Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Gen Comp Endocrinol ; 357: 114593, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047797

RESUMEN

Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) control antral follicular growth by regulating several processes, such as the synthesis of hormones and signaling molecules, proliferation, survival, apoptosis, luteinization, and ovulation. To exert these effects, gonadotropins bind to their respective Gs protein-coupled receptors, activating the protein kinase A (PKA) pathway or recruiting Gq proteins to activate protein kinase C (PKC) signaling. Although the action mechanism of FSH and LH is clear, recently, it has been shown that both gonadotropins promote the synthesis of sphingosine-1-phosphate (S1P) in granulosa and theca cells through the activation of sphingosine kinase 1. Moreover, the inhibition of SPHKs reduces S1P synthesis, cell viability, and the proliferation of follicular cells in response to gonadotropins, and the addition of S1P to the culture medium increases the proliferation of granulosa and theca cells without apparent effects on sexual steroid synthesis. Therefore, we consider that S1P is a crucial signaling molecule that complements the canonical gonadotropin pathway to promote the proliferation and viability of granulosa and theca cells.


Asunto(s)
Gonadotropinas , Lisofosfolípidos , Folículo Ovárico , Esfingosina , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacología , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Femenino , Animales , Humanos , Gonadotropinas/metabolismo , Folículo Ovárico/metabolismo , Folículo Ovárico/efectos de los fármacos , Hormona Luteinizante/metabolismo , Hormona Folículo Estimulante/metabolismo , Hormona Folículo Estimulante/farmacología , Transducción de Señal/efectos de los fármacos , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos
2.
J Immunol ; 212(11): 1843-1854, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568091

RESUMEN

Intraepithelial lymphocytes (IELs) are T cells important for the maintenance of barrier integrity in the intestine. Colon IELs are significantly reduced in both MyD88-deficient mice and those lacking an intact microbiota, suggesting that MyD88-mediated detection of bacterial products is important for the recruitment and/or retention of these cells. Here, using conditionally deficient MyD88 mice, we show that myeloid cells are the key mediators of TCRαß+ IEL recruitment to the colon. Upon exposure to luminal bacteria, myeloid cells produce sphingosine-1-phosphate (S1P) in a MyD88-dependent fashion. TCRαß+ IEL recruitment may be blocked using the S1P receptor antagonist FTY720, confirming the importance of S1P in the recruitment of TCRαß+ IELs to the colon epithelium. Finally, using the TNFΔARE/+ model of Crohn's-like bowel inflammation, we show that disruption of colon IEL recruitment through myeloid-specific MyD88 deficiency results in reduced pathology. Our results illustrate one mechanism for recruitment of a subset of IELs to the colon.


Asunto(s)
Colon , Mucosa Intestinal , Linfocitos Intraepiteliales , Lisofosfolípidos , Ratones Noqueados , Células Mieloides , Factor 88 de Diferenciación Mieloide , Receptores de Antígenos de Linfocitos T alfa-beta , Esfingosina , Animales , Lisofosfolípidos/metabolismo , Ratones , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Colon/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Ratones Endogámicos C57BL , Clorhidrato de Fingolimod/farmacología , Enfermedad de Crohn/inmunología
3.
Int J Mol Sci ; 22(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069652

RESUMEN

Obesity is a global health issue for which no major effective treatments have been well established. High-fat diet consumption is closely related to the development of obesity because it negatively modulates the hypothalamic control of food intake due to metaflammation and lipotoxicity. The use of animal models, such as rodents, in conjunction with in vitro models of hypothalamic cells, can enhance the understanding of hypothalamic functions related to the control of energy balance, thereby providing knowledge about the impact of diet on the hypothalamus, in addition to targets for the development of new drugs that can be used in humans to decrease body weight. Recently, sphingolipids were described as having a lipotoxic effect in peripheral tissues and the central nervous system. Specifically, lipid overload, mainly from long-chain saturated fatty acids, such as palmitate, leads to excessive ceramide levels that can be sensed by the hypothalamus, triggering the dysregulation of energy balance control. However, no systematic review has been undertaken regarding studies of sphingolipids, particularly ceramide and sphingosine-1-phosphate (S1P), the hypothalamus, and obesity. This review confirms that ceramides are associated with hypothalamic dysfunction in response to metaflammation, endoplasmic reticulum (ER) stress, and lipotoxicity, leading to insulin/leptin resistance. However, in contrast to ceramide, S1P appears to be a central satiety factor in the hypothalamus. Thus, our work describes current evidence related to sphingolipids and their role in hypothalamic energy balance control. Hypothetically, the manipulation of sphingolipid levels could be useful in enabling clinicians to treat obesity, particularly by decreasing ceramide levels and the inflammation/endoplasmic reticulum stress induced in response to overfeeding with saturated fatty acids.


Asunto(s)
Ceramidas/metabolismo , Metabolismo Energético/fisiología , Ácidos Grasos/fisiología , Animales , Ceramidas/fisiología , Dieta Alta en Grasa/efectos adversos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ácidos Grasos/metabolismo , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiología , Resistencia a la Insulina/fisiología , Leptina/metabolismo , Lisofosfolípidos/metabolismo , Obesidad/metabolismo , Transducción de Señal/fisiología , Esfingolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
4.
Drugs ; 81(9): 985-1002, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33983615

RESUMEN

Sphingosine-1-phosphate (S1P) is a bioactive lipid metabolite that exerts its actions by engaging 5 G-protein-coupled receptors (S1PR1-S1PR5). S1P receptors are involved in several cellular and physiological events, including lymphocyte/hematopoietic cell trafficking. An S1P gradient (low in tissues, high in blood), maintained by synthetic and degradative enzymes, regulates lymphocyte trafficking. Because lymphocytes live long (which is critical for adaptive immunity) and recirculate thousands of times, the S1P-S1PR pathway is involved in the pathogenesis of immune-mediated diseases. The S1PR1 modulators lead to receptor internalization, subsequent ubiquitination, and proteasome degradation, which renders lymphocytes incapable of following the S1P gradient and prevents their access to inflammation sites. These drugs might also block lymphocyte egress from lymph nodes by inhibiting transendothelial migration. Targeting S1PRs as a therapeutic strategy was first employed for multiple sclerosis (MS), and four S1P modulators (fingolimod, siponimod, ozanimod, and ponesimod) are currently approved for its treatment. New S1PR modulators are under clinical development for MS, and their uses are being evaluated to treat other immune-mediated diseases, including inflammatory bowel disease (IBD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and psoriasis. A clinical trial in patients with COVID-19 treated with ozanimod is ongoing. Ozanimod and etrasimod have shown promising results in IBD; while in phase 2 clinical trials, ponesimod has shown improvement in 77% of the patients with psoriasis. Cenerimod and amiselimod have been tested in SLE patients. Fingolimod, etrasimod, and IMMH001 have shown efficacy in RA preclinical studies. Concerns relating to S1PR modulators are leukopenia, anemia, transaminase elevation, macular edema, teratogenicity, pulmonary disorders, infections, and cardiovascular events. Furthermore, S1PR modulators exhibit different pharmacokinetics; a well-established first-dose event associated with S1PR modulators can be mitigated by gradual up-titration. In conclusion, S1P modulators represent a novel and promising therapeutic strategy for immune-mediated diseases.


Asunto(s)
Enfermedades del Sistema Inmune/tratamiento farmacológico , Enfermedades del Sistema Inmune/metabolismo , Lisofosfolípidos/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Animales , Humanos , Esfingosina/metabolismo
5.
J Cell Biol ; 220(6)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33764397

RESUMEN

Ezrin, radixin, and moesin (ERM) family proteins regulate cytoskeletal responses by tethering the plasma membrane to the underlying actin cortex. Mutations in ERM proteins lead to severe combined immunodeficiency, but the function of these proteins in T cells remains poorly defined. Using mice in which T cells lack all ERM proteins, we demonstrate a selective role for these proteins in facilitating S1P-dependent egress from lymphoid organs. ERM-deficient T cells display defective S1P-induced migration in vitro, despite normal responses to standard protein chemokines. Analysis of these defects revealed that S1P promotes a fundamentally different mode of migration than chemokines, characterized by intracellular pressurization and bleb-based motility. ERM proteins facilitate this process, controlling directional migration by limiting blebbing to the leading edge. We propose that the distinct modes of motility induced by S1P and chemokines are specialized to allow T cell migration across lymphatic barriers and through tissue stroma, respectively.


Asunto(s)
Movimiento Celular , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/fisiología , Citoesqueleto/fisiología , Linfocitos/metabolismo , Lisofosfolípidos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Esfingosina/análogos & derivados , Animales , Membrana Celular , Proteínas del Citoesqueleto/genética , Femenino , Linfocitos/citología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Fosforilación , Esfingosina/metabolismo
6.
Stem Cells Dev ; 30(7): 351-362, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33622080

RESUMEN

The generation of ex vivo functional megakaryocytes (MK) and platelets is an important issue in transfusion medicine as donor dependence implies in limitations, such as shortage of eligible volunteers. Indeed, platelet transfusion is still a procedure that saves the lives of patients with defective platelet production. Recent technological development has enabled the isolation and expansion of stem cells that can be used as a source for the production of functional platelets for transfusion. In this review, we discuss recent approaches of in vitro or ex vivo production of MK and platelets, suggesting that, in the near future, donor-independent sources may become a possibility. The feasibility of using these cells in the clinic may be safer, and in vitro manipulation could generate universally compatible products, solving problems related to platelet refractoriness. However, functionality and survival testing of these products in human beings are scarce; therefore, additional studies are needed to consolidate this purpose.


Asunto(s)
Plaquetas/citología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Megacariocitos/citología , Transfusión de Plaquetas/métodos , Células Madre/citología , Humanos , Lisofosfolípidos/metabolismo , Megacariocitos/metabolismo , Transfusión de Plaquetas/tendencias , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Trombopoyesis , Trombopoyetina/metabolismo
7.
Br J Haematol ; 192(5): 922-931, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33476407

RESUMEN

Sickle cell anaemia (SCA) is a debilitating genetic haemoglobinopathy predominantly affecting the disenfranchised strata of society in Africa and the Americas. The most common pharmacological treatment for this disease is the administration of hydroxycarbamide (HC) for which questions remain regarding its mechanism of action, efficacy and long-term toxicity specifically in paediatric individuals. A multiplatform metabolomics approach was used to assess the metabolome of plasma samples from a population of children and adolescents with SCA with and without HC treatment along with non-SCA individuals. Fifty-three metabolites were identified by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) and 1 H nuclear magnetic resonance (NMR) with a predominance of membrane lipids, amino acids and organic acids. The partial least-squares discriminant analysis (PLS-DA) analysis allowed a clear discrimination between the different studied groups, revealing clear effects of the HC treatment in the patients' metabolome including rescue of specific metabolites to control levels. Increased creatine/creatinine levels under HC treatment suggests a possible increase in the arginine pool and increased NO synthesis, supporting existing models for HC action in SCA. The metabolomics results extend the current knowledge on the models for SCA pathophysiology including impairment of Lands' cycle and increased synthesis of sphingosine 1-phosphate. Putative novel biomarkers are suggested.


Asunto(s)
Anemia de Células Falciformes/sangre , Antidrepanocíticos/uso terapéutico , Hidroxiurea/uso terapéutico , Metabolómica , Ácidos/sangre , Síndrome Torácico Agudo/etiología , Adolescente , Aminoácidos/sangre , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/tratamiento farmacológico , Antidrepanocíticos/farmacología , Arteriopatías Oclusivas/etiología , Biomarcadores , Butiratos/sangre , Niño , Cromatografía Líquida de Alta Presión , Creatina/sangre , Creatinina/sangre , Femenino , Humanos , Hidroxiurea/farmacología , Lisofosfolípidos/sangre , Masculino , Espectrometría de Masas , Lípidos de la Membrana/sangre , Modelos Biológicos , Resonancia Magnética Nuclear Biomolecular , Esfingosina/análogos & derivados , Esfingosina/sangre
8.
Artículo en Inglés | MEDLINE | ID: mdl-33454434

RESUMEN

Collecting duct cells are physiologically subject to the hypertonic environment of the kidney. This condition is necessary for kidney maturation and function but represents a stress condition that requires active strategies to ensure epithelial integrity. Madin-Darby Canine Kidney (MDCK) cells develop the differentiated phenotype of collecting duct cells when subject to hypertonicity, serving as a model to study epithelial preservation and homeostasis in this particular environment. The integrity of epithelia is essential to achieve the required functional barrier. One of the mechanisms that ensure integrity is cell extrusion, a process initiated by sphingosine-1-phosphate (S1P) to remove dying or surplus cells while maintaining the epithelium barrier. Both types start with the activation of S1P receptor type 2, located in neighboring cells. In this work, we studied the effect of cell differentiation induced by hypertonicity on cell extrusion in MDCK cells, and we provide new insights into the associated molecular mechanism. We found that the different stages of differentiation influence the rate of apoptotic cell extrusion. Besides, we used a novel methodology to demonstrate that S1P increase in extruding cells of differentiated monolayers. These results show for first time that cell extrusion is triggered by the single-cell synthesis of S1P by sphingosine kinase 2 (SphK2), but not SphK1, of the extruding cell itself. Moreover, the inhibition or knockdown of SphK2 prevents cell extrusion and cell-cell junction protein degradation, but not apoptotic nuclear fragmentation. Thus, we propose SphK2 as the biochemical key to ensure the preservation of the epithelial barrier under hypertonic stress.


Asunto(s)
Apoptosis , Lisofosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina/análogos & derivados , Animales , Diferenciación Celular , Perros , Riñón/citología , Riñón/metabolismo , Células de Riñón Canino Madin Darby , Análisis de la Célula Individual , Esfingosina/metabolismo
9.
J Esthet Restor Dent ; 33(2): 294-302, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32445541

RESUMEN

OBJECTIVE: To evaluate the protective effect of phytosphingosine (PHS) against staining on dental enamel. MATERIALS AND METHODS: Ninety-six specimens of bovine teeth (6 mm × 6 mm × 2 mm) were cut, and initial color (Easyshade, VITA), microhardness (HMV-2, Shimadzu) and fluorescence (Matlabs software, Matworks) measurements were performed. Specimens were separated into four groups according to the treatments: Distilled water (control); Human saliva (HS); PHS; PHS + HS. Specimens (n = 6) were submitted to staining procedures: Distilled water (immersion for 30 days-control); Coffee (15 minutes, twice a day/for 15 days); Black tea (as described for Coffee) and cigarette smoke (20 cigarettes/sample). Final measurements were performed, and data were analyzed (Color-CIEDE2000, fluorescence-2-way ANOVA, Tukey, and microhardness-Kruskal-Wallis Dunn, P < .05). RESULTS: Coffee caused the highest color change (ΔE00 ), followed by black tea, regardless of the treatment employed. Distilled water and cigarette smoke produced similar color changes (P > .05) for the groups control (water = 1.0 + - 0.5/ cigarette = 2.3 0.3) and PHS (water = 0.8 0.4/ cigarette = 2.3 0.4). PHS + HS demonstrated intermediate means than PHS and HS when stained with coffee and tea. After treatments, the least fluorescence alterations occurred for the groups treated with distilled water and cigarette, regardless of the treatment, with no difference (P > .05) between them. There was a significant difference (P < .05) on microhardness between all the groups, as PHS + HS > PHS > HS > Distilled water. CONCLUSIONS: It was concluded that PHS treatment did not protect the staining of the enamel by coffee and tea, but increased the microhardness, both in the presence and absence of a salivary pellicle. PRACTICAL IMPLICATIONS: Phytoshingosine is a novel agent and considered a promising component for anti-biofilm and anti-erosion properties by the formation of a diffusion barrier on the dental enamel. In line, PHS might be considered for anti-staining purposes.


Asunto(s)
Esmalte Dental , Blanqueamiento de Dientes , Animales , Bovinos , Color , Humanos , Ensayo de Materiales , Esfingosina/análogos & derivados , Coloración y Etiquetado , Propiedades de Superficie
10.
Expert Opin Biol Ther ; 20(4): 413-420, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32093531

RESUMEN

Introduction: Sphingosine-1-phosphate (S1P) is a membrane-derived lysophospholipid signaling molecule implicated in various physiological and pathological processes, such as regulation of the immune, cardiovascular, pulmonary, and nervous systems and theoretical cancer-related risks, through extracellular activation of S1P1-5 receptors.Areas covered: S1P receptor agonism is a novel strategy for the treatment of UC targeting lymphocyte recirculation, through blockade of lymphocyte egress from lymph nodes. We conducted an extensive literature review on PUBMED on currently available data on molecular aspects of S1P modulation, the mechanisms of action of S1PR agonists (fingolimod, ozanimod, etrasimod, and KRP-203), and their potential efficacy and safety for the treatment of patients with ulcerative colitis.Expert opinion: Selective S1P modulators have emerged to enlarge the efficacy and safety profile of this class of agents. Phase 3 programs should add the potential body of evidence to prove their benefit for the management of UC patients.


Asunto(s)
Colitis Ulcerosa/tratamiento farmacológico , Moduladores de los Receptores de fosfatos y esfingosina 1/uso terapéutico , Receptores de Esfingosina-1-Fosfato/agonistas , Acetatos/uso terapéutico , Ensayos Clínicos como Asunto , Colitis Ulcerosa/patología , Humanos , Indanos/uso terapéutico , Indoles/uso terapéutico , Lisofosfolípidos/metabolismo , Oxadiazoles/uso terapéutico , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
11.
Ann Endocrinol (Paris) ; 80(5-6): 263-272, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31455516

RESUMEN

Sphingosine-1-phoshate (S1P) is a membrane sphingolipid involved in several physiological processes, including cell proliferation, tissue growth, cell survival and migration, inflammation, vasculogenesis, and angiogenesis. Herein, we review the most critical effects of S1P on ovarian function, including its physiological and pathophysiological effects. Based on the available evidence, S1P plays an important role in ovarian physiology, participating as an essential stimulator of follicular development in both the preantral and antral phases, as well as in ovulation and corpus luteum development. Moreover, S1P may be a good cytoprotective agent against cancer treatment side-effects (chemotherapy with or without radiation therapy). In the future, this compound may be given for fertility preservation to women undergoing cancer treatment. However, further studies are required to confirm its efficacy in ovarian protection and also its safety in terms of cancer prognosis, given the biological action of the compound. Under- or over-production of S1P may be related to ovarian pathologies.


Asunto(s)
Lisofosfolípidos/fisiología , Enfermedades del Ovario/fisiopatología , Ovario/fisiopatología , Esfingosina/análogos & derivados , Animales , Proliferación Celular , Cuerpo Lúteo/crecimiento & desarrollo , Femenino , Preservación de la Fertilidad , Humanos , Enfermedades del Ovario/patología , Folículo Ovárico/crecimiento & desarrollo , Neoplasias Ováricas/patología , Neoplasias Ováricas/fisiopatología , Ovario/patología , Esfingosina/fisiología , Receptores de Esfingosina-1-Fosfato/fisiología
12.
Eur J Immunol ; 49(7): 1038-1051, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30939218

RESUMEN

Sphingosine-1-phosphate (S1P) is an important sphingolipid derived from plasma membrane and has a known role in productive phase of inflammation, but its role in neutrophil survival and resolution phase of inflammation is unknown. Here, we investigated the effects of inhibition of S1P receptors and the blockade of S1P synthesis in BALB/c mice and human neutrophils. S1P and S1PR1-3 receptors expression were increased in cells from the pleural cavity stimulated with LPS. Using different antagonists of S1PRs and inhibitors of different steps of the metabolic pathway of S1P production, we show that S1P and its receptors are involved in regulating neutrophil survival and resolution of inflammation in the pleural cavity. Given the role of the S1P-S1PR axis in resolution of inflammation, we sought to identify whether blockade at different levels of the sphingosine-1-phosphate synthesis pathway could affect neutrophil survival in vitro. Inhibitors of the S1P pathway were also able to induce human neutrophil apoptosis. In addition, blockade of S1P synthesis or its receptor facilitated the efferocytosis of apoptotic neutrophil. Taken together, our data demonstrate a fundamental role for S1P in regulating the outcome of inflammatory responses, and position S1P-S1PR axis as a potential target for treatment of neutrophilic inflammation.


Asunto(s)
Inflamación/inmunología , Lisofosfolípidos/metabolismo , Neutrófilos/inmunología , Cavidad Pleural/inmunología , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Animales , Apoptosis , Supervivencia Celular , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Activación Neutrófila , Transducción de Señal , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores
13.
PLoS One ; 14(3): e0213917, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30897151

RESUMEN

Sphingolipids regulate several aspects of cell behavior and it has been demonstrated that cells adjust their sphingolipid metabolism in response to metabolic needs. Particularly, sphingosine-1-phosphate (S1P), a final product of sphingolipid metabolism, is a potent bioactive lipid involved in the regulation of various cellular processes, including cell proliferation, cell migration, actin cytoskeletal reorganization and cell adhesion. In previous work in rat renal papillae, we showed that sphingosine kinase (SK) expression and S1P levels are developmentally regulated and control de novo sphingolipid synthesis. The aim of the present study was to evaluate the participation of SK/S1P pathway in the triggering of cell differentiation by external hypertonicity. We found that hypertonicity evoked a sharp decrease in SK expression, thus activating the de novo sphingolipid synthesis pathway. Furthermore, the inhibition of SK activity evoked a relaxation of cell-cell adherens junction (AJ) with accumulation of the AJ complex (E-cadherin/ß-catenin/α-catenin) in the Golgi complex, preventing the acquisition of the differentiated cell phenotype. This phenotype alteration was a consequence of a sphingolipid misbalance with an increase in ceramide levels. Moreover, we found that SNAI1 and SNAI2 were located in the cell nucleus with impairment of cell differentiation induced by SK inhibition, a fact that is considered a biochemical marker of epithelial to mesenchymal transition. So, we suggest that the expression and activity of SK1, but not SK2, act as a control system, allowing epithelial cells to synchronize the various branches of sphingolipid metabolism for an adequate cell differentiation program.


Asunto(s)
Lisofosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingolípidos/biosíntesis , Esfingosina/análogos & derivados , Uniones Adherentes/metabolismo , Animales , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Perros , Inhibidores Enzimáticos/farmacología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Soluciones Hipertónicas , Células de Riñón Canino Madin Darby , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Interferente Pequeño/genética , Transducción de Señal , Factores de Transcripción de la Familia Snail/metabolismo , Esfingosina/metabolismo
14.
J Cell Physiol ; 234(7): 10047-10059, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30523638

RESUMEN

Sphingolipids were discovered more than a century ago and were simply considered as a class of cell membrane lipids for a long time. However, after the discovery of several intracellular functions and their role in the control of many physiological and pathophysiological conditions, these molecules have gained much attention. For instance, the sphingosine-1-phosphate (S1P) is a circulating bioactive sphingolipid capable of triggering strong intracellular reactions through the family of S1P receptors (S1PRs) spread in several cell types and tissues. Recently, the role of S1P in the control of skeletal muscle metabolism, atrophy, regeneration, and metabolic disorders has been widely investigated. In this review, we summarized the knowledge of S1P and its effects in skeletal muscle metabolism, highlighting the role of S1P/S1PRs axis in skeletal muscle regeneration, fatigue, ceramide accumulation, and insulin resistance. Finally, we discussed the physical exercise role in S1P/S1PRs signaling in skeletal muscle cells, and how this nonpharmacological strategy may be prospective for future investigations due to its ability to increase S1P levels.


Asunto(s)
Lisofosfolípidos/metabolismo , Músculo Esquelético/enzimología , Esfingosina/análogos & derivados , Animales , Humanos , Esfingosina/metabolismo
15.
Biochem Biophys Res Commun ; 508(4): 1031-1037, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30545628

RESUMEN

Entamoeba invadens is a protozoan, which causes multiple damages in reptiles and is considered a prototype for the study of the Entamoeba encystment in vitro. Here we report for the first time the role of the de novo synthesis pathway of sphingolipids during the encystment of E. invadens. In silico analysis showed that this parasite has six putative genes coding for ceramide synthases (CerS), all of them coding for proteins containing the Lag1p motif, a region conserved in the ceramide synthases of multiple organisms, suggesting that they might be bona fide CerS. The six genes of E. invadens are differentially expressed at different time intervals in both stages trophozoite and cyst, based on the results obtained through qRT-PCR assays, the genes involved in the synthesis of sphingolipids with long-chain fatty acids CerS 2,3,4 (EIN_046610, EIN_097030, EIN_130350) have maximum points of relative expression in both stages of the E. invadens life cycle, which strongly suggest that the signaling exerted from the synthesis pathway of sphingolipids is essential for the encystment of E. invadens, since the generation of the more abundant sphingomyelin (SM) subspecies with long-chain fatty acids are fundamental for the parasite to reach its conversion from trophozoite to cyst. When myriocin was used as an inhibitor of serine palmitoyl CoA transferase (SPT), first enzyme in the de novo biosynthesis of sphingolipids, the trophozoites of E. invadens were unable to reach the encystment. Since the effect of myriocin was reversed with exogenous d-erythrosphingosine (DHS), it was demonstrated that the inhibition was specific and it was confirmed that the synthesis of sphingolipids play an essential role during the encystment process of E. invadens.


Asunto(s)
Entamoeba/metabolismo , Enquistamiento de Parásito , Esfingolípidos/metabolismo , Entamoeba/efectos de los fármacos , Entamoeba/enzimología , Entamoeba/genética , Ácidos Grasos Monoinsaturados/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Cinética , Estadios del Ciclo de Vida/efectos de los fármacos , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Enquistamiento de Parásito/efectos de los fármacos , Filogenia , Esfingolípidos/biosíntesis , Esfingomielinas/metabolismo , Esfingosina/análogos & derivados , Esfingosina/farmacología , Trofozoítos/efectos de los fármacos , Trofozoítos/genética
16.
Biosci Rep ; 38(6)2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30366961

RESUMEN

Sphingosine 1-phosphate (S1P) and FTY720-phosphate (FTYp) increased intracellular calcium in cells expressing S1P1 mCherry-tagged receptors; the synthetic agonist was considerably less potent. Activation of protein kinase C by phorbol myristate acetate (PMA) blocked these effects. The three agents induced receptor phosphorylation and internalization, with the action of FTYp being more intense. S1P1 receptor-Rab protein (GFP-tagged) interaction was studied using FRET. The three agents were able to induce S1P1 receptor-Rab5 interaction, although with different time courses. S1P1 receptor-Rab9 interaction was mainly increased by the phorbol ester, whereas S1P1 receptor-Rab7 interaction was only increased by FTYp and after a 30-min incubation. These actions were not observed using dominant negative (GDP-bound) Rab protein mutants. The data suggested that the three agents induce interaction with early endosomes, but that the natural agonist induced rapid receptor recycling, whereas activation of protein kinase C favored interaction with late endosome and slow recycling and FTYp triggered receptor interaction with vesicles associated with proteasomal/lysosomal degradation. The ability of bisindolylmaleimide I and paroxetine to block some of these actions suggested the activation of protein kinase C was associated mainly with the action of PMA, whereas G protein-coupled receptor kinase (GRK) 2 (GRK2) was involved in the action of the three agents.


Asunto(s)
Lisofosfolípidos/farmacología , Organofosfatos/farmacología , Paroxetina/farmacología , Ésteres del Forbol/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Proteínas de Unión al GTP rab/metabolismo , Activación Enzimática/efectos de los fármacos , Células HEK293 , Humanos , Fosforilación/efectos de los fármacos , Proteína Quinasa C/metabolismo , Esfingosina/farmacología , Acetato de Tetradecanoilforbol/farmacología
18.
Int J Mol Sci ; 19(5)2018 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-29757216

RESUMEN

NOD (non-obese diabetic) mice spontaneously develop type 1 diabetes following T cell-dependent destruction of pancreatic β cells. Several alterations are observed in the NOD thymus, including the presence of giant perivascular spaces (PVS) filled with single-positive (SP) CD4⁺ and CD8⁺ T cells that accumulate in the organ. These cells have a decreased expression of membrane CD49e (the α5 integrin chain of the fibronectin receptor VLA-5 (very late antigen-5). Herein, we observed lower sphingosine-1-phosphate receptor 1 (S1P1) expression in NOD mouse thymocytes when compared with controls, mainly in the mature SP CD4⁺CD62Lhi and CD8⁺CD62Lhi subpopulations bearing the CD49e− phenotype. In contrast, differences in S1P1 expression were not observed in mature CD49e⁺ thymocytes. Functionally, NOD CD49e− thymocytes had reduced S1P-driven migratory response, whereas CD49e⁺ cells were more responsive to S1P. We further noticed a decreased expression of the sphingosine-1-phosphate lyase (SGPL1) in NOD SP thymocytes, which can lead to a higher sphingosine-1-phosphate (S1P) expression around PVS and S1P1 internalization. In summary, our results indicate that the modulation of S1P1 expression and S1P/S1P1 interactions in NOD mouse thymocytes are part of the T-cell migratory disorder observed during the pathogenesis of type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Receptores de Lisoesfingolípidos/genética , Timocitos/metabolismo , Animales , Movimiento Celular , Diabetes Mellitus Tipo 1/inmunología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Integrina alfa5/genética , Integrina alfa5/metabolismo , Integrina alfa5beta1/metabolismo , Lisofosfolípidos/metabolismo , Ratones , Ratones Endogámicos NOD , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
19.
Comput Biol Med ; 97: 8-20, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29680326

RESUMEN

Sphingolipid (SL) metabolism is a complex biological system that produces and transforms ceramides and other molecules able to modulate other cellular processes, including survival or death pathways key to cell fate decisions. This signaling pathway integrates several types of stress signals, including chemotherapy, into changes in the activity of its metabolic enzymes, altering thereby the cellular composition of bioactive SLs. Therefore, the SL pathway is a promising sensor of chemosensitivity in cancer and a target hub to overcome resistance. However, there is still a gap in our understanding of how chemotherapeutic drugs can disturb the SL pathway in order to control cellular fate. We propose to bridge this gap by a systems biology approach to integrate i) a dynamic model of SL analogue (BODIPY-FL fluorescent-sphingomyelin analogue, SM-BOD) metabolism, ii) a Gaussian mixture model (GMM) of the fluorescence features to identify how the SL pathway senses the effect of chemotherapy and iii) a fuzzy logic model (FLM) to associate SL composition with cell viability by semi-quantitative rules. Altogether, this hybrid model approach was able to predict the cell viability of double experimental perturbations with chemotherapy, indicating that the SL pathway is a promising sensor to design strategies to overcome drug resistance in cancer.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Colorantes Fluorescentes/metabolismo , Neoplasias/metabolismo , Esfingosina/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Colorantes Fluorescentes/química , Lógica Difusa , Humanos , Modelos Teóricos , Esfingosina/análogos & derivados , Esfingosina/química , Biología de Sistemas
20.
Methods Mol Biol ; 1697: 117-131, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28755279

RESUMEN

Sphingosine-1-phosphate (S1P) is a bioactive lipid that modulates migratory behavior of cells during embryonic development. In addition, S1P might promote tumor progression by enhancing migratory ability and invasiveness of tumor cells. Migration is a complex process that implies cytoskeletal reorganization and formation of structures that enable cell movement. Besides having similar requirements than migration, invasion also involves proteolytic degradation of extracellular matrix (ECM). Matrix metalloproteases (MMPs) have been identified to break down components of the ECM, allowing cancer cells to spread out of the primary tumor. In this chapter, we will describe different techniques to study migration and invasion induced by S1P. To this end, we include detailed protocols of end-point assays to study migration/invasion, and zymography assay to analyze MMP-2 and MMP-9 activity that were standardized in our laboratory in human melanoma cell lines.


Asunto(s)
Lisofosfolípidos/farmacología , Metaloproteinasas de la Matriz/metabolismo , Melanoma/metabolismo , Esfingosina/análogos & derivados , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Técnicas In Vitro , Invasividad Neoplásica , Esfingosina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA