la Célula/genética , Mutación , Ratones Transgénicos
12.
J Cell Mol Med ; 28(3): e18114, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38323741

RESUMEN

Patients with Philadelphia chromosome-like acute lymphoblastic leukaemia (Ph-like ALL) often face a grim prognosis, with PDGFRB gene fusions being commonly detected in this subgroup. Our study has unveiled a newfound fusion gene, TERF2::PDGFRB, and we have found that patients carrying this fusion gene exhibit sensitivity to dasatinib. Ba/F3 cells harbouring the TERF2::PDGFRB fusion display IL-3-independent cell proliferation through activation of the p-PDGFRB and p-STAT5 signalling pathways. These cells exhibit reduced apoptosis and demonstrate sensitivity to imatinib in vitro. When transfused into mice, Ba/F3 cells with the TERF2::PDGFRB fusion gene induce tumorigenesis and a shortened lifespan in cell-derived graft models, but this outcome can be improved with imatinib treatment. In summary, we have identified the novel TERF2::PDGFRB fusion gene, which exhibits oncogenic potential both in vitro and in vivo, making it a potential therapeutic target for tyrosine kinase inhibitors (TKIs).


Asunto(s)
Proteínas de Fusión Oncogénica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Proteína 2 de Unión a Repeticiones Teloméricas , Animales , Humanos , Ratones , Carcinogénesis , Transformación Celular Neoplásica , Mesilato de Imatinib , Inhibidores de Proteínas Quinasas/farmacología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal , Factor de Transcripción STAT5/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
13.
Cell Death Dis ; 15(2): 128, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341429

RESUMEN

Previous study showed that higher expression of prolactin (PRL) was found in CRPC samples compared with hormone-naive prostate cancer (HNPC) and benign prostatic hyperplasia (BPH) samples. We further investigate the function of PRL in prostate cancer (PCa) and explored its downstream effects. We found heterogeneous expression of the PRLR in clinical prostate samples. The VCaP and 22Rv1 cells exhibited PRLR expression. Among the downstream proteins, STAT5B was the dominant subtype in clinical samples and cell lines. Human recombinant PRL stimulation of PCa cells with PRLR expression resulted in increased phosphorylation of STAT5B(pSTAT5B) and progression of PCa in vitro and in vivo, and STAT5B knockdown can suppress the malignant behavior of PCa. To understand the mechanism further, we performed Bioinformatic analysis, ChIP qPCR, and luciferase reporter gene assay. The results revealed that ARRB2 was the transcription target gene of STAT5B, and higher expression of ARRB2 was related to higher aggression and poorer prognosis of PCa. Additionally, Gene set enrichment analysis indicated that higher expression of ARRB2 was significantly enriched in the MAPK signaling pathway. Immunohistochemistry (IHC) demonstrated elevated pSTAT5B, ARRB2, and pERK1/2 expression levels in CRPC tissues compared to HNPC and BPH. Mechanically, ARRB2 enhanced the activation of the MAPK pathway by binding to ERK1/2, thereby promoting the phosphorylation of ERK1/2 (pERK1/2). In conclusion, our study demonstrated that PRL stimulation can promote the progression of PCa through STAT5B/ARRB2 pathway and activation of MAPK signaling, which can be suppressed by intervention targeting STAT5B. Blockade of the STAT5B can be a potential therapeutic target for PCa.


Asunto(s)
Hiperplasia Prostática , Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Prolactina/genética , Prolactina/metabolismo , Hiperplasia Prostática/genética , Neoplasias de la Próstata/patología , Receptores de Prolactina/metabolismo , Fosforilación , Línea Celular Tumoral , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Arrestina beta 2/metabolismo
14.
Gene ; 900: 148131, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38216003

RESUMEN

Precursor B cell acute lymphoblastic leukemia (Pre-B-ALL) arises from developing B cells and frequently involves mutations in genes encoding transcription factors. In this study, we investigated the function of mutations in the transcription factor IKZF3 (Aiolos), R137* and H195Y, discovered in a mouse model of pre-B-ALL. R137* IKZF3 mutation resulted in a truncated protein, while electrophoretic mobility shift assay showed that H195Y IKZF3 mutation resulted in a protein with altered DNA binding. 38B9 pre-B cell lines were generated expressing WT and H195Y IKZF3 proteins. Anti-IKZF3 ChIP-seq showed that H195Y IKZF3 interacted with a larger number of sites that were different than WT IKZF3. Treatment with interleukin-7 induced changes in gene expression in 38B9 cells expressing WT IKZF3, but did not induce any changes in gene expression in cells expressing H195Y IKZF3. Anti-STAT5 ChIP-seq showed that expression of H195Y IKZF3 resulted in redistribution of STAT5 binding sites in the genome. H195Y IKZF3 binding sites overlapped with a subset of STAT5 binding sites, including in the promoter of the Cish gene. These findings suggest that H195Y mutation of IKZF3 results in altered DNA binding specificity and altered binding of STAT5 to target genes.


Asunto(s)
Leucemia de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Animales , Ratones , Sitios de Unión , ADN , Expresión Génica , Proteínas de la Leche/genética , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Transactivadores/genética
15.
Growth Horm IGF Res ; 74: 101572, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38281404

RESUMEN

OBJECTIVE: GATA2 is a key transcription factor involved in the differentiation and determination of thyrotrophs and gonadotrophs in pituitary and hematopoietic development. However, studies on the upstream ligands of the GATA2 signal transduction pathway have been limited. To identify upstream ligands, we examined growth hormone (GH) as a plausible stimulator. DESIGN: We evaluated GH-induced GATA2 expression in murine TtT/GF thyrotrophic pituitary tumor cells and its direct impact on the GHR/JAK/STAT5 pathway using a combination of a reporter assay, real-time quantitative polymerase chain reaction, and western blotting. RESULTS: GATA2 expression increased with activated STAT5B in a dose-dependent manner and was inhibited by a STAT5 specific inhibitor. Moreover, we found functional STAT5B binding site consensus sequences at -359 bp in the GATA2 promoter region. CONCLUSION: These findings suggest that GH directly stimulates GATA2 via the GHR/JAK/STAT pathway and participates in various developmental phenomena mediated by GATA2.


Asunto(s)
Hormona del Crecimiento , Hormona de Crecimiento Humana , Ratones , Animales , Hormona del Crecimiento/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Quinasas Janus/metabolismo , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Hormona de Crecimiento Humana/metabolismo , Proteínas de la Leche
16.
Neuro Oncol ; 26(1): 85-99, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-37616578

RESUMEN

BACKGROUND: Glioblastomas are universally lethal brain tumors containing tumor-propagating glioblastoma stem cells (GSCs). EGFR gene amplification or mutation is frequently detected in GBMs and is associated with poor prognosis. However, EGFR variants in GSCs and their role in the maintenance of GSCs and progression of GBM are unclear. METHODS: EGFR variants were detected through bioinformatic HISAT-StringTie-Ballgown pipeline and verified through 5' RACE, RT-PCR, ribonuclease protection, and northern blotting assays. EGFRx function was investigated through neurosphere, cell viability, intracranial xenograft and RNA-seq assays. EGFRx-STAT5 signaling was investigated through western blotting, coimmunoprecipitation, immunofluorescence, luciferase reporter, RT-PCR and CUT&Tag assays. RESULTS: We identified a novel EGFR variant (EGFRx), that is specifically expressed in GSCs. Unlike the EGFRvIII variant, which lacks exons 2-7, EGFRx is characterized by the absence of exons 2-14, and encodes an EGFR protein that does not possess the entire extracellular ligand-binding domain. We observed that EGFRx exhibits significant glycosylation, is required for GSC self-renewal, proliferation, and tumorigenesis, and highly active in glioblastomas compared to normal brain tissue. Mechanistically, EGFRx constitutively and specifically activates STAT5 in GSCs through spontaneous asymmetric dimerization of the kinase domain. CONCLUSIONS: EGFRx plays essential roles in the maintenance of the GSC phenotype through constitutive activation of STAT5 and promotes GBM progression, suggesting that EGFRx-STAT5 signaling represents a promising therapeutic target for GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Transducción de Señal , Neoplasias Encefálicas/patología , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Proliferación Celular
17.
Exp Neurol ; 372: 114629, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38056583

RESUMEN

BACKGROUND: Endoplasmic reticulum (ER) stress causes neuroinflammation and neuronal apoptosis during ischemic stroke progression. This study has investigated the role of ALKBH5 in ER stress during ischemic stroke progression. METHODS: In vivo and in vitro models of ischemic stroke were established by middle cerebral artery occlusion (MCAO) and OGD/R treatment, respectively. Cerebral infarct size was detected using triphenyltetrazolium chloride staining (TTC), and pathological changes were examined using histological staining. The levels of inflammatory factors were analyzed using Enzyme-linked immunosorbent assay. Cell counting kit-8 assay and flow cytometry were used to measure cell viability and apoptosis, respectively. The global m6A level was detected using the commercial kit, and STAT5 mRNA m6A level was determined using methylated RNA binding protein immunoprecipitation (Me-RIP). ALKBH5, YTHDF1, and STAT5 interactions were analyzed using RIP and RNA pull-down assays. RESULTS: ALKBH5 was upregulated in MCAO animals and OGD/R cell models. ALKBH5 knockdown exacerbated ER stress, neuroinflammation, and neuronal apoptosis in brain tissues and neuronal cells. ALKBH5 inhibited STAT5 mRNA stability and expression in an m6A-YTHDF1-dependent manner. STAT5 promoted ER stress by activating the PERK/eIF2/CHOP signaling pathway. Furthermore, STAT5 knockdown reversed the effects of ALKBH5 knockdown on OGD/R-induced ER stress and neuroinflammation in HT22 cells. CONCLUSION: ALKBH5 knockdown exacerbated ischemic stroke by increasing ER stress-dependent neuroinflammation and neuronal apoptosis via the STAT5/PERK/EIF2α/CHOP signaling pathway in an m6A-YTHDF1-dependent manner.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Enfermedades Neuroinflamatorias , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/farmacología , Accidente Cerebrovascular/patología , Infarto de la Arteria Cerebral Media/patología , Transducción de Señal , Estrés del Retículo Endoplásmico , Apoptosis
18.
Gene ; 896: 148073, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38086453

RESUMEN

CNVs, which are a type of structural variation, make a substantial impact on diverse characteristics in multiple species. Q-PCR and data association analysis were used for STAT5A gene copy in this study. This study aimed to investigate the copy number variation (CNV) of the STAT5A gene in seven Chinese cattle breeds, namely Qinchuan cattle, Xianan cattle, Yunling cattle, Ji'an cattle, Jiaxian Red cattle, Qaidam cattle, and Guyuan yellow cattle. Blood samples were collected for CNV typing, and the correlation between CNV type and growth traits was analyzed using SPSS 23.0 software and ANOVA. The findings revealed variations in the distribution of different copy number types among the different cattle breeds. Furthermore, association analysis demonstrated a positive impact of CNV in the STAT5A gene on cattle growth: in the JX, individuals with duplication types exhibited superior performance in terms of rump length (P < 0.05). Conversely, normal GY cattle demonstrated better body height and abdomen circumference (P < 0.05), while QD cattle exhibited a significant correlation between weight and body length with normal individuals (P < 0.05). Moreover, QC bovine duplication individuals outperformed other types, with copy number variation significantly associated with chest depth, chest width, and body length (P < 0.05). The results validate the correlation between copy number variation (CNV) of the STAT5A gene and growth characteristics in five different cattle breeds, providing a reliable benchmark for the purpose of cattle breeding.


Asunto(s)
Cruzamiento , Variaciones en el Número de Copia de ADN , Factor de Transcripción STAT5 , Animales , Bovinos/genética , Peso Corporal/genética , Fenotipo , Factor de Transcripción STAT5/genética , Proteínas Supresoras de Tumor/genética , Crecimiento/genética
19.
Avian Pathol ; 53(1): 68-79, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37855868

RESUMEN

RESEARCH HIGHLIGHTS: MG-HS regulates the expression of transcription factor STAT5.Transcription factor STAT5 can target miR-33-5p promoter element.MG-influenced STAT5 regulates miR-33-5p and its target gene expression.


Asunto(s)
MicroARNs , Infecciones por Mycoplasma , Mycoplasma gallisepticum , Animales , Mycoplasma gallisepticum/genética , MicroARNs/genética , MicroARNs/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Línea Celular , Infecciones por Mycoplasma/veterinaria , Fibroblastos , Pollos/genética
20.
Horm Res Paediatr ; 97(2): 195-202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37586336

RESUMEN

INTRODUCTION: Patients with homozygous recessive mutations in STAT5B have severe progressive postnatal growth failure and insulin-like growth factor-I (IGF-I) deficiency associated with immunodeficiency and increased risk of autoimmune and pulmonary conditions. This report describes the efficacy and safety of recombinant human IGF-1 (rhIGF-1) in treating severe growth failure due to STAT5B deficiency. CASE PRESENTATION: Three siblings (P1, 4.4 year-old female; P2, 2.3 year-old male; and P3, 7 month-old female) with severe short stature (height SDS [HtSDS] -6.5, -4.9, -5.3, respectively) were referred to the Center for Growth Disorders at Cincinnati Children's Hospital Medical Center. All three had a homozygous mutation (p.Trp631*) in STAT5B. Baseline IGF-I was 14.7, 14.1, and 10.8 ng/mL, respectively (all < -2.5 SDS for age and sex), and IGFBP-3 was 796, 603, and 475 ng/mL, respectively (all < -3 SDS for age and sex). The siblings were started on rhIGF-1 at 40 µg/kg/dose twice daily subcutaneously (SQ), gradually increased to 110-120 µg/kg/dose SQ twice daily as tolerated. HtSDS and height velocity (HV) were monitored over time. RESULTS: Six years of growth data was utilized to quantify growth response in the two older siblings and 5 years of data in the youngest. Pre-treatment HVs were, respectively, 3.0 (P1), 3.0 (P2), and 5.2 (P3) cm/year. With rhIGF-1 therapy, HVs increased to 5.2-6.0, 4.8-7.1, and 5.5-7.4 cm/year, respectively, in the first 3 years of treatment, before they decreased to 4.7, 3.8, and 4.3 cm/year, respectively, at a COVID-19 pandemic delayed follow-up visit and with decreased treatment adherence. ΔHtSDS for P1 and P2 was +2.21 and +0.93, respectively, over 6 years, but -0.62 for P3 after 5 years and in the setting of severe local lipohypertrophy and suboptimal weight gain. P3 also experienced hypoglycemia that limited our ability to maintain target rhIGF-1 dosing. CONCLUSION: The response to rhIGF-1 therapy is less than observed with rhIGF-1 therapy for patients previously described with severe primary IGF-I deficiency, including patients with documented defects in the growth hormone receptor, but may still provide patients with STAT5B deficiency with an opportunity to prevent worsening growth failure.


Asunto(s)
Insuficiencia de Crecimiento , Trastornos del Crecimiento , Factor I del Crecimiento Similar a la Insulina , Péptidos Similares a la Insulina , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Factor I del Crecimiento Similar a la Insulina/deficiencia , Factor I del Crecimiento Similar a la Insulina/uso terapéutico , Proteínas Recombinantes/uso terapéutico , Hermanos , Factor de Transcripción STAT5/genética , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...