Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Ecotoxicol Environ Saf ; 195: 110502, 2020 Jun 01.
Article En | MEDLINE | ID: mdl-32203771

Enrichment of the hyperaccumulator bank is important for phytoremediation, and studying new hyperaccumulators has become a research hotspot. In this study, cadmium (Cd), the main representative factor of heavy-metal-polluted water, was the research object, and the Cd bioenrichment ability and tolerance of Myriophyllum aquaticum were studied for the first time. The experiment was conducted for 28 days by establishing experimental groups with different Cd concentrations (0, 10, 20, 40, 80, and 160 mg/L). The results show that M. aquaticum is a new Cd hyperaccumulator. There was no notable damage in the 40 mg/L Cd treatment group, and the Cd enrichment ability of M. aquaticum reached 17,970 ± 1020.01 mg/kg, while the bioconcentration factor (BCF) reached 449.25. At the same time, the antioxidant system (superoxide dismutase (SOD) and peroxidase (POD)) and proline (Pro) levels of M. aquaticum maintained normal plant physiology, but there were physiological anomalies in M. aquaticum at high concentrations and under long-term treatment. The results show that M. aquaticum has a high Cd bioenrichment ability and tolerance in water and can be used for phytoremediation of river water polluted by Cd.


Adaptation, Physiological/drug effects , Bioaccumulation/drug effects , Cadmium/analysis , Saxifragales/metabolism , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Cadmium/metabolism , Saxifragales/growth & development , Water Pollutants, Chemical/metabolism
2.
PLoS One ; 14(7): e0219161, 2019.
Article En | MEDLINE | ID: mdl-31339879

Ammonium pulse attributed to runoff of urban surface and agriculture following heavy rain is common in inland aquatic systems and can cause profoundly effects on the growth of macrophytes, especially when combined with low light. In this study, three patterns of NH4-N pulse (differing in magnitude and frequency) were applied to examine their effects on the growth of three submersed macrophytes, namely, Myriophyllum spicatum, Potamogeton maackianus, and Vallisneria natans, in terms of biomass, height, branch/ramet number, root length, leaf number, and total branch length under high and low light. Results showed that NH4-N pulse caused negative effects on the biomass of the submerged macrphytes even on the 13th day after releasing NH4-N pulse. The negative effects on M. spicatum were significantly greater than that on V. natans and P. maackianus. The effects of NH4-N pulse on specific species depended on the ammonium loading patterns. The negative effects of NH4-N pulse on P. maackianus were the strongest at high loading with low frequency, and on V. natans at moderate loading with moderate frequency. For M. spicatum, no significant differences were found among the three NH4-N pulse patterns. Low light availability did not significantly aggregate the negative effects of NH4-N pulse on the growth of the submersed macrophytes. Our study contributes to revealing the roles of NH4-N pulse on the growth of aquatic plants and its species specific effects on the dynamics of submerged macrophytes in lakes.


Ammonium Compounds/administration & dosage , Hydrocharitaceae/drug effects , Hydrocharitaceae/growth & development , Lakes/analysis , Potamogetonaceae/drug effects , Potamogetonaceae/growth & development , Saxifragales/drug effects , Saxifragales/growth & development , Ammonium Compounds/toxicity , Aquatic Organisms/drug effects , Aquatic Organisms/growth & development , Biomass , China , Ecosystem , Eutrophication/drug effects , Nitrogen/administration & dosage , Nitrogen/toxicity , Rain/chemistry , Water/analysis , Water Pollutants, Chemical/administration & dosage , Water Pollutants, Chemical/toxicity
3.
Sci Total Environ ; 654: 1040-1047, 2019 Mar 01.
Article En | MEDLINE | ID: mdl-30841378

Plastic debris of all sizes has been detected in marine, terrestrial and freshwater habitats. Effects of plastic debris on macrophytes have hardly been studied, despite their importance in aquatic ecosystems. We provide the first experimental study exploring nano- and microplastic effects on the growth of sediment-rooted macrophytes. Myriophyllum spicatum and Elodea sp. were exposed to sediments amended with six doses of polystyrene (PS) nanoplastic (50-190 nm, up to 3% sediment dry weight) and PS microplastic (20-500 µm, up to 10% dry weight) under laboratory conditions. Both macrophyte species were tested for changes in root and shoot dry weight (DW), relative growth rate (RGR), shoot to root ratio (S:R), main shoot length and side shoot length. Microplastics did not produce consistent dose-effect relationships on the endpoints tested, except that main shoot length was reduced for M. spicatum with increasing microplastic concentration. Nanoplastic significantly reduced S:R for both macrophytes as a result of increased root biomass compared to shoot biomass. Nanoplastic also caused a decrease in M. spicatum main shoot length; however, shoot biomass was not affected. Elodea sp. side shoot length, root and shoot biomass and RGR were positively correlated to the nanoplastic concentration. All effects occurred at higher than environmentally realistic concentrations, suggesting no immediate implications for ecological risks. Our study did not aim for the elucidation of the exact mechanistic processes that cause the effects, however, particle size seems to play an important factor. CAPSULE: Nano- and microplastics affect growth of sediment-rooted macrophytes.


Hydrocharitaceae/growth & development , Plastics/toxicity , Saxifragales/growth & development , Water Pollutants, Chemical/toxicity , Biomass , Ecosystem , Hydrocharitaceae/drug effects , Saxifragales/drug effects
4.
Sci Total Environ ; 657: 319-324, 2019 Mar 20.
Article En | MEDLINE | ID: mdl-30543981

Fecal indicator bacteria such as Escherichia coli have been reported to persist and potentially grow in a wide variety of secondary habitats, such as water, beach sand, sediment, periphyton and some algae. However, little is known about their association with submerged macrophytes and how this may influence water quality. In this study, we examined the association of E. coli and potential bacterial pathogens with Eurasian watermilfoil (EWM), an invasive, submerged, macrophyte that has spread across thousands of lakes in North America. EWM samples were collected from 10 lakes in Minnesota, once a month, for six consecutive months from early summer to late fall. Microbiota associated with EWM were examined using membrane filtration, quantitative PCR targeting various bacterial pathogens and host-associated marker genes, and high-throughput DNA sequencing. E. coli densities were generally elevated on EWM samples, and peaked during warmer months. Moreover, our results showed that EWM could serve as a temporal source for transmission of microbiota to the water column. Several potential pathogenic groups, including Aeromonas, Enterobacteriaceae, and Clostridium were present in significantly greater relative abundance on EWM than in water, and waterfowl was predicted to be the major source of fecal contamination. These findings have water quality implications with respect to the potential for submerged macrophytes to harbor and disperse E. coli and other bacterial pathogens in a large number of waterbodies.


Anseriformes/microbiology , Bacteria/isolation & purification , Feces/microbiology , Lakes/microbiology , Saxifragales/microbiology , Animals , Escherichia coli/isolation & purification , Introduced Species , Minnesota , Saxifragales/growth & development , Seasons , Water Quality
5.
PLoS One ; 13(9): e0202900, 2018.
Article En | MEDLINE | ID: mdl-30260963

Deciduous broad-leaf trees survive and prepare for winter by shedding their leaves in fall. During the fall season, a change in a leaf's wettability and its impact on the leaf-fall are not well understood. In this study, we measure the surface morphology and wettability of Katsura leaves from the summer to winter, and reveal how leaf structural changes lead to wettability changes. The averaged contact angle of leaves decreases from 147° to 124° while the contact-angle hysteresis significantly increases by about 35°, which are attributed to dehydration and erosion of nano-wax. Due to such wettability changes, fall brown leaves support approximately 17 times greater water volume than summer leaves.


Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Saxifragales/anatomy & histology , Saxifragales/metabolism , Seasons , Wettability , Microscopy, Electron, Scanning , Pigmentation , Plant Leaves/growth & development , Plant Leaves/ultrastructure , Saxifragales/growth & development , Saxifragales/ultrastructure , Trees/anatomy & histology , Trees/growth & development , Trees/metabolism , Trees/ultrastructure , Water/metabolism
6.
Environ Sci Pollut Res Int ; 25(26): 26550-26561, 2018 Sep.
Article En | MEDLINE | ID: mdl-29992414

Artificial carriers are widely used to enhance the formation of biofilm and improve pollutants' removal efficiency in agricultural wastewater treatment ditches (eco-ditches), yet comprehensive insight into their bacterial community is scarce. In this study, bacterial diversities in four different habitats-the water column, surface sediments, submerged macrophytes (Myriophyllum verticillatum L.), and the artificial carriers (bio-cord)-were compared in a Chinese eco-ditch. Comparable richness and evenness of bacterial communities were observed on M. verticillatum and bio-cord, both being higher than for free-living bacteria in the water column but lower than for bacteria in the surface sediment. The highest similarity of bacterial community composition and structure also occurred between M. verticillatum and the bio-cord, dominated by α- and γ-proteobacteria, Verrucomicrobia, and Bacteroidetes. Firmicutes and Planctomycetes, respectively, were the exclusive abundant phyla in M. verticillatum and the bio-cord, probably indicating the unique interaction between M. verticillatum and their epiphytic bacteria. Some abundant genera, such as Roseomonas, Pseudomonas, and Rhodopirellula, which were exclusively observed in M. verticillatum or the bio-cord, have been reported to have the same capacity to remove nitrogen and organic matter in wastewater treatment systems. In conclusion, in the studied eco-ditch, the bio-cord was found to play a similar role as submerged macrophytes in harboring bacterial assemblages, and we therefore propose that bio-cord may be a good alternative or supplement to enhance wastewater treatment in agricultural ditches.


Bacteria/growth & development , Biofilms/growth & development , Saxifragales/growth & development , Wastewater , Water Pollutants, Chemical/analysis , Water Purification/methods , Agriculture , Bacteria/classification , China , Ecosystem , Microbiota , Nitrogen/analysis , Saxifragales/microbiology , Wastewater/chemistry , Wastewater/microbiology
7.
Huan Jing Ke Xue ; 38(9): 3731-3737, 2017 Sep 08.
Article Zh | MEDLINE | ID: mdl-29965253

Ammonium nitrogen (NH4+-N) at high concentrations is toxic to plants. In order to explore the NH4+-N tolerance of Myriophyllum aquaticum (M. aquaticum) and its ability of nitrogen (N) and phosphorus (P) uptake, this study used a nutrient solution with three NH4+-N levels (70, 210, 420 mg·L-1) to incubate M. aquaticum for 21 d. The characteristics of plant physiology and N and P uptake of M. aquaticum were measured. At NH4+-N of 70 mg·L-1, M. aquaticum grew healthily, and shoot height and biomass linearly increased with the increase incubation time. Relative shoot height and biomass of M. aquaticum were 40.56 cm and 17.82 g·hole-1 on day 21, respectively. Compared to the control with 70 mg·L-1 ammonium, malondialdehyde (MDA) content of M. aquaticum was significantly increased; chlorophyll and soluble sugar contents were also high at NH4+-N of 210 mg·L-1. M. aquaticum suffered from the NH4+-N stress. However, the stress of 210 mg·L-1 NH4+-N did not affect its normal growth and there was no significant difference in the relative growth rate of the shoot height and biomass compared with the control. At NH4+-N of 420 mg·L-1, MDA contents of M. aquaticum doubled and the shoot height and biomass growth rate were only 27.4% and 17.9% of those for 70 mg·L-1 NH4+-N, indicating that M. aquaticum was subjected to serious stress that caused unhealthy growth or even death. At three NH4+-N levels, the ranges of N and P content of M. aquaticum were 30.7-53.4 mg·g-1 and 3.8-7.7 mg·g-1, respectively, which indicated that M. aquaticum had a high uptake capacity of N and P. M. aquaticum is an ideal wetland plant that has a good application prospect for constructed wetlands in biological treatment of high-ammonia wastewater.


Ammonium Compounds/chemistry , Nitrogen/metabolism , Phosphorus/metabolism , Saxifragales/metabolism , Saxifragales/growth & development , Wastewater , Wetlands
...