Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.022
Filtrar
1.
Mikrochim Acta ; 191(7): 383, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861005

RESUMEN

A competitive-type photoelectrochemical (PEC) aptasensor coupled with a novel Au@Cd:SnO2/SnS2 nanocomposite was designed for the detection of 17ß-estradiol (E2) in microfluidic devices. The designed Au@Cd:SnO2/SnS2 nanocomposites exhibit high photoelectrochemical activity owing to the good matching of cascade band-edge and the efficient separation of photo-generated e-/h+ pairs derived from the Cd-doped defects in the energy level. The Au@Cd:SnO2/SnS2 nanocomposites were loaded into carbon paste electrodes (CPEs) to immobilize complementary DNA (cDNA) and estradiol aptamer probe DNA (E2-Apt), forming a double-strand DNA structure on the CPE surface. As the target E2 interacts with the double-strand DNA, E2-Apt is sensitively released from the CPE, subsequently increasing the photocurrent intensity due to the reduced steric hindrance of the electrode surface. The competitive-type sensing mechanism, combined with high PEC activity of the Au@Cd:SnO2/SnS2 nanocomposites, contributed to the rapid and sensitive detection of E2 in a "signal on" manner. Under the optimized conditions, the PEC aptasensor exhibited a linear range from 1.0 × 10-13 mol L-1 to 3.2 × 10-6 mol L-1 and a detection limit of 1.2 × 10-14 mol L-1 (S/N = 3). Moreover, the integration of microfluidic device with smartphone controlled portable electrochemical workstation enables the on-site detection of E2. The small sample volume (10 µL) and short analysis time (40 min) demonstrated the great potential of this strategy for E2 detection in rat serum and river water. With these advantages, the PEC aptasensor can be utilized for point-of-care testing (POCT) in both clinical and environmental applications.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Estradiol , Oro , Límite de Detección , Nanocompuestos , Sulfuros , Compuestos de Estaño , Compuestos de Estaño/química , Aptámeros de Nucleótidos/química , Nanocompuestos/química , Oro/química , Estradiol/análisis , Estradiol/sangre , Estradiol/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Sulfuros/química , Cadmio/química , Cadmio/análisis , Procesos Fotoquímicos , Dispositivos Laboratorio en un Chip
2.
Mikrochim Acta ; 191(7): 364, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831034

RESUMEN

CdIn2S4 and zinc tetrakis(4-carboxyphenyl)porphyrin (ZnTCPP) were synthesized by hydrothermal method, and an organic dye-sensitized inorganic semiconductor ZnTCPP/CdIn2S4 type II heterojunction was constructed on a fluorine-doped tin oxide (FTO) substrate electrode. A sandwich immunostructure for signal-attenuation photoelectrochemical (PEC) detection of cardiac troponin I (cTnI) was constructed using the ZnTCPP/CdIn2S4/FTO photoanode and a horseradish peroxidase (HRP)-ZnFe2O4-Ab2-bovine serum albumin (BSA) immunolabeling complex. The bioenzyme HRP and the HRP-like nanozyme ZnFe2O4 can co-catalyze the oxidation of 4-chloro-1-naphthol (4-CN) by H2O2 to produce an insoluble precipitate on the photoanode, thus notably reducing the anodic photocurrent for quantitative determination of cTnI. Under the optimal conditions, the photocurrent at 0 V vs. SCE in 0.1 M phosphate buffer solution (pH 7.40) containing 0.1 M ascorbic acid was linear with the logarithm of cTnI concentration from 500 fg mL-1 to 50.0 ng mL-1, and the limit of detection (LOD, S/N = 3) is 0.15 pg mL-1. Spiked recoveries were 95.1% ~ 104% for assay of cTnI in human serum samples.


Asunto(s)
Técnicas Electroquímicas , Límite de Detección , Compuestos de Estaño , Troponina I , Troponina I/sangre , Humanos , Técnicas Electroquímicas/métodos , Inmunoensayo/métodos , Compuestos de Estaño/química , Catálisis , Peroxidasa de Rábano Silvestre/química , Naftoles/química , Metaloporfirinas/química , Electrodos , Peróxido de Hidrógeno/química , Albúmina Sérica Bovina/química , Procesos Fotoquímicos , Animales , Técnicas Biosensibles/métodos , Semiconductores , Bovinos , Sulfuros/química , Porfirinas/química
3.
Molecules ; 29(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930990

RESUMEN

This article reports a simple hydrothermal method for synthesizing nickel disulfide (NiS2) on the surface of fluorine-doped tin oxide (FTO) glass, followed by the deposition of 5 nm Au nanoparticles on the electrode surface by physical vapor deposition. This process ensures the uniform distribution of Au nanoparticles on the NiS2 surface to enhance its conductivity. Finally, an Au@NiS2-FTO electrochemical biosensor is obtained for the detection of dopamine (DA). The composite material is characterized using transmission electron microscopy (TEM), UV-Vis spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The electrochemical properties of the sensor are investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and time current curves in a 0.1 M PBS solution (pH = 7.3). In the detection of DA, Au@NiS2-FTO exhibits a wide linear detection range (0.1~1000 µM), low detection limit (1 nM), and fast response time (0.1 s). After the addition of interfering substances, such as glucose, L-ascorbic acid, uric acid, CaCl2, NaCl, and KCl, the electrode potential remains relatively unchanged, demonstrating its strong anti-interference capability. It also demonstrates strong sensitivity and reproducibility. The obtained Au@NiS2-FTO provides a simple and easy-to-operate example for constructing nanometer catalysts with enzyme-like properties. These results provide a promising method utilizing Au coating to enhance the conductivity of transition metal sulfides.


Asunto(s)
Técnicas Biosensibles , Dopamina , Técnicas Electroquímicas , Oro , Nanopartículas del Metal , Níquel , Dopamina/análisis , Dopamina/química , Oro/química , Níquel/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Electrodos , Compuestos de Estaño/química , Límite de Detección , Reproducibilidad de los Resultados , Flúor/química
4.
Environ Res ; 256: 119202, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38782343

RESUMEN

A rational design of heterojunctions with high-quality contacts is essential for efficiently separating photogenerated charge carries and boosting the solar-driven harvesting capability. Herein, we fabricated a novel heterojunction of SnO2 quantum dots-anchored CdS-CdCO3 with g-C3N4 nanosheets as a superior photocatalyst. SnO2 quantum dots (SQDs) with positively charged surfaces were tightly anchored on the negatively charged surface of CdS nanosheets (NSs). The resulting CdS@SnO2 was finally decorated with g-C3N4 NSs, and a new crystalline phase of CdS-CdCO3 was formed during the hydrothermal decoration process, g-C3N4 decorated CdS-CdCO3@SnO2 (CdS-CdCO3@SnO2@g-C3N4). The as-synthesized photocatalysts were evaluated for the degradation of methyl orange dye under solar light conditions. The CdS-CdCO3@SnO2@g-C3N4 exhibited 7.7-fold and 2.3-fold enhancements in photocatalytic activities in comparison to those of the bare CdS and CdS@SnO2 NSs, respectively. The optimal performance of CdS-CdCO3@SnO2@g-C3N4 is primarily attributed to the cascade-type conduction band alignments between 2D/0D/2D heterojunctions, which can harvest maximum solar light and effectively separate photoexcited charge carriers. This work provides a new inspiration for the rational design of 2D/0D/2D heterojunction photocatalyst for green energy generation and environmental remediation applications.


Asunto(s)
Compuestos de Cadmio , Nanocompuestos , Puntos Cuánticos , Compuestos de Estaño , Puntos Cuánticos/química , Compuestos de Cadmio/química , Compuestos de Estaño/química , Nanocompuestos/química , Catálisis , Sulfuros/química , Luz Solar , Procesos Fotoquímicos , Grafito/química , Compuestos Azo/química , Nitrilos/química , Compuestos de Nitrógeno/química
5.
Environ Res ; 256: 119184, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38782344

RESUMEN

The remarkable application of tin oxide in various domains is indebted to its photoelectronic merits. However, significant efforts to discover its photocatalytic potential were restricted through arduous challenges, which were the amelioration of light-harvesting and -utilizing. In fact, the uncommon light absorption energy has drawn veil over the brilliance of astounding oxidation potential, which is much more than that of TiO2. Herein, our attention was focused on the taking advantages of self-template structure for simultaneously enjoying the two sides of photoelectronic justification as well as the S-step system for eminent charge dissociation. In this regard, the optimized Cu-modified SnO2 yolk-shell ((5)YS-CuSnO) spheres were engineered through the copper modulation into glycerate-assisted metal-organic structure. As a result, the exceptional light-harvesting was achieved through desirable defects and oxygen vacancy resulted from Cu-doping, and also efficient light-utilization was obtained by the multi-scattering/reflection effect resulted from multi-shell configuration. After the effectual incorporation (40 wt⁒) of (5)YS-CuSnO was encapsulated into the V2O5-decorated wrinkled g-C3N4 lamella (VO-WCN), the dual S-step VO-WCN@(5)YS-CuSnO introduced unprecedented levofloxacin (LFC) decontamination performance, which was kinetically 5.2 and 30.2-times greater than of the (5)YS-CuSnO and bare SnO2 yolk-shell. The conspicuous fulfillment of nanocomposite was manifested in the LFC mineralization, pharmaceutical effluent treatment within 360 min, and successive cycling reactions. The fusion of the extraordinary architecture of YS-CuSnO with S-Step system not only initiates the facile and practical photocatalytic exploitation, but shade light on some undeveloped side of tin oxide.


Asunto(s)
Antibacterianos , Cobre , Fotólisis , Compuestos de Estaño , Compuestos de Estaño/química , Cobre/química , Antibacterianos/química , Compuestos de Nitrógeno/química , Grafito
6.
ACS Sens ; 9(6): 3178-3186, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38778734

RESUMEN

Large emissions of nitrogen dioxide (NO2) pose a significant threat to human health, Monitoring its content and implementing timely measures are crucial. Utilizing oxide semiconductors, such as tin dioxide (SnO2), has proven to be an effective way to detect and analyze NO2. The design and preparation of sensing materials with high sensitivity and excellent selectivity is the key to improve the detection efficiency. SnO2 nanopowders with small and uniform particle size, large specific surface area, adjustable defect content, and no impurities were prepared by a new plasma spraying method. The SnO2 nanopowders exhibit outstanding performance in detecting NO2 at a low temperature of 100 °C, the response to 5 ppm of NO2 reaches 48, and the material demonstrates rapid response and recovery times, coupled with excellent selectivity. The exceptional gas-sensitive properties can be attributed to the superior morphology and structure of SnO2. It provides more reaction sites for gas sensitive reactions, fast electron transport, a large number of charge carriers, and improved adsorption of the material to the target gas. This study provides valuable insights into nanomaterial preparation and the enhancement of gas-sensitive properties for SnO2.


Asunto(s)
Dióxido de Nitrógeno , Compuestos de Estaño , Compuestos de Estaño/química , Dióxido de Nitrógeno/química , Dióxido de Nitrógeno/análisis , Gases/química , Tamaño de la Partícula
7.
Analyst ; 149(13): 3596-3606, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38767610

RESUMEN

Real-time and non-invasive assessment of tissue health is crucial for maximizing the potential of microphysiological systems (MPS) for drug-induced nephrotoxicity screening. Although impedance has been widely considered as a measure of the barrier function, it has not been incorporated to detect cell detachment in MPS with top and bottom microfluidic channels separated by a porous membrane. During cell delamination from the porous membrane, the resistance between both channels decreases, while capacitance increases, allowing the detection of such detachment. Previously reported concepts have solely attributed the decrease in the resistance to the distortion of the barrier function, ignoring the resistance and capacitance changes due to cell detachment. Here, we report a two-channel MPS with integrated indium tin oxide (ITO) electrodes capable of measuring impedance in real time. The trans-epithelial electrical resistance (TEER) and tissue reactance (capacitance) were extracted from the impedance profiles. We attributed the anomalous initial increase observed in TEER, upon cisplatin administration, to the distortion of tight junctions. Cell detachment was captured by sudden jumps in capacitance. TEER profiles illuminated the effects of cisplatin and cimetidine treatments in a dose-dependent and polarity-dependent manner. The correspondence between TEER and barrier function was validated for a continuous tissue using the capacitance profiles. These results demonstrate that capacitance can be used as a real-time and non-invasive indicator of confluence and will support the accuracy of the drug-induced cytotoxicity assessed by TEER profiles in the two-channel MPS for the barrier function of a cell monolayer.


Asunto(s)
Cisplatino , Impedancia Eléctrica , Túbulos Renales Proximales , Cisplatino/toxicidad , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/patología , Animales , Compuestos de Estaño/química , Compuestos de Estaño/toxicidad , Cinética , Cimetidina/farmacología , Adhesión Celular/efectos de los fármacos , Electrodos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Línea Celular , Humanos , Uniones Estrechas/efectos de los fármacos
8.
ACS Sens ; 9(5): 2653-2661, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38710540

RESUMEN

Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO2 films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO2 films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm2 V-1 s-1. Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO2. The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO2 films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.


Asunto(s)
Hidrógeno , Compuestos de Estaño , Compuestos de Estaño/química , Hidrógeno/química , Hidrógeno/análisis , Propiedades de Superficie , Gases/análisis , Gases/química , Nanoestructuras/química , Semiconductores
9.
Anal Bioanal Chem ; 416(16): 3775-3783, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38702449

RESUMEN

Oblique incidence reflectance difference (OIRD) is an emerging technique enabling real-time and label-free detection of bio-affinity binding events on microarrays. The interfacial architecture of the microarray chip is critical to the performance of OIRD detection. In this work, a sensitive label-free OIRD microarray chip was developed by using gold nanoparticle-decorated fluorine-doped tin oxide (AuNPs-FTO) slides as a chip substrate. This AuNPs-FTO chip demonstrates a higher signal-to-noise ratio and improved sensitivity compared to that built on FTO glass, showing a detection limit of as low as 10 ng mL-1 for the model target, HRP-conjugated streptavidin. On-chip ELISA experiments and optical calculations suggest that the enhanced performance is not only due to the higher probe density enabling a high capture efficiency toward the target, but most importantly, the AuNP layer arouses optical interference to improve the intrinsic sensitivity of OIRD. This work provides an effective strategy for constructing OIRD-based microarray chips with enhanced sensitivity, and may help extend their practical applications in various fields.


Asunto(s)
Flúor , Oro , Límite de Detección , Nanopartículas del Metal , Compuestos de Estaño , Compuestos de Estaño/química , Oro/química , Nanopartículas del Metal/química , Flúor/química , Análisis por Micromatrices/métodos , Ensayo de Inmunoadsorción Enzimática/métodos
10.
Food Chem ; 452: 139537, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728891

RESUMEN

The chlortetracycline (CTC) residue in food poses a threat to human health. Therefore, developing sensitive, convenient and selective analytical methods for CTC detection is crucial. This study innovatively uses tin disulfide/bimetallic organic framework (SnS2/ZnCo-MOF) nanocomposites in conjunction with gold nanoparticles (AuNPs) to co-modify a glassy carbon electrode (GCE). Further, a molecularly imprinted polymer (MIP)-based electrochemical sensing platform Au-MIP/SnS2/ZnCo-MOF/Au/GCE (AZG) was fabricated for selective CTC detection. SnS2/ZnCo-MOF enhanced the stability and surface area of the AZG sensor. The presence of AuNPs facilitated electron transport between the probe and the electrode across the insulating MIP layer. The fixation of AuNPs and MIP via electropolymerization enhanced the selective recognition of this sensor and amplified its output signal. The AZG sensor demonstrated a wide linear detection range (0.1-100 µM), low detection limit (0.072 nM), and high sensitivity (0.830 µA µM-1). It has been used for detecting CTC in animal-origin food with good recovery (96.08%-104.60%).


Asunto(s)
Clortetraciclina , Técnicas Electroquímicas , Contaminación de Alimentos , Oro , Nanopartículas del Metal , Impresión Molecular , Oro/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Contaminación de Alimentos/análisis , Animales , Clortetraciclina/análisis , Estructuras Metalorgánicas/química , Compuestos de Estaño/química , Límite de Detección , Sulfuros/química , Antibacterianos/análisis , Polímeros Impresos Molecularmente/química , Zinc/análisis , Zinc/química
11.
J Chromatogr A ; 1727: 464971, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38761700

RESUMEN

Molecularly imprinted ionic covalent organic framework nanocomposites (MI-IC-COF@SnO2) were prepared as potential adsorbents for the enhanced adsorption of nonsteroidal anti-inflammatory drugs (NSAIDs) from aqueous solution. The resulting material exhibited a pompon mum-like structure, featuring a large surface area, and well-defined mesopores. The presence of uniform positive ions within the three-dimensional skeleton of MI-IC-COF@SnO2 facilitated a rapid adsorption rate and high adsorption capacity for target analytes. Thermodynamic fitting revealed the adsorption process of NSAIDs to be feasible, endothermic, and spontaneous. Additionally, the adsorbent material exhibited respectable selectivity, as evidenced by imprinting factor values ranging from 2.8 to 6.7. Utilizing MI-IC-COF@SnO2 as the sorbent, a solid-phase extraction method coupled with high-performance liquid chromatography-ultraviolet detection (SPE-HPLC-UV) was developed and optimized. The proposed method demonstrated good linear range with determination coefficients of 0.998-0.999, and low limit of detection (0.18-1.35 µg L-1). Recoveries of NSAIDs in urine and river water samples were 78.1 %-106.1 %, with relative standard deviations lower than 12.5 %. This rapid and sensitive method enables the determination of NSAIDs at trace levels in complex matrices, providing reliable and reproducible results.


Asunto(s)
Antiinflamatorios no Esteroideos , Límite de Detección , Estructuras Metalorgánicas , Nanocompuestos , Extracción en Fase Sólida , Contaminantes Químicos del Agua , Antiinflamatorios no Esteroideos/orina , Antiinflamatorios no Esteroideos/análisis , Antiinflamatorios no Esteroideos/aislamiento & purificación , Antiinflamatorios no Esteroideos/química , Extracción en Fase Sólida/métodos , Nanocompuestos/química , Cromatografía Líquida de Alta Presión/métodos , Adsorción , Estructuras Metalorgánicas/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Impresión Molecular , Compuestos de Estaño/química , Humanos
12.
Talanta ; 276: 126272, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38776780

RESUMEN

The development of photoelectrochemical (PEC) biosensors plays a critical role in enabling timely intervention and personalized treatment for cardiac injury. Herein, a novel approach is presented for the fabrication of highly sensitive PEC biosensor employing Bi2O3/MgIn2S4 heterojunction for the ultrasensitive detection of heart fatty acid binding protein (H-FABP). The Bi2O3/MgIn2S4 heterojunction, synthesized through in-situ growth of MgIn2S4 on Bi2O3 nanoplates, offers superior attributes including a larger specific surface area and more homogeneous distribution, leading to enhanced sensing sensitivity. The well-matched valence and conduction bands of Bi2O3 and MgIn2S4 effectively suppress the recombination of photogenerated carriers and facilitate electron transfer, resulting in a significantly improved photocurrent signal response. And the presence of the secondary antibody marker (ZnSnO3) introduces steric hindrance that hinders electron transfer between ascorbic acid and the photoelectrode, leading to a reduction in photocurrent signal. Additionally, the competition between the ZnSnO3 marker and the Bi2O3/MgIn2S4 heterojunction material for the excitation light source further diminishes the photocurrent signal response. After rigorous repeatability and selectivity tests, the PEC biosensor exhibited excellent performance, and the linear detection range of the biosensor was determined to be 0.05 pg/mL to 100 ng/mL with a remarkable detection limit of 0.029 pg/mL (S/N = 3).


Asunto(s)
Técnicas Biosensibles , Bismuto , Técnicas Electroquímicas , Técnicas Biosensibles/métodos , Bismuto/química , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Procesos Fotoquímicos , Sulfuros/química , Límite de Detección , Proteínas de Unión a Ácidos Grasos/análisis , Indio/química , Compuestos de Zinc/química , Compuestos de Estaño/química
13.
Talanta ; 276: 126201, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718653

RESUMEN

Oblique-incidence reflectivity difference (OIRD) is a dielectric constant-sensitive technique and exhibits intriguing applications in label-free and high-throughput detection of protein microarrays. With the outstanding advantage of being compatible with arbitrary substrates, however, the effect of the substrate, particularly its dielectric constant on the OIRD sensitivity has not been fully disclosed. In this paper, for the first time we investigated the dependence of OIRD sensitivity on the dielectric constant of the substrate under top-incident OIRD configuration by combining theoretical modeling and experimental evaluation. Optical modeling suggested that the higher dielectric constant substrate exhibits a higher intrinsic sensitivity. Experimentally, three substrates including glass, fluorine-doped tin oxide (FTO) and silicon (Si) with different dielectric constants were selected as microarray substrates and their detection performances were evaluated. In good agreement with the modeling, high dielectric constant Si-based microarray exhibited the highest sensitivity among three chips, reaching a detection limit of as low as 5 ng mL-1 with streptavidin as the model target. Quantification of captured targets on three chips with on-chip enzyme-linked immunosorbent assay (ELISA) further confirmed that the enhanced performance originates from the high dielectric constant enhanced intrinsic OIRD sensitivity. This work thus provides a new way to OIRD-based label-free microarrays with improved sensitivity.


Asunto(s)
Análisis por Matrices de Proteínas , Silicio , Compuestos de Estaño , Análisis por Matrices de Proteínas/métodos , Silicio/química , Compuestos de Estaño/química , Vidrio/química , Límite de Detección , Ensayo de Inmunoadsorción Enzimática/métodos , Flúor/química , Estreptavidina/química
14.
ACS Biomater Sci Eng ; 10(6): 3775-3791, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38722625

RESUMEN

This study investigates the electrochemical behavior of GelMA-based hydrogels and their interactions with PC12 neural cells under electrical stimulation in the presence of conducting substrates. Focusing on indium tin oxide (ITO), platinum, and gold mylar substrates supporting conductive scaffolds composed of hydrogel, graphene oxide, and gold nanorods, we explored how the substrate materials affect scaffold conductivity and cell viability. We examined the impact of an optimized electrical stimulation protocol on the PC12 cell viability. According to our findings, substrate selection significantly influences conductive hydrogel behavior, affecting cell viability and proliferation as a result. In particular, the ITO substrates were found to provide the best support for cell viability with an average of at least three times higher metabolic activity compared to platinum and gold mylar substrates over a 7 day stimulation period. The study offers new insights into substrate selection as a platform for neural cell stimulation and underscores the critical role of substrate materials in optimizing the efficacy of neural interfaces for biomedical applications. In addition to extending existing work, this study provides a robust platform for future explorations aimed at tailoring the full potential of tissue-engineered neural interfaces.


Asunto(s)
Supervivencia Celular , Hidrogeles , Neuronas , Compuestos de Estaño , Ingeniería de Tejidos , Andamios del Tejido , Animales , Ingeniería de Tejidos/métodos , Células PC12 , Ratas , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Hidrogeles/química , Andamios del Tejido/química , Neuronas/fisiología , Neuronas/citología , Oro/química , Oro/farmacología , Grafito/química , Grafito/farmacología , Platino (Metal)/química , Estimulación Eléctrica , Nanotubos/química , Proliferación Celular
15.
Chemosphere ; 359: 142343, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754491

RESUMEN

The current research highlights the fabrication of a novel SnS2/CO32-@Ni-Co LDH (SnS2/NCL) by precipitating Ni-Co LDH over hydrothermally synthesized SnS2 nanoparticles for the enhanced degradation of thiamethoxam (THM) insecticide through the advanced oxidation process. The effect of several reaction parameters was optimized, and a maximum degradation of 98.1 ± 1.2 % with a rate constant of 0.0541 min-1 of 10 ppm THM was reached at a catalyst loading of 0.16 gL-1 using 0.3 mM of H2O2 within 70 min of visible light irradiation. The effect of metal cations, inorganic anions, dissolved organic matter, organic compounds and water samples on the photodegradation performance of SnS2/NCL nanocomposite was also examined to evaluate the prepared photocatalyst's suitability for use in actual wastewater conditions. The metal cations blocked the active sites of the photocatalyst and reduced the degradation efficiency except for Fe2+ ions, since it is a Fenton reagent and increased the production of hydroxyl radicals. Inorganic anions are the scavengers of hydroxyl radicals and hinder photocatalytic activity. Meanwhile, lake water containing varying degrees of co-existing ions shows the lowest degradation efficiency among other water samples. The SnS2/NCL nanocomposite could be reused for five cycles while maintaining a photocatalytic efficiency of 83.6 ± 0.3 % in the fifth run. The prepared SnS2/NCL nanocomposite also showed excellent photodegradation of several other emerging organic pollutants with an efficiency of over 80 % under optimum conditions. Incorporating Ni-Co LDH with SnS2 helped to delocalize photoinduced charges, leading to increased photocatalytic activity and a slower electron-hole recombination rate. The present research highlights the photocatalytic activity of SnS2/NCL photocatalysts for the photocatalytic degradation of emerging contaminants from wastewater.


Asunto(s)
Insecticidas , Fotólisis , Tiametoxam , Compuestos de Estaño , Contaminantes Químicos del Agua , Catálisis , Tiametoxam/química , Insecticidas/química , Contaminantes Químicos del Agua/química , Compuestos de Estaño/química , Sulfuros/química , Oxidación-Reducción , Nanocompuestos/química , Níquel/química , Cobalto/química , Aguas Residuales/química , Luz , Peróxido de Hidrógeno/química
16.
Biochem Biophys Res Commun ; 720: 150131, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38763124

RESUMEN

Drug-resistant bacterial infections cause significant harm to public life, health, and property. Biofilm is characterized by overexpression of glutathione (GSH), hypoxia, and slight acidity, which is one of the main factors for the formation of bacterial resistance. Traditional antibiotic therapy gradually loses its efficacy against multi-drug-resistant (MDR) bacteria. Therefore, synergistic therapy, which regulates the biofilm microenvironment, is a promising strategy. A multifunctional nanoplatform, SnFe2O4-PBA/Ce6@ZIF-8 (SBC@ZIF-8), in which tin ferrite (SnFe2O4, denoted as SFO) as the core, loaded with 3-aminobenzeneboronic acid (PBA) and dihydroporphyrin e6 (Ce6), and finally coated with zeolite imidazole salt skeleton 8 (ZIF-8). The platform has a synergistic photothermal therapy (PTT)/photodynamic therapy (PDT) effect, which can effectively remove overexpressed GSH by glutathione peroxidase-like activity, reduce the antioxidant capacity of biofilm, and enhance PDT. The platform had excellent photothermal performance (photothermal conversion efficiency was 55.7 %) and photothermal stability. The inhibition rate of two MDR bacteria was more than 96 %, and the biofilm clearance rate was more than 90 % (150 µg/mL). In the animal model of MDR S. aureus infected wound, after 100 µL SBC@ZIF-8+NIR (150 µg/mL) treatment, the wound area of mice was reduced by 95 % and nearly healed. The serum biochemical indexes and H&E staining results were within the normal range, indicating that the platform could promote wound healing and had good biosafety. In this study, we designed and synthesized multifunctional nanoplatforms with good anti-drug-resistant bacteria effect and elucidated the molecular mechanism of its anti-drug-resistant bacteria. It lays a foundation for clinical application in treating wound infection and promoting wound healing.


Asunto(s)
Antibacterianos , Estructuras Metalorgánicas , Fotoquimioterapia , Antibacterianos/farmacología , Antibacterianos/química , Fotoquimioterapia/métodos , Animales , Ratones , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Biopelículas/efectos de los fármacos , Terapia Fototérmica , Staphylococcus aureus/efectos de los fármacos , Nanopartículas/química , Pruebas de Sensibilidad Microbiana , Compuestos Férricos/química , Compuestos Férricos/farmacología , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Zeolitas/química , Zeolitas/farmacología
17.
Biosens Bioelectron ; 259: 116385, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38759310

RESUMEN

Cell-substrate interaction plays a critical role in determining the mechanical status of living cell membrane. Changes of substrate surface properties can significantly alter the cell mechanical microenvironment, leading to mechanical changes of cell membrane. However, it is still difficult to accurately quantify the influence of the substrate surface properties on the mechanical status of living cell membrane without damage. This study addresses the challenge by using an electrochemical sensor made from an ultrasmall quartz nanopipette. With the tip diameter less than 100 nm, the nanopipette-based sensor achieves highly sensitive, noninvasive and label-free monitoring of the mechanical status of single living cells by collecting stable cyclic membrane oscillatory signals from continuous current versus time traces. The electrochemical signals collected from PC12 cells cultured on three different substrates (bare ITO (indium tin oxides) glass, hydroxyl modified ITO glass, amino modified ITO glass) indicate that the microenvironment more favorable for cell adhesion can increase the membrane stiffness. This work provides a label-free electrochemical approach to accurately quantify the mechanical status of single living cells in real-time, which may help to better understand the relationship between the cell membrane and the extra cellular matrix.


Asunto(s)
Técnicas Biosensibles , Membrana Celular , Técnicas Electroquímicas , Compuestos de Estaño , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Animales , Ratas , Células PC12 , Compuestos de Estaño/química , Técnicas Electroquímicas/métodos , Membrana Celular/química , Adhesión Celular , Vibración , Propiedades de Superficie , Diseño de Equipo
18.
Anal Chem ; 96(23): 9653-9658, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38807045

RESUMEN

PdPt nanosheets decorated on SnS2 nanosheets (i.e., PdPt@SnS2 NSs) were fabricated for a novel electrochemiluminescence (ECL) biosensor for ultrasensitive detection of miRNA-21 based on catalytic hairpin assembly (CHA) cycles. The PdPt@SnS2 NSs serve as both the main luminophore and a highly effective coreaction accelerator in the ECL biosensor. In the CHA cycles, more miRNA-21 is captured, and the performance of the ECL biosensor is improved. When miRNA-21 is present, the hairpin chain DNA1 (i.e., H1) is opened, and the ferrocene (Fc)-modified hairpin chain DNA2 (i.e., Fc-H2) hybridizes with as-opened H1 by replacing miRNA-21 to stimulate CHA cycles of miRNA-21. During the CHA cycles, Fc-H2 quenches the ECL signal to monitor miRNA-21. As a result, the ECL biosensor shows ultrasensitive and highly selective detection of miRNA-21 from 1 aM to 1 nM with a detection limit (LOD) of 0.02 aM. In addition, the ECL biosensor exhibits excellent practicality for miRNA-21 detection in human serum samples.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Mediciones Luminiscentes , MicroARNs , Paladio , Platino (Metal) , Platino (Metal)/química , Humanos , MicroARNs/sangre , MicroARNs/análisis , Técnicas Biosensibles/métodos , Paladio/química , Límite de Detección , Compuestos de Estaño/química , Sulfuros/química , Nanoestructuras/química
19.
Nanoscale ; 16(22): 10675-10681, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38768320

RESUMEN

The incorporation of artificial intelligence into agriculture presents challenges, particularly due to hardware limitations, especially in sensors. Currently, pest detection relies heavily on manual scouting by humans. Therefore, the objective of this study is to create a chemoresistive sensor that enables early identification of the characteristic volatile compound, viz., methyl jasmonate, released during pest infestations. Given the lower reactivity of esters, we have fine-tuned a composite consisting of SnO2 nanoparticles and 2D-MXene sheets to enhance adsorption and selective oxidation, resulting in heightened sensitivity. The optimized composite demonstrated a notable response even at concentrations as low as 120 ppb, successfully confirming pest infestations in tomato crops.


Asunto(s)
Acetatos , Ciclopentanos , Oxilipinas , Compuestos de Estaño , Ciclopentanos/química , Oxilipinas/metabolismo , Oxilipinas/química , Compuestos de Estaño/química , Acetatos/química , Animales , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Insectos , Estrés Fisiológico/efectos de los fármacos
20.
Nanotechnology ; 35(28)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38574484

RESUMEN

Nitrogen dioxide (NO2) is a major pollutant that poses significant risks to sustainable human life. As a result, a growing focus has been placed on the development of highly selective and sensitive gas sensors for NO2. Traditional cutting-edge non-organic NO2gas detectors often necessitate stringent production conditions and potentially harmful materials, which are not environmentally friendly, and these shortcomings have limited their widespread practical use. To overcome these challenges, we synthesized self-assembled peptide nanotubes (SPNTs) through a molecular self-assembly process. The SPNTs were then combined with SnO2in varying proportions to construct NO2gas sensors. The design of this sensor ensured efficient electron transfer and leverage the extensive surface area of the SPNTs for enhanced gas adsorption and the effective dispersion of SnO2nanoparticles. Notably, the performance of the sensor, including its sensitivity, response time, and recovery rate, along with a lower detection threshold, could be finely tuned by varying the SPNTs content. This approach illustrated the potential of bioinspired methodologies, using peptide self-assemblies, to develop integrated sensors for pollutant detection, providing a significant development in environmentally conscious sensor technology.


Asunto(s)
Nanocompuestos , Nanotubos de Péptidos , Dióxido de Nitrógeno , Compuestos de Estaño , Compuestos de Estaño/química , Dióxido de Nitrógeno/análisis , Nanotubos de Péptidos/química , Nanocompuestos/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...