Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53.244
Filtrar
1.
BMC Plant Biol ; 24(1): 624, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951758

RESUMEN

Drought poses significant risks to maize cultivation by impairing plant growth, water uptake and yield; nano priming offers a promising avenue to mitigate these effects by enhancing plant water relations, stress tolerance and overall productivity. In the current experiment, we tested a hypothesis that seed priming with iron oxide nanoparticles (n-Fe2O3) can improve maize performance under water stress by improving its growth, water relations, yield and biochemical attributes. The experiment was conducted on a one main plot bisected into two subplots corresponding to the water and drought environments. Within each subplot, maize plants were raised from n-Fe2O3 primed seeds corresponding to 0 mg. L- 1 (as control treatment), 25, 50, 75, and 100 mg. L- 1 (as trial treatments). Seed priming with n-Fe2O3 at a concentration of 75 mg. L- 1 improved the leaf relative water content, water potential, photosynthetic water use efficiency, and leaf intrinsic water use efficiency of maize plants by 13%, 44%, 64% and 17%, respectively compared to control under drought stress. The same treatments improved plant biochemical attributes such as total chlorophyll content, total flavonoids and ascorbic acid by 37%, 22%, and 36%, respectively. Seed priming with n-Fe2O3 accelerated the functioning of antioxidant enzymes such as SOD and POD and depressed the levels of leaf malondialdehyde and hydrogen peroxide significantly. Seed priming with n-Fe2O3 at a concentration of 75 mg. L- 1 improved cob length, number of kernel rows per cob, and 100 kernel weight by 59%, 27% and 33%, respectively, under drought stress. Seed priming with n-Fe2O3 can be used to increase maize production under limited water scenarios.


Asunto(s)
Deshidratación , Semillas , Agua , Zea mays , Zea mays/efectos de los fármacos , Zea mays/fisiología , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/fisiología , Agua/metabolismo , Sequías , Fotosíntesis/efectos de los fármacos , Compuestos Férricos , Clorofila/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología
2.
Sci Rep ; 14(1): 15063, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956444

RESUMEN

Soybean is an essential crop to fight global food insecurity and is of great economic importance around the world. Along with genetic improvements aimed at boosting yield, soybean seed composition also changed. Since conditions during crop growth and development influences nutrient accumulation in soybean seeds, remote sensing offers a unique opportunity to estimate seed traits from the standing crops. Capturing phenological developments that influence seed composition requires frequent satellite observations at higher spatial and spectral resolutions. This study introduces a novel spectral fusion technique called multiheaded kernel-based spectral fusion (MKSF) that combines the higher spatial resolution of PlanetScope (PS) and spectral bands from Sentinel 2 (S2) satellites. The study also focuses on using the additional spectral bands and different statistical machine learning models to estimate seed traits, e.g., protein, oil, sucrose, starch, ash, fiber, and yield. The MKSF was trained using PS and S2 image pairs from different growth stages and predicted the potential VNIR1 (705 nm), VNIR2 (740 nm), VNIR3 (783 nm), SWIR1 (1610 nm), and SWIR2 (2190 nm) bands from the PS images. Our results indicate that VNIR3 prediction performance was the highest followed by VNIR2, VNIR1, SWIR1, and SWIR2. Among the seed traits, sucrose yielded the highest predictive performance with RFR model. Finally, the feature importance analysis revealed the importance of MKSF-generated vegetation indices from fused images.


Asunto(s)
Glycine max , Semillas , Glycine max/crecimiento & desarrollo , Glycine max/genética , Semillas/crecimiento & desarrollo , Aprendizaje Automático , Tecnología de Sensores Remotos/métodos , Productos Agrícolas/crecimiento & desarrollo
3.
J Food Sci ; 89(7): 4403-4418, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957090

RESUMEN

The improper storage of seeds can potentially compromise agricultural productivity, leading to reduced crop yields. Therefore, assessing seed viability before sowing is of paramount importance. Although numerous techniques exist for evaluating seed conditions, this research leveraged hyperspectral imaging (HSI) technology as an innovative, rapid, clean, and precise nondestructive testing method. The study aimed to determine the most effective classification model for watermelon seeds. Initially, purchased watermelon seeds were segregated into two groups: One underwent sterilization in a dehydrator machine at 40°C for 36 h, whereas the other batch was stored under favorable conditions. Watermelon seeds' spectral images were captured using an HSI with a charge-coupled device camera ranging from 400 to 1000 nm, and the segmented regions of all samples were measured. Preprocessing techniques and wavelength selection methods were applied to manage spectral data workload, followed by the implementation of a support vector machine (SVM) model. The initial hybrid-SVM model achieved a predictive accuracy rate of 100%, with a test set accuracy of 92.33%. Subsequently, an artificial bee colony (ABC) optimization was introduced to enhance model precision. The results indicated that, with kernel parameters (c, g) set at 13.17 and 0.01, respectively, and a runtime of 4.19328 s, the training and evaluation of the dataset achieved an accuracy rate of 100%. Hence, it was practical to utilize HSI technology combined with the PCA-ABC-SVM model to detect different watermelon seeds. As a result, these findings introduce a novel technique for accurately forecasting seed viability, intended for use in agricultural industrial multispectral imaging. PRACTICAL APPLICATION: The traditional methods for determining the condition of seeds primarily emphasize aesthetics, rely on subjective assessment, are time-consuming, and require a lot of labor. On the other hand, HSI technology as green technology was employed to alleviate the aforementioned problems. This work significantly contributes to the field of industrial multispectral imaging by enhancing the capacity to discern various types of seeds and agricultural crop products.


Asunto(s)
Citrullus , Imágenes Hiperespectrales , Aprendizaje Automático , Semillas , Espectroscopía Infrarroja Corta , Citrullus/química , Semillas/química , Imágenes Hiperespectrales/métodos , Espectroscopía Infrarroja Corta/métodos , Máquina de Vectores de Soporte , Algoritmos
4.
Sci Rep ; 14(1): 14988, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951551

RESUMEN

Breeding high yielding groundnut cultivars with 2-3 weeks of fresh seed dormancy, particularly in Spanish-type cultivars, enhances the sustainability of agriculture in groundnuts. In this context, we conducted a comprehensive phenotypic and genotypic evaluation of advanced breeding lines developed in the genetic background of Spanish types. By employing multi-phenotyping and marker data, we identified PBS 15044, 16004, 16013, 16015, 16016, 16017, 16020, 16021, 16026, 16031, 16035, 16037, 16038, 16039, 16041, and 16042 with 2-3 weeks dormancy (> 90%).The various parametric and non-parametric estimates identified the stable fresh dormant genotypes with one or more superior economic trait. PBS 16021, 15044, 16038, and 16039 identified with high hundred pod weight (HPW) were also reported having high intensity of dormancy (> 90% for up to 3 weeks); PBS 15044, 16016, PBS 16038 and PBS 16039 with high hundred kernel weight (HKW) also reported with up to 3 weeks fresh seed dormancy; and PBS 16013, 16031, and 16038 with up to 3 weeks fresh seed dormancy had high shelling percentage (SP). They can be used to develop lines with the desired level of dormancy, and high yields, by designing appropriate breeding strategies.


Asunto(s)
Genotipo , Fenotipo , Fitomejoramiento , Latencia en las Plantas , Semillas , Latencia en las Plantas/genética , Fitomejoramiento/métodos , Semillas/genética , Semillas/crecimiento & desarrollo , España , Arachis/genética , Cruzamientos Genéticos
5.
Proc Natl Acad Sci U S A ; 121(28): e2404887121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968100

RESUMEN

The timing of seed germination is controlled by the combination of internal dormancy and external factors. Temperature is a major environmental factor for seed germination. The permissive temperature range for germination is narrow in dormant seeds and expands during after-ripening (AR) (dormancy release). Quantitative trait loci analyses of preharvest sprouting in cereals have revealed that MKK3, a mitogen-activated protein kinase (MAPK) cascade protein, is a negative regulator of grain dormancy. Here, we show that the MAPKKK19/20-MKK3-MPK1/2/7/14 cascade modulates the germination temperature range in Arabidopsis seeds by elevating the germinability of the seeds at sub- and supraoptimal temperatures. The expression of MAPKKK19 and MAPKKK20 is induced around optimal temperature for germination in after-ripened seeds but repressed in dormant seeds. MPK7 activation depends on the expression levels of MAPKKK19/20, with expression occurring under conditions permissive for germination. Abscisic acid (ABA) and gibberellin (GA) are two major phytohormones which are involved in germination control. Activation of the MKK3 cascade represses ABA biosynthesis enzyme gene expression and induces expression of ABA catabolic enzyme and GA biosynthesis enzyme genes, resulting in expansion of the germinable temperature range. Our data demonstrate that the MKK3 cascade integrates temperature and AR signals to phytohormone metabolism and seed germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Germinación , Semillas , Temperatura , Germinación/fisiología , Germinación/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , MAP Quinasa Quinasa 3/metabolismo , MAP Quinasa Quinasa 3/genética , Sistema de Señalización de MAP Quinasas/fisiología , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Transducción de Señal , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética
6.
Sci Rep ; 14(1): 15062, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956110

RESUMEN

Soil salinity is a major nutritional challenge with poor agriculture production characterized by high sodium (Na+) ions in the soil. Zinc oxide nanoparticles (ZnO NPs) and biochar have received attention as a sustainable strategy to reduce biotic and abiotic stress. However, there is a lack of information regarding the incorporation of ZnO NPs with biochar to ameliorate the salinity stress (0, 50,100 mM). Therefore, the current study aimed to investigate the potentials of ZnO NPs application (priming and foliar) alone and with a combination of biochar on the growth and nutrient availability of spinach plants under salinity stress. Results demonstrated that salinity stress at a higher rate (100 mM) showed maximum growth retardation by inducing oxidative stress, resulted in reduced photosynthetic rate and nutrient availability. ZnO NPs (priming and foliar) alone enhanced growth, chlorophyll contents and gas exchange parameters by improving the antioxidant enzymes activity of spinach under salinity stress. While, a significant and more pronounced effect was observed at combined treatments of ZnO NPs with biochar amendment. More importantly, ZnO NPs foliar application with biochar significantly reduced the Na+ contents in root 57.69%, and leaves 61.27% of spinach as compared to the respective control. Furthermore, higher nutrient contents were also found at the combined treatment of ZnO NPs foliar application with biochar. Overall, ZnO NPs combined application with biochar proved to be an efficient and sustainable strategy to alleviate salinity stress and improve crop nutritional quality under salinity stress. We inferred that ZnO NPs foliar application with a combination of biochar is more effectual in improving crop nutritional status and salinity mitigation than priming treatments with a combination of biochar.


Asunto(s)
Carbón Orgánico , Fotosíntesis , Hojas de la Planta , Estrés Salino , Spinacia oleracea , Óxido de Zinc , Zinc , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/metabolismo , Spinacia oleracea/crecimiento & desarrollo , Carbón Orgánico/farmacología , Carbón Orgánico/química , Óxido de Zinc/farmacología , Óxido de Zinc/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Fotosíntesis/efectos de los fármacos , Zinc/farmacología , Zinc/metabolismo , Nutrientes/metabolismo , Clorofila/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Antioxidantes/metabolismo , Suelo/química , Estrés Oxidativo/efectos de los fármacos , Salinidad
7.
Sci Rep ; 14(1): 15123, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956272

RESUMEN

The OVATE gene family plays an important role in regulating the development of plant organs and resisting stress, but its expression characteristics and functions in sorghum have not been revealed. In this study, we identified 26 OVATE genes in the sorghum BTx623 genome, which were divided into four groups and distributed unevenly across 9 chromosomes. Evolutionary analysis showed that after differentiation between sorghum and Arabidopsis, the OVATE gene family may have experienced unique expansion events, and all OVATE family members were negatively selected. Transcriptome sequencing and RT-qPCR results showed that OVATE genes in sorghum showed diverse expression characteristics, such as gene SORBl_3001G468900 and SORBl_3009G173400 were significantly expressed in seeds, while SORBI_3005G042700 and SORBI_3002G417700 were only highly expressed in L1. Meantime, in the promoter region, a large number of hormone-associated cis-acting elements were identified, and these results suggest that members of the OVATE gene family may be involved in regulating specific development of sorghum leaves and seeds. This study improves the understanding of the OVATE gene family of sorghum and provides important clues for further exploration of the function of the OVATE gene family.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Hojas de la Planta , Proteínas de Plantas , Semillas , Sorghum , Sorghum/genética , Sorghum/metabolismo , Semillas/genética , Semillas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Filogenia , Perfilación de la Expresión Génica , Evolución Molecular , Regiones Promotoras Genéticas , Cromosomas de las Plantas/genética , Genes de Plantas
8.
BMC Genomics ; 25(1): 653, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956471

RESUMEN

BACKGROUND: Oil bodies or lipid droplets (LDs) in the cytosol are the subcellular storage compartments of seeds and the sites of lipid metabolism providing energy to the germinating seeds. Major LD-associated proteins are lipoxygenases, phospholipaseD, oleosins, TAG-lipases, steroleosins, caleosins and SEIPINs; involved in facilitating germination and enhancing peroxidation resulting in off-flavours. However, how natural selection is balancing contradictory processes in lipid-rich seeds remains evasive. The present study was aimed at the prediction of selection signatures among orthologous clades in major oilseeds and the correlation of selection effect with gene expression. RESULTS: The LD-associated genes from the major oil-bearing crops were analyzed to predict natural selection signatures in phylogenetically close-knit ortholog clusters to understand adaptive evolution. Positive selection was the major force driving the evolution and diversification of orthologs in a lineage-specific manner. Significant positive selection effects were found in 94 genes particularly in oleosin and TAG-lipases, purifying with excess of non-synonymous substitution in 44 genes while 35 genes were neutral to selection effects. No significant selection impact was noticed in Brassicaceae as against LOX genes of oil palm. A heavy load of deleterious mutations affecting selection signatures was detected in T-lineage oleosins and LOX genes of Arachis hypogaea. The T-lineage oleosin genes were involved in mainly anther, tapetum and anther wall morphogenesis. In Ricinus communis and Sesamum indicum > 85% of PLD genes were under selection whereas selection pressures were low in Brassica juncea and Helianthus annuus. Steroleosin, caleosin and SEIPINs with large roles in lipid droplet organization expressed mostly in seeds and were under considerable positive selection pressures. Expression divergence was evident among paralogs and homeologs with one gene attaining functional superiority compared to the other. The LOX gene Glyma.13g347500 associated with off-flavor was not expressed during germination, rather its paralog Glyma.13g347600 showed expression in Glycine max. PLD-α genes were expressed on all the tissues except the seed,δ genes in seed and meristem while ß and γ genes expressed in the leaf. CONCLUSIONS: The genes involved in seed germination and lipid metabolism were under strong positive selection, although species differences were discernable. The present study identifies suitable candidate genes enhancing seed oil content and germination wherein directional selection can become more fruitful.


Asunto(s)
Productos Agrícolas , Evolución Molecular , Gotas Lipídicas , Selección Genética , Gotas Lipídicas/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aceites de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas
9.
Sci Rep ; 14(1): 15493, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969808

RESUMEN

Dispersion of Basil seed gum has high viscosity and exhibits shear-thinning behavior. This study aimed to analyze the influence of microwave treatment (MT) at various time intervals (0, 1, 2, and 3 min) on the viscosity and rheological behavior of Basil seed gum dispersion (0.5%, w/v). The finding of this study revealed that the apparent viscosity of Basil seed gum dispersion (non-treated dispersion) reduced from 0.330 Pa.s to 0.068 Pa.s as the shear rate (SR) increased from 12.2 s-1 to 171.2 s-1. Additionally, the apparent viscosity of the Basil seed gum dispersion reduced from 0.173 Pa.s to 0.100 Pa.s as the MT time increased from 0 to 3 min (SR = 61 s-1). The rheological properties of gum dispersion were successfully modeled using Power law (PL), Bingham, Herschel-Bulkley (HB), and Casson models, and the PL model was the best one for describing the behavior of Basil seed gum dispersion. The PL model showed an excellent performance with the maximum r-value (mean r-value = 0.942) and the minimum sum of squared error (SSE) values (mean SSE value = 5.265) and root mean square error (RMSE) values (mean RMSE value = 0.624) for all gum dispersion. MT had a considerable effect on the changes in the consistency coefficient (k-value) and flow behavior index (n-value) of Basil seed gum dispersion (p < 0.05). The k-value of Basil seed gum dispersion decreased significantly from 3.149 Pa.sn to 1.153 Pa.sn (p < 0.05) with increasing MT time from 0 to 3 min. The n-value of Basil seed gum dispersion increased significantly from 0.25 to 0.42 (p < 0.05) as the MT time increased. The Bingham plastic viscosity of Basil seed gum dispersion increased significantly from 0.029 Pa.s to 0.039 Pa.s (p < 0.05) while the duration of MT increased. The Casson yield stress of Basil seed gum dispersion notably reduced from 5.010 Pa to 2.165 Pa (p < 0.05) with increasing MT time from 0 to 3 min.


Asunto(s)
Microondas , Ocimum basilicum , Gomas de Plantas , Reología , Semillas , Ocimum basilicum/química , Semillas/química , Viscosidad , Gomas de Plantas/química
10.
Sci Rep ; 14(1): 15383, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965309

RESUMEN

The drought can cause a decrease in food production and loss of biodiversity. In northern Mexico, an arid region, the chiltepin grows as a semi-domesticated crop that has been affected in its productivity and yield. An alternative to mitigate the effect of drought and aid in its conservation could be using Plant Growth-Promoting Bacteria (PGPB). The present study evaluated the capacity of native Bacillus spp., isolated from arid soils, as PGPBs and drought stress tolerance inducers in chiltepin under controlled conditions. Chiltepin seeds and seedlings were inoculated with native strains of Bacillus spp. isolated from arid soils, evaluating germination, vegetative, and drought stress tolerance parameters. The PGPBs improved vegetative parameters such as height, stem diameter, root length, and slenderness index in vitro. B. cereus (Bc25-7) improved in vitro survival of stressed seedlings by 68% at -1.02 MPa. Under greenhouse conditions, seedlings treated with PGPBs exhibited increases in root length (9.6%), stem diameter (13.68%), leaf fresh weight (69.87%), and chlorophyll content (38.15%). Bc25-7 alleviated severe water stress symptoms (7 days of water retention stress), and isolates B. thuringiensis (Bt24-4) and B. cereus (Bc25-7, and Bc30-2) increased Relative Water Content (RWC) by 51%. Additionally, the treated seeds showed improved germination parameters with a 46.42% increase in Germination Rate (GR). These findings suggest that using PGPBs could be an alternative to mitigate the effect of drought on chiltepin.


Asunto(s)
Bacillus , Capsicum , Sequías , Plantones , Capsicum/crecimiento & desarrollo , Capsicum/microbiología , Capsicum/fisiología , Bacillus/fisiología , Plantones/crecimiento & desarrollo , Plantones/microbiología , Estrés Fisiológico , Germinación , Semillas/crecimiento & desarrollo , Semillas/microbiología , Microbiología del Suelo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , México
11.
BMC Biotechnol ; 24(1): 46, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971771

RESUMEN

BACKGROUND: Microbial growth during plant tissue culture is a common problem that causes significant losses in the plant micro-propagation system. Most of these endophytic microbes have the ability to propagate through horizontal and vertical transmission. On the one hand, these microbes provide a rich source of several beneficial metabolites. RESULTS: The present study reports on the isolation of fungal species from different in vitro medicinal plants (i.e., Breynia disticha major, Breynia disticha, Duranta plumieri, Thymus vulgaris, Salvia officinalis, Rosmarinus officinalis, and Ocimum basilicum l) cultures. These species were tested for their indole acetic acid (IAA) production capability. The most effective species for IAA production was that isolated from Thymus vulgaris plant (11.16 µg/mL) followed by that isolated from sweet basil plant (8.78 µg/mL). On screening for maximum IAA productivity, medium, "MOS + tryptophan" was chosen that gave 18.02 µg/mL. The macroscopic, microscopic examination and the 18S rRNA sequence analysis indicated that the isolate that given code T4 was identified as Neopestalotiopsis aotearoa (T4). The production of IAA by N. aotearoa was statistically modeled using the Box-Behnken design and optimized for maximum level, reaching 63.13 µg/mL. Also, IAA extract was administered to sweet basil seeds in vitro to determine its effect on plant growth traits. All concentrations of IAA extract boosted germination parameters as compared to controls, and 100 ppm of IAA extract exhibited a significant growth promotion effect for all seed germination measurements. CONCLUSIONS: The IAA produced from N. aotearoa (T4) demonstrated an essential role in the enhancement of sweet basil (Ocimum basilicum) growth, suggesting that it can be employed to promote the plant development while lowering the deleterious effect of using synthetic compounds in the environment.


Asunto(s)
Endófitos , Germinación , Ácidos Indolacéticos , Ocimum basilicum , Semillas , Thymus (Planta) , Ocimum basilicum/microbiología , Thymus (Planta)/química , Ácidos Indolacéticos/metabolismo , Endófitos/fisiología , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Endófitos/genética , Germinación/efectos de los fármacos , Semillas/microbiología , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos
12.
Plant Signal Behav ; 19(1): 2375673, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38972043

RESUMEN

OBJECTIVE: This study aimed to investigate the regulatory effects of exogenous hydrogen sulfide (H2S) on seed germination, seedling growth, and reactive oxygen species (ROS) homeostasis in alfalfa under chromium (Cr) ion (III) stress. METHODS: The effects of 0-4 mM Cr(III) on the germination and seedling growth of alfalfa were first assessed. Subsequently, following seed NaHS immersion, the influence of H2S on alfalfa seed germination and seedling growth under 2 mM Cr(III) stress was investigated, and the substance contents and enzyme activities associated with ROS metabolism were quantified. RESULTS: Compared to the control group, alfalfa plant germination was delayed under 2 mM Cr(III) stress for up to 48 h (p < 0.05). At 120 h, the total seedling length was approximately halved, and the root length was roughly one-third of the control. Treatment with 0.02-0.1 mM NaHS alleviated the delay in germination and root growth inhibition caused by 2 mM Cr(III) stress, resulting in an increased ratio of root length to hypocotyl length from 0.57 to 1 above. Additionally, immersion in 0.05 mM NaHS reduced hydrogen peroxide (H2O2) and oxygen-free radicals (O2· -) levels (p < 0.05), boosted glutathione (GSH) levels (p < 0.05), and notably enhanced catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) activities (p < 0.05) compared to the 2 mM Cr(III) stress treatment group. CONCLUSION: Seed immersion in NaHS mitigated the delay in germination and inhibition of root elongation under 2 mM Cr(III) stress. This effect is likely attributed to the regulation of intracellular ROS homeostasis and redox balance through enzymatic and non-enzymatic systems; thus, providing a potential mechanism for combating oxidative stress.


Asunto(s)
Cromo , Germinación , Medicago sativa , Especies Reactivas de Oxígeno , Semillas , Sulfuros , Medicago sativa/efectos de los fármacos , Medicago sativa/metabolismo , Medicago sativa/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Cromo/farmacología , Germinación/efectos de los fármacos , Sulfuros/farmacología , Especies Reactivas de Oxígeno/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Estrés Fisiológico/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Oxígeno/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo
13.
Planta ; 260(2): 38, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951258

RESUMEN

MAIN CONCLUSION: Our findings shed light on the regulation of anthocyanin and proanthocyanidin biosynthesis in chickpea seed coats. Expression of R2R3-MYB transcription factors CaLAP1 and CaLAP2 enhanced the anthocyanins and proanthocyanidins content in chickpea. The seed coat color is a major economic trait in leguminous crop chickpea (Cicer arietinum). Anthocyanins and proanthocyanidins (PAs) are two classes of flavonoids that mainly contribute to the flower, seed coat and color of Desi chickpea cultivars. Throughout the land plant lineage, the accumulation of anthocyanins and PAs is regulated by MYB and bHLH transcription factors (TFs), which form an MBW (MYB, bHLH, and WD40) complex. Here, we report two R2R3-MYB TFs in chickpea belonging to the anthocyanin-specific subgroup-6, CaLAP1 (Legume Anthocyanin Production 1), and CaLAP2 (Legume Anthocyanin Production 2), which are mainly expressed in the flowers and developmental stages of the seeds. CaLAP1 and CaLAP2 interact with TT8-like CabHLH1 and WD40, forming the MBW complex, and bind to the promoter sequences of anthocyanin- and PA biosynthetic genes CaCHS6, CaDFR2, CaANS, and CaANR, leading to anthocyanins and PA accumulation in the seed coat of chickpea. Moreover, these CaLAPs partially complement the anthocyanin-deficient phenotype in the Arabidopsis thaliana sextuple mutant seedlings. Overexpression of CaLAPs in chickpea resulted in significantly higher expression of anthocyanin and PA biosynthetic genes leading to a darker seed coat color with higher accumulation of anthocyanin and PA. Our findings show that CaLAPs positively modulate anthocyanin and PA content in seed coats, which might influence plant development and resistance to various biotic and abiotic stresses.


Asunto(s)
Antocianinas , Cicer , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Proantocianidinas , Semillas , Factores de Transcripción , Cicer/genética , Cicer/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Antocianinas/biosíntesis , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/biosíntesis , Proantocianidinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Modificadas Genéticamente/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Flores/crecimiento & desarrollo
14.
J Texture Stud ; 55(4): e12852, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38952166

RESUMEN

The development of thickening powders for the management of dysphagia is imperative due to the rapid growth of aging population and prevalence of the dysphagia. One promising thickening agent that can be used to formulate dysphagia diets is basil seed mucilage (BSM). This work investigates the effects of dispersing media, including water, milk, skim milk, and apple juice, on the rheological and tribological properties of the BSM-thickened liquids. Shear rheology results revealed that the thickening ability of BSM in these media in ascending order is milk < skim milk ≈ apple juice < water. On the other hand, extensional rheology demonstrated that the longest filament breakup time was observed when BSM was dissolved in milk, followed by skim milk, water, and apple juice. Furthermore, tribological measurements showed varying lubrication behavior, depending on the BSM concentration and dispersing media. Dissolution of BSM in apple juice resulted in the most superior lubrication property compared with that in other dispersing media. Overall, this study provides insights on BSM's application as a novel gum-based thickening powder in a range of beverages and emphasizes how important it is for consumers to have clear guidance for the use of BSM in dysphagia management.


Asunto(s)
Ocimum basilicum , Mucílago de Planta , Reología , Semillas , Ocimum basilicum/química , Semillas/química , Mucílago de Planta/química , Animales , Leche/química , Viscosidad , Trastornos de Deglución , Malus/química , Jugos de Frutas y Vegetales/análisis , Humanos , Agua , Polvos , Lubrificación
16.
BMC Plant Biol ; 24(1): 637, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971739

RESUMEN

BACKGROUND: Based on our previous research, a full-length cDNA sequence of HvANS gene was isolated from purple and white Qingke. The open reading frame (ORF) in the purple variety Nierumuzha was 1320 base pairs (bp), encoding 439 amino acids, while the ORF in the white variety Kunlun 10 was 1197 bp, encoding 398 amino acids. A nonsynonymous mutation was found at the position of 1195 bp (T/C) in the coding sequence (CDS) of the HvANS gene. We carried out a series of studies to further clarify the relationship between the HvANS gene and anthocyanin synthesis in Qingke. RESULTS: The conservative structural domain prediction results showed that the encoded protein belonged to the PLN03178 superfamily. Multiple comparisons showed that this protein had the highest homology with Hordeum vulgare, at 88.61%. The approximately 2000 bp promoter sequence of the HvANS gene was identical in both varieties. The real-time fluorescence PCR (qRT-PCR) results revealed that HvANS expression was either absent or very low in the roots, stems, leaves, and awns of Nierumuzha. In contrast, the HvANS expression was high in the seed coats and seeds of Nierumuzha. Likewise, in Kunlun 10, HvANS expression was either absent or very low, indicating a tissue-specific and variety-specific pattern for HvANS expression. The subcellular localization results indicated that HvANS was in the cell membrane. Metabolomic results indicated that the HvANS gene is closely related to the synthesis of three anthocyanin substances (Idaein chloride, Kinetin 9-riboside, and Cyanidin O-syringic acid). Yeast single hybridization experiments showed that the HvANS promoter interacted with HvANT1, which is the key anthocyanin regulatory protein. In a yeast two-hybrid experiment, we obtained two significantly different proteins (ZWY2020 and POMGNT2-like) and verified the results by qRT-PCR. CONCLUSIONS: These results provide a basis for further studies on the regulatory mechanism of HvANS in the synthesis of anthocyanins in Qingke purple grains.


Asunto(s)
Antocianinas , Hordeum , Proteínas de Plantas , Semillas , Antocianinas/biosíntesis , Semillas/genética , Semillas/metabolismo , Hordeum/genética , Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Regiones Promotoras Genéticas/genética , Genes de Plantas
17.
Theor Appl Genet ; 137(7): 173, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937300

RESUMEN

KEY MESSAGE: Genetic editing of grain size genes quickly improves three-line hybrid rice parents to increase the appearance quality and yield of hybrid rice. Grain size affects rice yield and quality. In this study, we used CRISPR/Cas9 to edit the grain size gene GW8 in the maintainer line WaitaiB (WTB) and restorer line Guanghui998 (GH998). The new slender sterile line WTEA (gw8) was obtained in the BC2F1 generation by transferring the grain mutation of the maintainer plant to the corresponding sterile line WantaiA (WTA, GW8) in the T1 generation. Two slender restorer lines, GH998E1 (gw8(II)) and GH998E2 (gw8(I)), were obtained in T1 generation. In the early stage, new sterile and restorer lines in grain mutations were created by targeted editing of GS3, TGW3, and GW8 genes. These parental lines were mated to detect the impact of grain-type mutations on hybrid rice yield and quality. Mutations in gs3, gw8, and tgw3 had a minimal impact on agronomic traits except the grain size and thousand-grain weight. The decrease in grain width in the combination mainly came from gw8/gw8, gs3/gs3 increased the grain length, gs3/gs3-gw8/gw8 had a more significant effect on the grain length, and gs3/gs3-gw8/gw8(I) contributed more to grain length than gs3/gs3-gw8/gw8(II). The heterozygous TGW3/tgw3 may not significantly increase grain length. Electron microscopy revealed that the low-chalky slender-grain variety had a cylindrical grain shape, a uniform distribution of endosperm cells, and tightly arranged starch grains. Quantitative fluorescence analysis of endospermdevelopment-related genes showed that the combination of slender grain hybrid rice caused by gs3 and gw8 mutations promoted endosperm development and improved appearance quality. An appropriate grain size mutation resulted in hybrid rice varieties with high yield and quality.


Asunto(s)
Sistemas CRISPR-Cas , Grano Comestible , Edición Génica , Oryza , Oryza/genética , Oryza/crecimiento & desarrollo , Edición Génica/métodos , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Genes de Plantas , Fenotipo , Fitomejoramiento/métodos , Mutación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo
18.
PLoS One ; 19(6): e0304674, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38941312

RESUMEN

Drought stress following climate change is likely a scenario that will have to face crop growers in tropical regions. In mitigating this constraint, the best option should be the selection and use of resilient varieties that can withstand drought threats. Therefore, a pot experiment was conducted under greenhouse conditions at the Research and Teaching Farm of the Faculty of Agronomy and Agricultural Sciences of the University of Dschang. The objectives are to identify sensitive growth stage, to identify drought-tolerant genotypes with the help of yield-based selection indices and to identify suitable selection indices that are associated with yield under non-stress and stress circumstances. Eighty-eight cowpea genotypes from the sahelian and western regions of Cameroon were subjected to drought stress at vegetative (VDS) and flowering (FDS) stages by withholding water for 28 days, using a split plot design with two factors and three replications. Seed yields under stress (Ys) and non-stress (Yp) conditions were recorded. Fifteen drought indices were calculated for the two drought stress levels against the yield from non-stress plants. Drought Intensity Index (DII) under VDS and FDS were 0.71 and 0.84 respectively, indicating severe drought stress for both stages. However, flowering stage was significantly more sensitive to drought stress compared to vegetative stage. Based on PCA and correlation analysis, Stress Tolerance Index (STI), Relative Efficiency Index (REI), Geometric Mean Productivity (GMP), Mean Productivity (MP), Yield Index (YI) and Harmonic Mean (HM) correlated strongly with yield under stress and non-stress conditions and are therefore suitable to discriminate high-yielding and tolerant genotypes under both stress and non-stress conditions. Either under VDS and FDS, CP-016 exhibited an outstanding performance under drought stress and was revealed as the most drought tolerant genotype as shown by ranking, PCA and cluster analysis. Taking into account all indices, the top five genotypes namely CP-016, CP-021, MTA-22, CP-056 and CP-060 were identified as the most drought-tolerant genotypes under VDS. For stress activated at flowering stage (FDS), CP-016, CP-056, CP-021, CP-028 and MTA-22 were the top five most drought-tolerant genotypes. Several genotypes with insignificant Ys and irrelevant rank among which CP-037, NDT-001, CP-036, CP-034, NDT-002, CP-031, NDT-011 were identified as highly drought sensitive with low yield stability. This study identified the most sensitive stage and drought tolerant genotypes that are proposed for genetic improvement of cowpea.


Asunto(s)
Adaptación Fisiológica , Sequías , Genotipo , Estrés Fisiológico , Vigna , Camerún , Vigna/genética , Vigna/crecimiento & desarrollo , Vigna/fisiología , Adaptación Fisiológica/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/fisiología , Semillas/crecimiento & desarrollo , Semillas/genética
19.
Mymensingh Med J ; 33(3): 649-655, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38944702

RESUMEN

Antibiotics' usefulness is threatened by multi-drugs resistance in harmful microorganisms because of abuse and regulatory problems. Emerging microbes, resistance mechanisms and antimicrobial drugs all require extensive investigation. Evaluation of the in vitro antibacterial activity of Methanolic extracts isolated from Black pepper seeds (Piper nigrum L.) against two infection causing pathogens, Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. From July 2022 and June 2023, this experimental study was conducted at the Mymensingh Medical College's Department of Pharmacology and Therapeutics in conjunction with the Department of Microbiology. The solvents Methanol and 10.0% Di-Methyl Sulfoxide (DMSO) were used to make the extract. Using the disc diffusion and broth dilution methods, the antibacterial activity of methanolic extract of black pepper seeds (MBPE) was evaluated at various doses. Using the broth dilution procedure, the conventional antibiotic Ciprofloxacin was utilized, and the outcome was contrasted with that of Methanol extracts. Methanolic extract of black pepper seeds (MBPE) at seven distinct concentrations (100, 80, 60, 40, 20, 10 and 5mg/ml) were utilized, then later in chosen concentrations as needed to confirm the extracts' more precise margin of antimicrobial sensitivity. At 80mg/ml and above doses of the MBPE, it had an inhibitory impact against the aforementioned microorganisms. For Staphylococcus aureus and Pseudomonas aeruginosa the MIC were 60 and 70mg/ml in MBPE respectively. As of the MIC of Ciprofloxacin was 1µg/ml against Staphylococcus aureus and 1.5µg/ml for Pseudomonas aeruginosa. In comparison to MICs of MBPE for the test organisms, the MIC of Ciprofloxacin was the lowest. This study clearly shows that Staphylococcus aureus and Pseudomonas aeruginosa are sensitive to the methanolic extract of black pepper seeds' antibacterial properties.


Asunto(s)
Antibacterianos , Metanol , Pruebas de Sensibilidad Microbiana , Piper nigrum , Extractos Vegetales , Pseudomonas aeruginosa , Semillas , Staphylococcus aureus , Piper nigrum/química , Pseudomonas aeruginosa/efectos de los fármacos , Extractos Vegetales/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología
20.
Sci Rep ; 14(1): 14927, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942921

RESUMEN

Viscum album L. (VA) is a unique plant with regard to its biological content. It is rich in many different metabolites with high potential in various spheres of human activity. We conducted a pilot study with 5 VA aqueous extracts of different host-tree species for pre-sowing treatment of Cucurbita maxima 'Hokkaido orange' seeds. We set the following objectives consisting of hypotheses (1) H01 is based on different effects of tested VA extracts depending on host trees and time of pre-treatment; (2) H02 focuses on the allopathic properties of the tested extracts affecting the plant growth and development by dose-response relationship; (3) A01 considers highly biologically active compounds of VA extracts also containing allelochemicals that can be used to regulate plant growth processes and create eco-friendly and resilient cities. The analysis of the stimulatory allelopathy index for 7 parameters demonstrates the direct effect of VA extracts in 62.3% of cases. The variability of the broad spectrum of effects of VA extracts of different host trees on the ontogenesis of C. maxima plants shows the presence of potential allelochemicals, resulting from the vital products of the host-parasite relationship. These effects are not fully explained by total polyphenol content and antioxidant activity as in previous studies of other mistletoe species. The authors consider this work a pilot study that expands the areas of application of VA extracts and knowledge about potential sources of allelochemicals.


Asunto(s)
Cucurbita , Extractos Vegetales , Viscum album , Cucurbita/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Viscum album/química , Alelopatía , Proyectos Piloto , Feromonas/química , Feromonas/metabolismo , Feromonas/farmacología , Semillas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...