Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.303
Filtrar
1.
Carbohydr Polym ; 345: 122572, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227107

RESUMEN

Probiotics and polyphenols have multiple bioactivities, and developing co-encapsulated microcapsules (CM) is a novel strategy to enhance their nutritional diversity. However, the development of CMs is challenged by complicated processing, single types, and unclear in vivo effects and applications. In this study, the co-microencapsulations of polyphenol and probiotic were constructed using pectin, alginate (WGCA@LK), and Fu brick tea polysaccharides (WGCF@LK), respectively, with chitosan-whey isolate proteins by layer-by-layer coacervation reaction, and their protective effects, in vivo effectiveness, and application potential were evaluated. WGCA@LK improved the encapsulation rate of polyphenols (42.41 %), and remained high viability of probiotics after passing through gastric acidic environment (8.79 ± 0.04 log CFU/g) and storage for 4 weeks (4.59 ± 0.06 log CFU/g). WGCF@LK exhibited the highest total antioxidant activity (19.40 ± 0.25 µmol/mL) and its prebiotic activity removed the restriction on probiotic growth. WGCA@LK showed strong in vitro colonic adhesion, but WGCF@LK promoted in vivo retention of probiotics at 48 h. WGCF@LK showed excellent anti-inflammatory effects and alleviated symptoms of acute colitis in mice. These findings provide unique insights into the fortification of probiotic-polyphenol CMs by different polysaccharides and the development of novel health foods with rich functional hierarchies and superior therapeutic effects.


Asunto(s)
Cápsulas , Colitis , Polifenoles , Polisacáridos , Probióticos , Probióticos/administración & dosificación , Probióticos/química , Animales , Polifenoles/química , Polifenoles/farmacología , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Ratones , Polisacáridos/química , Polisacáridos/farmacología , Alimentos Fortificados , Alginatos/química , Alginatos/farmacología , Masculino , Pectinas/química , Pectinas/farmacología , Té/química , Antioxidantes/química , Antioxidantes/farmacología , Quitosano/química , Sulfato de Dextran/química , Composición de Medicamentos/métodos
2.
Braz J Biol ; 84: e283740, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39230082

RESUMEN

More catechins are found in green tea than in any other type of tea, with its predominant production taking place in Asian nations. Consumption of green tea has been strongly correlated with a reduced risk of many diseases. This study introduces a new, efficient, and reliable method for extracting total catechins using ultra-high-performance liquid chromatography coupled with an ID-X-Orbitrap Mass spectrometer (UHPLC-IDX-Orbitrap-MS). The method was then applied to quantify the catechin content in green tea, yielding results comparable to previously published studies. Among the various sources of green tea analyzed, the lowest average catechin content was observed in Vietnam, Japan (2: Matcha), and Morocco, ranging between 346 and 322 mg/L. Conversely, the highest average catechin content (between 424 and 422 mg/L) was found in Sri Lanka and Japan (1: Sencha). For the remaining green tea extracts, the catechin levels ranged from 367 to 410 mg/L, exhibiting similar values. These findings demonstrate the high reproducibility of the proposed extraction procedure, with a relative standard deviation (RSD) error of less than 15% for the catechin standard. Additionally, the limit of detection for catechins was determined to be 1 ng mL-1. This study serves as a pilot investigation for extracting catechins from various green tea sources. Future research will focus on identifying all active compounds present. Furthermore, it is worth noting that this study aligns with the goals set forth in Saudi Vision 2030, which aims to diversify the country's economy and promote scientific advancements in various fields, including healthcare and agriculture.


Asunto(s)
Catequina , Espectrometría de Masas , Hojas de la Planta , , Catequina/análisis , Catequina/aislamiento & purificación , Cromatografía Líquida de Alta Presión/métodos , Té/química , Espectrometría de Masas/métodos , Reproducibilidad de los Resultados , Hojas de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/análisis
3.
Carbohydr Polym ; 346: 122615, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245495

RESUMEN

This study investigates the complexation between tea seed starch (TSS) and tea polyphenols (TPs) at varying concentrations (2.5, 5.0, 7.5, and 10.0 %). The objectives can expand the knowledge of TSS, which is a novel starch, and to examine how TPs influence the structure and physicochemical properties of the complexes. Results indicate that TPs interact with TSS through hydrogen bonding, altering granule morphology and disrupting ordered structure of starch. Depending on the concentration, TPs induce either V-type or non-V-type crystal structures within TSS, which had bearing on iodine binding capacity, swelling, pasting, gelatinization, retrogradation, rheology, and gel structure. In vitro digestibility analysis reveals that TSS-TPs complexes tend to reduce readily digestible starch while increasing resistant starch fractions with higher TP concentrations. Thus, TSS-TPs complexes physicochemical and digestibility properties can be modulated, providing a wide range of potential applications in the food industry.


Asunto(s)
Polifenoles , Semillas , Almidón , , Polifenoles/química , Almidón/química , Semillas/química , Té/química , Enlace de Hidrógeno , Reología
4.
Water Environ Res ; 96(9): e11117, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39234890

RESUMEN

Water pollution involves the coexistence of microplastics (MPs) and traditional pollutants, and how can MPs influence the adsorption of other pollutants by biochar during the treatment process remains unclear. This study aimed to investigate the influence of polystyrene microplastics (PS MPs) on the adsorption of cadmium (Cd) and ciprofloxacin (CIP) by magnetic biochar (MTBC) in the single and binary systems. MTBC was prepared using tea leaf litter; the effects of time, pH, and salt ions on the adsorption behaviors were investigated; and X-ray photoelectronic spectroscopy (XPS) and density flooding theory analysis were conducted to elucidate the influence mechanisms. Results indicated that PS MPs reduced the pollutants adsorption by MTBC due to the heterogeneous aggregation between PS MPs and MTBC and the surface charge change of MTBC induced by PS MPs. The effects of PS MPs on heavy metals and antibiotics adsorption were distinctly different. PS MPs reduced Cd adsorption on MTBC, which were significantly influenced by the solution pH and salt ions contents, suggesting the participation of electrostatic interaction and ion exchange in the adsorption, whereas the effects of PS MPs on CIP adsorption were inconspicuous. In the hybrid system, PS MPs reduced pollutants adsorption by MTBC with 66.3% decrease for Cd and 12.8% decrease for CIP, and the more remarkable reduction for Cd was due to the predominated physical adsorption, and CIP adsorption was mainly a stable chemisorption. The influence of PS MPs could be resulted from the interaction between PS MPs and MTBC with changing the functional groups and electrostatic potential of MTBC. This study demonstrated that when using biochar to decontaminate wastewater, it is imperative to consider the antagonistic action of MPs, especially for heavy metal removal. PRACTITIONER POINTS: Magnetic biochar (MTBC) was prepared successfully using tea leaf litter. MTBC could be used for cadmium (Cd) and ciprofloxacin (CIP) removal. Polystyrene microplastics (Ps MPs) reduced Cd/CIP adsorption by MTBC. Ps MPs effects on Cd adsorption were more obvious than that of CIP. Ps MPs changed the functional groups and electrostatic potential of MTBC, thus influencing MTBC adsorption.


Asunto(s)
Cadmio , Carbón Orgánico , Ciprofloxacina , Microplásticos , Hojas de la Planta , Poliestirenos , Contaminantes Químicos del Agua , Cadmio/química , Poliestirenos/química , Carbón Orgánico/química , Adsorción , Ciprofloxacina/química , Microplásticos/química , Contaminantes Químicos del Agua/química , Hojas de la Planta/química , Té/química
5.
Food Res Int ; 194: 114912, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232533

RESUMEN

Chinese oolong tea is famous for its rich and diverse aromas, which is an important indicator for sensor quality evaluation. To accurately and rapidly evaluate sensory quality, a novel colorimetric sensor array (CSA) was developed to detect volatile organic compounds (VOCs) in oolong tea. We further explored the binding mechanism between colorimetric dyes that trigger changes in charge transfer and visible color changes. Based on this, we modified and optimized the CSA to improve the sensitivity by 17.1-234.9% and the stability by 8.7-33.3%. The study also assessed the effectiveness of this method by comparing two linear and two non-linear classification models, with the support vector machine (SVM) model achieving the highest accuracy, identifying different flavor intensity and grades with rates of 100% and 95.83%, respectively. These findings sufficiently demonstrated that the novel CSA, integrated with the SVM model, has promising potential for predicting the sensory quality of oolong tea.


Asunto(s)
Colorimetría , Odorantes , Máquina de Vectores de Soporte , Gusto , , Compuestos Orgánicos Volátiles , Té/química , Compuestos Orgánicos Volátiles/análisis , Colorimetría/métodos , Odorantes/análisis , Olfato , Camellia sinensis/química , Humanos
6.
Food Res Int ; 194: 114928, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232540

RESUMEN

Dark tea (DT) holds a rich cultural history in China and has gained sizeable consumers due to its unique flavor and potential health benefits. In this study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS), relative odor activity value (ROAV), and chemometrics approaches were used to detect and analyze aroma compounds differences among five dark teas from different geographical regions. The results revealed that the five DTs from different geographical regions differed in types, quantities, and relative concentrations of volatile compounds. A total of 1372 volatile compounds of were identified in the 56 DT samples by HS-SPME-GC-MS. Using ROAV and chemometrics approaches, based on ROAV>1 and VIP>1. Eighteen key aroma compounds can be used as potential indicators for DT classification, including dihydroactinidiolide, linalool, 1,2,3-trimethoxybenzene, geranyl acetone, 1,2,4-trimethoxybenzene, cedrol, 3,7-dimethyl-1,5,7-octatrien-3-ol, ß-ionone, 4-ethyl-1,2-dimethoxybenzene, methyl salicylate, α-ionone, geraniol, linalool oxide I, linalool oxide II, 6-methyl-5-hepten-2-one, α-terpineol, 1,2,3-trimethoxy-5-methylbenzene, and 1,2-dimethoxybenzene. These compounds provide a certain theoretical basis for distinguishing the differences in five DTs from different geographical regions. This study provides a potential method for identifying the volatile substances in DTs and elucidating the differences in key aroma compounds. Abbreviations: DT, dark tea; FZT, Fuzhuan tea; LPT, Guangxi Liupao tea; QZT, Hubei Qingzhuan tea; TBT, Sichuan Tibetan tea; PET, Yunnan Pu-erh tea; ROAV, Relative odor activity value; OT, Odor threshold; HS-SPME, Headspace solid-phase microextraction; GC-MS, Gas chromatography-mass spectrometry; PCA, Principal components analysis; PLS-DA, Partial least squares-discriminant analysis; HCA, Hierarchical clustering analysis.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Odorantes , Microextracción en Fase Sólida , , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Odorantes/análisis , Té/química , Microextracción en Fase Sólida/métodos , China , Quimiometría , Camellia sinensis/química
7.
Food Res Int ; 194: 114918, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232538

RESUMEN

Polyphenolic compounds are common constituents of human and animal diets and undergo extensive metabolism by the gut microbiota before entering circulation. In order to compare the transformations of polyphenols from yerba mate, rosemary, and green tea extracts in the gastrointestinal tract, simulated gastrointestinal digestion coupled with colonic fermentation were used. For enhancing the comparative character of the investigation, colonic fermentation was performed with human, pig and rat intestinal microbiota. Chemical analysis was performed using a HPLC system coupled to a diode-array detector and mass spectrometer. Gastrointestinal digestion diminished the total amount of phenolics in the rosemary and green tea extracts by 27.5 and 59.2 %, respectively. These reductions occurred mainly at the expense of the major constituents of these extracts, namely rosmarinic acid (-45.7 %) and epigalocatechin gallate (-60.6 %). The yerba mate extract was practically not affected in terms of total phenolics, but several conversions and isomerizations occurred (e.g., 30 % of trans-3-O-caffeoylquinic acid was converted into the cis form). The polyphenolics of the yerba mate extract were also the least decomposed by the microbiota of all three species, especially in the case of the human one (-10.8 %). In contrast, the human microbiota transformed the polyphenolics of the rosemary and green extracts by 95.9 and 88.2 %, respectively. The yerba mate-extract had its contents in cis 3-O-caffeoylquinic acid diminished by 78 % by the human microbiota relative to the gastrointestinal digestion, but the content of 5-O-caffeoylquinic acid (also a chlorogenic acid), was increased by 22.2 %. The latter phenomenon did not occur with the rat and pig microbiota. The pronounced interspecies differences indicate the need for considerable caution when translating the results of experiments on the effects of polyphenolics performed in rats, or even pigs, to humans.


Asunto(s)
Colon , Depsidos , Digestión , Fermentación , Ilex paraguariensis , Extractos Vegetales , Polifenoles , Ácido Rosmarínico , Rosmarinus , Animales , Humanos , Extractos Vegetales/metabolismo , Rosmarinus/química , Ratas , Ilex paraguariensis/química , Porcinos , Depsidos/metabolismo , Depsidos/análisis , Polifenoles/metabolismo , Polifenoles/análisis , Colon/metabolismo , Colon/microbiología , Masculino , Cinamatos/metabolismo , Cinamatos/análisis , Microbioma Gastrointestinal , Té/química , Ácido Quínico/análogos & derivados , Ácido Quínico/metabolismo , Ácido Quínico/análisis , Catequina/análogos & derivados , Catequina/metabolismo , Catequina/análisis , Cromatografía Líquida de Alta Presión , Camellia sinensis/química
8.
Food Res Int ; 194: 114917, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232537

RESUMEN

Withering is a crucial process that determines the quality of white tea (WT). Solar withering (SW) is reported to contribute to the aroma quality of WT. However, the mechanism by which aroma is formed in WT subjected to SW remains unclear. In this study, through headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and transcriptomics, we found that 13 key genes enriched in the mevalonic acid and methylerythritol phosphate pathways, such as those of 1-deoxy-D-xylulose-5-phosphate synthase and terpineol synthase, were significantly upregulated, promoting the accumulation of α-terpinolene, geraniol, and nerolidol, which imparted floral and fruity odors to WT subjected to SW. Additionally, the significant upregulation of lipoxygenases enriched in the lipoxygenase pathway promoting the accumulation of hexanol, 1-octen-3-ol, (E, Z)-3,6-nonadien-1-ol, and nonanal, which contributed to the green and fresh odor in WT subjected to SW. This study provided the first comprehensive insight into the effect mechanism of SW on aroma formation in WT.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Odorantes , Microextracción en Fase Sólida , Odorantes/análisis , Té/química , Compuestos Orgánicos Volátiles/análisis , Camellia sinensis/química , Camellia sinensis/efectos de la radiación , Terpenos/análisis , Aldehídos/análisis , Regulación de la Expresión Génica de las Plantas , Monoterpenos Acíclicos , Hexanoles/análisis , Sesquiterpenos/análisis , Octanoles
9.
Food Res Int ; 194: 114929, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232542

RESUMEN

Black tea is the second most common type of tea in China. Fermentation is one of the most critical processes in its production, and it affects the quality of the finished product, whether it is insufficient or excessive. At present, the determination of black tea fermentation degree completely relies on artificial experience. It leads to inconsistent quality of black tea. To solve this problem, we use machine vision technology to distinguish the degree of fermentation of black tea based on images, this paper proposes a lightweight convolutional neural network (CNN) combined with knowledge distillation to discriminate the degree of fermentation of black tea. After comparing 12 kinds of CNN models, taking into account the size of the model and the performance of discrimination, as well as the selection principle of teacher models, Shufflenet_v2_x1.0 is selected as the student model, and Efficientnet_v2 is selected as the teacher model. Then, CrossEntropy Loss is replaced by Focal Loss. Finally, for Distillation Loss ratios of 0.6, 0.7, 0.8, 0.9, Soft Target Knowledge Distillation (ST), Masked Generative Distillation (MGD), Similarity-Preserving Knowledge Distillation (SPKD), and Attention Transfer (AT) four knowledge distillation methods are tested for their performance in distilling knowledge from the Shufflenet_v2_x1.0 model. The results show that the model discrimination performance after distillation is the best when the Distillation Loss ratio is 0.8 and the MGD method is used. This setup effectively improves the discrimination performance without increasing the number of parameters and computation volume. The model's P, R and F1 values reach 0.9208, 0.9190 and 0.9192, respectively. It achieves precise discrimination of the fermentation degree of black tea. This meets the requirements of objective black tea fermentation judgment and provides technical support for the intelligent processing of black tea.


Asunto(s)
Fermentación , Redes Neurales de la Computación , , Té/química , Destilación/métodos , Camellia sinensis/química , China
10.
Food Res Int ; 194: 114930, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232541

RESUMEN

Ripened pu-erh tea is known to have beneficial hypoglycemic properties. However, it remains unclear whether the bioactive peptides produced during fermentation are also related to hypoglycemic potential. This study aimed to identify hypoglycemic peptides in ripened pu-erh tea and to elucidate their bioactive mechanisms using physicochemical property prediction, molecular docking, molecular dynamics simulations, and cell experiments. Thirteen peptides were identified by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Among them, AADTDYRFS (AS-9) and AGDGTPYVR (AR-9) exhibited high α-glucosidase inhibitory activity, with half-maximal inhibitory concentration (IC50) values of 0.820 and 3.942 mg/mL, respectively. Molecular docking and dynamics simulations revealed that hydrogen bonding, hydrophobic interactions, and van der Waals forces assist peptides AS-9 and AR-9 in forming stable and tight complexes with α-glucosidase. An insulin-resistance (IR)-HepG2 cell model was established. AS-9 was non-toxic to IR-HepG2 cells and significantly increased the glucose consumption capacity, hexokinase, and pyruvate kinase activities of IR-HepG2 cells (p < 0.05). AS-9 alleviated glucose metabolism disorders and ameliorated IR by activating the IRS-1/PI3K/Akt signaling pathway and increasing the expression levels of MDM2, IRS-1, Akt, PI3K, GLUT4, and GSK3ß genes. In addition, no hemolysis of mice red blood cells red blood cells occurred at concentrations below 1 mg/mL. This work first explored hypoglycemic peptides in ripened pu-erh tea, providing novel insights for enhancing its functional value.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Péptidos , , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Animales , Té/química , Humanos , Células Hep G2 , Péptidos/química , Péptidos/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Ratones , Simulación de Dinámica Molecular , Resistencia a la Insulina , Transducción de Señal/efectos de los fármacos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Espectrometría de Masas en Tándem , alfa-Glucosidasas/metabolismo , Fermentación
11.
Nutrients ; 16(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125353

RESUMEN

Cardiovascular diseases (CVDs) are one of the main causes of mortality and morbidity worldwide. A healthy diet rich in plant-derived compounds such as (poly)phenols appears to have a key role in improving cardiovascular health. Flavan-3-ols represent a subclass of (poly)phenols of great interest for their possible health benefits. In this review, we summarized the results of clinical studies on vascular outcomes of flavan-3-ol supplementation and we focused on the role of the microbiota in CVD. Clinical trials included in this review showed that supplementation with flavan-3-ols mostly derived from cocoa products significantly reduces blood pressure and improves endothelial function. Studies on catechins from green tea demonstrated better results when involving healthy individuals. From a mechanistic point of view, emerging evidence suggests that microbial metabolites may play a role in the observed effects. Their function extends beyond the previous belief of ROS scavenging activity and encompasses a direct impact on gene expression and protein function. Although flavan-3-ols appear to have effects on cardiovascular health, further studies are needed to clarify and confirm these potential benefits and the rising evidence of the potential involvement of the microbiota.


Asunto(s)
Enfermedades Cardiovasculares , Flavonoides , Humanos , Flavonoides/farmacología , Enfermedades Cardiovasculares/prevención & control , Cacao/química , Té/química , Suplementos Dietéticos , Presión Sanguínea/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos
12.
Sci Rep ; 14(1): 18285, 2024 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112650

RESUMEN

The objective of this study was to investigate the change in mineral composition depending on tea variety, tea concentration, and steeping time. Four different tea varieties, black Ceylon (BC), black Turkish (BT), green Ceylon (GC), and green Turkish (GT), were used to produce teas at concentrations of 1, 2, and 3%, respectively. These teas were produced using 7 different steeping times: 2, 5, 10, 20, 30, 45, and 60 min. It was also aimed to optimize the regression equations utilizing these factors to identify parameters conducive to maximizing Zn, K, Cu, Mg, Ca, Na, and Fe levels; minimizing Al content, and maintaining Mn level at 5.3 mg/L. The optimal conditions for achieving a Mn content of 5.3 mg/L in black Turkish tea entailed steeping at a concentration of 1.94% for 11.4 min. Variations in K and Mg levels across teas were inconsistent with those observed for other minerals, whereas variations in Al, Cu, Fe, Mn, Na, and Zn levels exhibited a close relationship. Overall, mineral levels in tea can be predicted through regression analysis, and by mathematically optimizing the resultant equations, the requisite conditions for tea production can be determined to achieve maximum, minimum, or target mineral values.


Asunto(s)
Minerales , Redes Neurales de la Computación , , Té/química , Minerales/análisis , Análisis de Regresión , Camellia sinensis/química
13.
Int J Biol Macromol ; 277(Pt 2): 134331, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089538

RESUMEN

Dietary management and interventions are crucial in the clinical management of diabetes. Numerous active dietary components in black tea have demonstrated positive effects on blood glucose levels and metabolic functions. However, limited research has explored the potential of theaflavins (TF), polyphenols in black tea, for diabetes management. In this study, high-purity TF was administered to Goto-Kakizaki (GK) diabetic model rats for four weeks to investigate its impact on diabetic pathology and analyze the underlying mechanisms through liver transcriptomics, hepatocyte metabolomics, and gut microbiome analysis. The findings indicated that continuous administration of TF (100 mg/kg) significantly suppressed blood glucose levels, reduced insulin resistance, and decreased the expression of oxidative stress indicators and inflammatory factors in GK rats. Further analysis revealed that TF might alleviate insulin resistance by improving hepatic glycogen conversion and reducing hepatic lipid deposition through modulation of key pathways, such as peroxisome proliferator-activated receptors and PI3K/AKT/GSK-3 pathways within the liver, thereby ameliorating diabetic symptoms. Additionally, TF intake facilitated the restoration of the intestinal microbial community structure by reducing the abundance of harmful bacteria and increasing the abundance of beneficial bacteria. It also reduced endotoxin lipopolysaccharide production, thereby lowering the chances of insulin resistance development and enhancing its efficacy in regulating blood glucose levels. These findings offer a novel perspective on the potential of black tea and its active constituents to prevent and treat diabetes and other metabolic disorders, providing valuable references for identifying and applying active dietary components from tea.


Asunto(s)
Biflavonoides , Catequina , Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Biflavonoides/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Catequina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Resistencia a la Insulina , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Receptor de Insulina/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Té/química , Estrés Oxidativo/efectos de los fármacos
14.
BMC Vet Res ; 20(1): 374, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175036

RESUMEN

BACKGROUND: Feline Herpesvirus type-1 (FHV-1) is a worldwide spread pathogen responsible for viral rhinotracheitis and conjunctivitis in cats that, in the most severe cases, can lead to death. Despite the availability of a variety of antiviral medications to treat this illness, mainly characterized by virostatic drugs that alter DNA replication, their use is often debated. Phytotherapeutic treatments are a little-explored field for FHV-1 infections and reactivations. In this scenario, natural compounds could provide several advantages, such as reduced side effects, less resistance and low toxicity. The purpose of this study was to explore the potential inhibitory effects of the green tea extract (GTE), consisting of 50% of polyphenols, on FHV-1 infection and reactive oxygen species (ROS) production. RESULTS: Crandell-Reese feline kidney (CRFK) cells were treated with different doses of GTE (10-400 µg/mL) during the viral adsorption and throughout the following 24 h. The MTT and TCID50 assays were performed to determine the cytotoxicity and the EC50 of the extract, determining the amounts of GTE used for the subsequent investigations. The western blot assay showed a drastic reduction in the expression of viral glycoproteins (i.e., gB and gI) after GTE treatment. GTE induced not only a suppression in viral proliferation but also in the phosphorylation of Akt protein, generally involved in viral entry. Moreover, the increase in cell proliferation observed in infected cells upon GTE addition was supported by enhanced expression of Bcl-2 and Bcl-xL anti-apoptotic proteins. Finally, GTE antioxidant activity was evaluated by dichloro-dihydro-fluorescein diacetate (DCFH-DA) and total antioxidant capacity (TAC) assays. The ROS burst observed during FHV-1 infection was mitigated after GTE treatment, leading to a reduction in the oxidative imbalance. CONCLUSIONS: Although further clinical trials are necessary, this study demonstrated that the GTE could potentially serve as natural inhibitor of FHV-1 proliferation, by reducing viral entry. Moreover, it is plausible that the extract could inhibit apoptosis by modulating the intrinsic pathway, thus affecting ROS production.


Asunto(s)
Antivirales , Infecciones por Herpesviridae , Extractos Vegetales , Especies Reactivas de Oxígeno , Varicellovirus , Replicación Viral , Animales , Gatos , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Varicellovirus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Infecciones por Herpesviridae/tratamiento farmacológico , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Antivirales/farmacología , Línea Celular , Té/química , Enfermedades de los Gatos/tratamiento farmacológico , Enfermedades de los Gatos/virología , Camellia sinensis/química
15.
Arch Oral Biol ; 167: 106063, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39128436

RESUMEN

OBJECTIVE: Epigallocatechin-3-gallate (EGCG), a catechin abundant in green tea, exhibits antibacterial activity. In this study, the antimicrobial effects of EGCG on periodontal disease-associated bacteria (Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, Fusobacterium nucleatum, and Fusobacterium periodontium) were evaluated and compared with its effects on Streptococcus mutans, a caries-associated bacterium. RESULTS: Treatment with 2 mg/ml EGCG for 4 h killed all periodontal disease-associated bacteria, whereas it only reduced the viable count of S. mutans by about 40 %. Regarding growth, the periodontal disease-associated bacteria were more susceptible to EGCG than S. mutans, based on the growth inhibition ring test. As for metabolism, the 50 % inhibitory concentration (IC50) of EGCG for bacterial metabolic activity was lower for periodontal disease-associated bacteria (0.32-0.65 mg/ml) than for S. mutans (1.14 mg/ml). Furthermore, these IC50 values were negatively correlated with the growth inhibition ring (r = -0.73 to -0.86). EGCG induced bacterial aggregation at the following concentrations: P. gingivalis (>0.125 mg/ml), F. periodonticum (>0.5 mg/ml), F. nucleatum (>1 mg/ml), and P. nigrescens (>2 mg/ml). S. mutans aggregated at an EGCG concentration of > 1 mg/ml. CONCLUSION: EGCG may help to prevent periodontal disease by killing bacteria, inhibiting bacterial growth by suppressing bacterial metabolic activity, and removing bacteria through aggregation.


Asunto(s)
Catequina , Fusobacterium nucleatum , Enfermedades Periodontales , Porphyromonas gingivalis , Prevotella intermedia , Streptococcus mutans , , Catequina/farmacología , Catequina/análogos & derivados , Té/química , Streptococcus mutans/efectos de los fármacos , Enfermedades Periodontales/microbiología , Enfermedades Periodontales/tratamiento farmacológico , Porphyromonas gingivalis/efectos de los fármacos , Fusobacterium nucleatum/efectos de los fármacos , Prevotella intermedia/efectos de los fármacos , Fusobacterium/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Prevotella nigrescens/efectos de los fármacos , Humanos
16.
Respir Res ; 25(1): 311, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154188

RESUMEN

BACKGROUND: Tea polyphenols (TPs), prominent constituents of green tea, possess remarkable antioxidant and anti-inflammatory properties. However, their therapeutic potential is limited due to low absorption and poor bioavailability. To address this limitation and enhance their efficacy, we developed a biomimetic nanoplatform by coating platelet membrane (PM) onto poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) to create targeted delivery vehicles for TPs (PM@TP/NPs) to the inflamed tissues in asthma. METHODS: After synthesizing and characterizing PM@TP/NPs, we assessed their biocompatibility and biosafety through cell viability assays, hemolysis tests, and inflammation analysis in vivo and in vitro. The therapeutic effect of PM@TP/NPs on asthma was then evaluated using a mouse model of HDM-induced asthma. Additionally, PM@TP/NPs-mediated reactive oxygen species (ROS) scavenging capacity, as well as the activation of signaling pathways, were analyzed in HBE cells and asthmatic mice via flow cytometry, RT-qPCR, and western blotting. RESULTS: Compared with free TPs, PM@TP/NPs demonstrated excellent biocompatibility and safety profiles in both in vitro and in vivo, as well as enhanced retention in inflamed lungs. In HDM-induced mouse asthma model, inhaled PM@TP/NPs largely attenuated lung inflammation and reduced the secretion of type 2 pro-inflammatory cytokines in the lungs compared to free TPs. The therapeutic effects of PM@TP/NPs on asthma might be associated with an enhanced ROS scavenging capacity, increased activation of the Nrf2/HO-1 pathway, and decreased activation of the CCL2/MAPK and TLR4/NF-κB pathway in the lungs. CONCLUSIONS: Our findings demonstrate that inhalation of PM@TP/NPs largely attenuated lung inflammation in HDM-induced asthmatic mice. These results suggest that PM@TP/NPs might be a novel therapeutic strategy for asthma.


Asunto(s)
Asma , Plaquetas , Nanopartículas , Polifenoles , , Animales , Ratones , Polifenoles/administración & dosificación , Polifenoles/farmacología , Asma/tratamiento farmacológico , Asma/metabolismo , Nanopartículas/administración & dosificación , Té/química , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Administración por Inhalación , Humanos , Ratones Endogámicos BALB C , Femenino , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología
17.
Food Res Int ; 193: 114867, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39160050

RESUMEN

The flavor stability of tea beverages during storage has long been a concern. The study aimed to explore the flavor stability of Longjing green tea beverage using accelerated heat treatment trials, addressing the shortage of lengthy storage trials. Sensory evaluations revealed changes in bitterness, umami, overall harmonization, astringency, and ripeness as treatment duration increased. Accompanied by a decrease in L-values, ΔE and an increase in a and b-values. Seventeen non-volatile metabolites and three volatile metabolites were identified differential among samples by metabolomics, with subsequent correlation analysis indicating associations between sensory attributes and specific metabolites. Umami was linked to epigallocatechin 3,5-digallate and alpha-D-glucopyranose, astringency was correlated with ellagic acid and 1-ethyl-1H-pyrrole. Ripeness showed associations with ellagic acid, 6,7-dihydroxycoumarin, heptanal, and benzaldehyde, and overall harmonization was linked to 6,7-dihydroxycoumarin, ß-myrcene, α-terpineol, and heptanal. A series of verification tests confirmed the feasibility of accelerated heat treatment trials to replace traditional storage trials. These results offer valuable insights into unraveling the complex relationship between sensory and chemical profiles of green tea beverages.


Asunto(s)
Calor , Metabolómica , Gusto , , Té/química , Humanos , Compuestos Orgánicos Volátiles/análisis , Manipulación de Alimentos/métodos , Masculino , Almacenamiento de Alimentos/métodos , Adulto , Ácido Elágico/análisis , Femenino
18.
J Agric Food Chem ; 72(32): 17695-17705, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101581

RESUMEN

Following 25 years of polyphenol research in our laboratory, the astonishing chemical and metabolic reactivity of polyphenols resulting in considerable chemical diversity has emerged as the most remarkable attribute of this class of natural products. To illustrate this concept, we will present selected data from black tea and coffee chemistry. In black tea chemistry, enzymatic fermentation converts six catechin derivatives into an estimated 30 000 different polyphenolic compounds via a process we have termed the oxidative cascade process. In coffee roasting, around 45 chlorogenic acids are converted into an estimated 250 novel derivatives following a series of diverse chemical transformations. Following ingestion by humans, these dietary polyphenols, whether genuine secondary metabolites or food processing products, encounter the microorganisms of the gut microbiota, converting them into a myriad of novel structures. In the case of coffee, only two out of 250 chlorogenic acids are absorbed intact, with most others being subject to gut microbial metabolism. Modern mass spectrometry (MS) has been key in unravelling the true complexity of polyphenols subjected to food processing and metabolism. We will accompany this assay with a short overview on analytical strategies developed, including ultrahigh-resolution MS, tandem MS, multivariate statistics, and molecular networking that allow an insight into the fascinating chemical processes surrounding dietary polyphenols. Finally, experimental results studying biological activity of polyphenols will be presented and discussed, highlighting a general promiscuity of this class of compounds associated with nonselective protein binding leading to loss of enzymatic function, another noteworthy general property of many dietary polyphenols frequently overlooked.


Asunto(s)
Manipulación de Alimentos , Polifenoles , Polifenoles/metabolismo , Polifenoles/química , Humanos , Manipulación de Alimentos/métodos , Café/química , Café/metabolismo , Té/química , Té/metabolismo , Espectrometría de Masas/métodos , Camellia sinensis/química , Camellia sinensis/metabolismo , Animales , Microbioma Gastrointestinal , Fermentación
19.
Environ Sci Technol ; 58(33): 14786-14796, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39106076

RESUMEN

In this study, we measured 15 common organophosphate flame retardants (OPFRs) in six categories of tea samples across China. OPFRs were found in all the tea samples, with the total concentrations of OPFRs (∑OPFRs) at 3.44-432 ng/g [geometric mean (GM): 17.6 ng/g]. Triphenyl phosphate (TPhP) was the dominant OPFR, accounting for 39.0-76.2% of ∑OPFRs across all tea categories. The potential factors influencing the residual OPFRs in tea were thoroughly examined, including the agricultural environment, fermentation, and packaging of teas. Tea packaging materials (TPMs) were then identified as the primary sources of OPFRs in teas. The migration test revealed that OPFRs with lower molecular weights and log Kow values exhibited a higher propensity for facilitating the migration of OPFRs from TPMs to teas. The estimated daily intakes of OPFRs from teas were relatively higher for the general populations in Mauritania, Gambia, Togo, Morocco, and Senegal (3.18-9.79 ng/kg bw/day) than China (3.12 ng/kg bw/day). The health risks arising from OPFRs in Chinese teas were minor. This study established a baseline concentration and demonstrated the contamination sources of OPFRs in Chinese tea for the first time, with an emphasis on enhancing the hygiene standards for TPMs.


Asunto(s)
Retardadores de Llama , Organofosfatos , , Retardadores de Llama/análisis , Té/química , China , Medición de Riesgo , Embalaje de Alimentos , Humanos , Contaminación de Alimentos
20.
J Nanobiotechnology ; 22(1): 471, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118143

RESUMEN

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease, while there is a lack of pharmaceutical interventions to halt AAA progression presently. To address the multifaceted pathology of AAA, this work develops a novel multifunctional gene delivery system to simultaneously deliver two siRNAs targeting MMP-2 and MMP-9. The system (TPNs-siRNA), formed through the oxidative polymerization and self-assembly of epigallocatechin gallate (EGCG), efficiently encapsulates siRNAs during self-assembly. TPNs-siRNA safeguards siRNAs from biological degradation, facilitates intracellular siRNA transfection, promotes lysosomal escape, and releases siRNAs to silence MMP-2 and MMP-9. Additionally, TPNs, serving as a multi-bioactive material, mitigates oxidative stress and inflammation, fosters M1-to-M2 repolarization of macrophages, and inhibits cell calcification and apoptosis. In experiments with AAA mice, TPNs-siRNA accumulated and persisted in aneurysmal tissue after intravenous delivery, demonstrating that TPNs-siRNA can be significantly distributed in macrophages and VSMCs relevant to AAA pathogenesis. Leveraging the carrier's intrinsic multi-bioactive properties, the targeted siRNA delivery by TPNs exhibits a synergistic effect for enhanced AAA therapy. Furthermore, TPNs-siRNA is gradually metabolized and excreted from the body, resulting in excellent biocompatibility. Consequently, TPNs emerges as a promising multi-bioactive nanotherapy and a targeted delivery nanocarrier for effective AAA therapy.


Asunto(s)
Aneurisma de la Aorta Abdominal , Metaloproteinasa 9 de la Matriz , Ratones Endogámicos C57BL , Nanopartículas , ARN Interferente Pequeño , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Animales , Ratones , Nanopartículas/química , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Polifenoles/química , Polifenoles/farmacología , Catequina/análogos & derivados , Catequina/química , Catequina/farmacología , Té/química , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Humanos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Técnicas de Transferencia de Gen , Estrés Oxidativo/efectos de los fármacos , Células RAW 264.7 , Apoptosis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA