Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.780
Filtrar
1.
BMC Microbiol ; 24(1): 384, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354342

RESUMEN

Balanced bacterial metabolism is essential for cell homeostasis and growth and can be impacted by various stress factors. In particular, bacteria exposed to metals, including the nanoparticle form, can significantly alter their metabolic processes. It is known that the extensive and intensive use of food and feed supplements, including zinc, in human and animal nutrition alters the intestinal microbiota and this may negatively impact the health of the host. This study examines the effects of zinc (zinc oxide and zinc oxide nanoparticles) on key metabolic pathways of Escherichia coli. Transcriptomic and proteomic analyses along with quantification of intermediates of tricarboxylic acid (TCA) were employed to monitor and study the bacterial responses. Multi-omics analysis revealed that extended zinc exposure induced mainly oxidative stress and elevated expression/production of enzymes of carbohydrate metabolism, especially enzymes for synthesis of trehalose. After the zinc withdrawal, E. coli metabolism returned to a baseline state. These findings shed light on the alteration of TCA and on importance of trehalose synthesis in metal-induced stress and its broader implications for bacterial metabolism and defense and consequently for the balance and health of the human and animal microbiome.


Asunto(s)
Ciclo del Ácido Cítrico , Escherichia coli , Trehalosa , Zinc , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Trehalosa/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Zinc/metabolismo , Estrés Oxidativo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Óxido de Zinc/metabolismo , Óxido de Zinc/farmacología , Proteómica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Adaptación Fisiológica , Transcriptoma , Perfilación de la Expresión Génica , Redes y Vías Metabólicas/efectos de los fármacos
3.
Cell Mol Life Sci ; 81(1): 396, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261338

RESUMEN

High dietary sugar (HDS), a contemporary dietary concern due to excessive intake of added sugars and carbohydrates, escalates the risk of metabolic disorders and concomitant cancers. However, the molecular mechanisms underlying HDS-induced cancer progression are not completely understood. We found that phosphoenolpyruvate carboxykinase 1 (PEPCK1), a pivotal enzyme in gluconeogenesis, is paradoxically upregulated in tumors by HDS, but not by normal dietary sugar (NDS), during tumor progression. Targeted knockdown of pepck1, but not pepck2, specifically in tumor tissue in Drosophila in vivo, not only attenuates HDS-induced tumor growth but also significantly improves the survival of Ras/Src tumor-bearing animals fed HDS. Interestingly, HP1a-mediated heterochromatin interacts directly with the pepck1 gene and downregulates pepck1 gene expression in wild-type Drosophila. Mechanistically, we demonstrated that, under HDS conditions, pepck1 knockdown reduces both wingless and TOR signaling, decreases evasion of apoptosis, reduces genome instability, and suppresses glucose uptake and trehalose levels in tumor cells in vivo. Moreover, rational pharmacological inhibition of PEPCK1, using hydrazinium sulfate, greatly improves the survival of tumor-bearing animals with pepck1 knockdown under HDS. This study is the first to show that elevated levels of dietary sugar induce aberrant upregulation of PEPCK1, which promotes tumor progression through altered cell signaling, evasion of apoptosis, genome instability, and reprogramming of carbohydrate metabolism. These findings contribute to our understanding of the complex relationship between diet and cancer at the molecular, cellular, and organismal levels and reveal PEPCK1 as a potential target for the prevention and treatment of cancers associated with metabolic disorders.


Asunto(s)
Progresión de la Enfermedad , Proteínas de Drosophila , Regulación hacia Arriba , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Humanos , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Apoptosis/genética , Transducción de Señal , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Glucosa/metabolismo , Inestabilidad Genómica , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Línea Celular Tumoral , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Regulación Neoplásica de la Expresión Génica , Trehalosa/metabolismo , Carbohidratos de la Dieta/efectos adversos , Drosophila/metabolismo
4.
Protein Sci ; 33(10): e5166, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39291929

RESUMEN

Mycobacterial membrane protein Large 3 (MmpL3) of Mycobacterium tuberculosis (Mtb) is crucial for the translocation of trehalose monomycolate (TMM) across the inner bacterial cell membrane, making it a promising target for anti-tuberculosis (TB) drug development. While several structural, microbiological, and in vitro studies have provided significant insights, the precise mechanisms underlying TMM transport by MmpL3 and its inhibition remain incompletely understood at the atomic level. In this study, molecular dynamic (MD) simulations for the apo form and seven inhibitor-bound forms of Mtb MmpL3 were carried out to obtain a thorough comprehension of the protein's dynamics and function. MD simulations revealed that the seven inhibitors in this work stably bind to the central channel of the transmembrane domain and primarily forming hydrogen bonds with ASP251, ASP640, or both residues. Through dynamical cross-correlation matrix and principal component analysis analyses, several types of coupled motions between different domains were observed in the apo state, and distinct conformational states were identified using Markov state model analysis. These coupled motions and varied conformational states likely contribute to the transport of TMM. However, simulations of inhibitor-bound MmpL3 showed an enlargement of the proton channel, potentially disrupting coupled motions. This indicates that inhibitors may impair MmpL3's transport function by directly blocking the proton channel, thereby hindering coordinated domain movements and indirectly affecting TMM translocation.


Asunto(s)
Proteínas Bacterianas , Simulación de Dinámica Molecular , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Trehalosa/química , Trehalosa/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Unión Proteica , Factores Cordón
5.
Elife ; 122024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324403

RESUMEN

Many cells in high glucose repress mitochondrial respiration, as observed in the Crabtree and Warburg effects. Our understanding of biochemical constraints for mitochondrial activation is limited. Using a Saccharomyces cerevisiae screen, we identified the conserved deubiquitinase Ubp3 (Usp10), as necessary for mitochondrial repression. Ubp3 mutants have increased mitochondrial activity despite abundant glucose, along with decreased glycolytic enzymes, and a rewired glucose metabolic network with increased trehalose production. Utilizing ∆ubp3 cells, along with orthogonal approaches, we establish that the high glycolytic flux in glucose continuously consumes free Pi. This restricts mitochondrial access to inorganic phosphate (Pi), and prevents mitochondrial activation. Contrastingly, rewired glucose metabolism with enhanced trehalose production and reduced GAPDH (as in ∆ubp3 cells) restores Pi. This collectively results in increased mitochondrial Pi and derepression, while restricting mitochondrial Pi transport prevents activation. We therefore suggest that glycolytic flux-dependent intracellular Pi budgeting is a key constraint for mitochondrial repression.


Asunto(s)
Glucosa , Mitocondrias , Fosfatos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Glucosa/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fosfatos/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Glucólisis , Trehalosa/metabolismo , Endopeptidasas
6.
Cells ; 13(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39329727

RESUMEN

We investigated whether the elimination of two major enzymes responsible for triacylglycerol synthesis altered the structure and physical state of organelle membranes under mild heat shock conditions in the fission yeast, Schizosaccharomyces pombe. Our study revealed that key intracellular membrane structures, lipid droplets, vacuoles, the mitochondrial network, and the cortical endoplasmic reticulum were all affected in mutant fission yeast cells under mild heat shock but not under normal growth conditions. We also obtained direct evidence that triacylglycerol-deficient cells were less capable than wild-type cells of adjusting their membrane physical properties during thermal stress. The production of thermoprotective molecules, such as HSP16 and trehalose, was reduced in the mutant strain. These findings suggest that an intact system of triacylglycerol metabolism significantly contributes to membrane protection during heat stress.


Asunto(s)
Respuesta al Choque Térmico , Schizosaccharomyces , Triglicéridos , Schizosaccharomyces/metabolismo , Triglicéridos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Trehalosa/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo
7.
Sci Transl Med ; 16(766): eadk8446, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321267

RESUMEN

Activation of extracellular matrix-producing hepatic stellate cells (HSCs) is a key event in liver fibrogenesis. We showed that the expression of the heme-thiolate monooxygenase cytochrome P450 1B1 (CYP1B1) was elevated in human and mouse fibrotic livers and activated HSCs. Systemic or HSC-specific ablation and pharmacological inhibition of CYP1B1 attenuated HSC activation and protected male but not female mice from thioacetamide (TAA)-, carbon tetrachloride (CCl4)-, or bile duct ligation (BDL)-induced liver fibrosis. Metabolomic analysis revealed an increase in the disaccharide trehalose in CYP1B1-deficient HSCs resulting from intestinal suppression of the trehalose-metabolizing enzyme trehalase, whose gene we found to be a target of RARα. Trehalose or its hydrolysis-resistant derivative lactotrehalose exhibited potent antifibrotic activity in vitro and in vivo by functioning as an HSC-specific autophagy inhibitor, which may account for the antifibrotic effect of CYP1B1 inhibition. Our study thus reveals an endobiotic function of CYP1B1 in liver fibrosis in males, mediated by liver-intestine cross-talk and trehalose. At the translational level, pharmacological inhibition of CYP1B1 or the use of trehalose/lactotrehalose may represent therapeutic strategies for liver fibrosis.


Asunto(s)
Citocromo P-450 CYP1B1 , Células Estrelladas Hepáticas , Cirrosis Hepática , Trehalosa , Animales , Femenino , Humanos , Masculino , Ratones , Autofagia/efectos de los fármacos , Citocromo P-450 CYP1B1/metabolismo , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/patología , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Trehalosa/farmacología , Trehalosa/análogos & derivados , Trehalosa/metabolismo , Trehalosa/uso terapéutico
8.
Int J Biol Macromol ; 279(Pt 4): 135518, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39260634

RESUMEN

Trehalose-6-phosphate synthase (TPS) genes play an active role in the trehalose metabolism pathway that regulates the responses of plants to diverse stresses. However, the functional identification, comparison, and conservatism of TPS genes in the responses of woody plants, especially poplars, to drought stress remain unclear. Here, the trehalose content of 84K (Populus alba × P. glandulosa) poplars was down-regulated and PagTPS and PagTPP genes had diverse response patterns under drought stress. Physicochemical properties, expression patterns, and functions of PagTPS1 and PagTPS10, two class I members of TPS gene family, were identified and compared. Transgenic 84K poplars overexpressing PagTPS1 and PagTPS10 had significantly higher trehalose content with approximately 138% and 123%, respectively, and stronger drought tolerance compared to WT. PagTPS1 and PagTPS10 promoted the expression of TPPA genes and drought-responsive genes. Accordingly, poplars inhibiting PagTPS1 and PagTPS10 expression via RNA interference had lower trehalose content and drought tolerance. Simultaneously, overexpressing PagTPS1 and PagTPS10 improved the trehalose content and drought tolerance of Arabidopsis. Overall, we proposed a model of the effects of PagTPS1 and PagTPS10 as conservative regulators on the responses of plants to drought, which would provide new insights into the functional explorations of TPS genes in plants.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas , Plantas Modificadas Genéticamente , Estrés Fisiológico , Trehalosa , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Trehalosa/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/genética , Arabidopsis/genética , Populus/genética , Populus/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adaptación Fisiológica/genética , Resistencia a la Sequía
9.
Sci Adv ; 10(34): eadq0294, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39167637

RESUMEN

Real-time tracking of intracellular carbohydrates remains challenging. While click chemistry allows bio-orthogonal tagging with fluorescent probes, the reaction permanently alters the target molecule and only allows a single snapshot. Here, we demonstrate click-free mid-infrared photothermal (MIP) imaging of azide-tagged carbohydrates in live cells. Leveraging the micromolar detection sensitivity for 6-azido-trehalose (TreAz) and the 300-nm spatial resolution of MIP imaging, the trehalose recycling pathway in single mycobacteria, from cytoplasmic uptake to membrane localization, is directly visualized. A peak shift of azide in MIP spectrum further uncovers interactions between TreAz and intracellular protein. MIP mapping of unreacted azide after click reaction reveals click chemistry heterogeneity within a bacterium. Broader applications of azido photothermal probes to visualize the initial steps of the Leloir pathway in yeasts and the newly synthesized glycans in mammalian cells are demonstrated.


Asunto(s)
Azidas , Química Clic , Azidas/química , Química Clic/métodos , Humanos , Trehalosa/metabolismo , Trehalosa/química , Carbohidratos/química , Colorantes Fluorescentes/química , Transporte Biológico
10.
Curr Biol ; 34(18): 4160-4169.e7, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39168123

RESUMEN

Salinization poses an increasing problem worldwide, threatening freshwater organisms and raising questions about their ability to adapt. We explored the mechanisms enabling a planktonic crustacean to tolerate elevated salinity. By gradually raising water salinity in clonal cultures from 185 Daphnia magna populations, we showed that salt tolerance strongly correlates with native habitat salinity, indicating local adaptation. A genome-wide association study (GWAS) further revealed a major effect of the Alpha,alpha-trehalose-phosphate synthase (TPS) gene, suggesting that trehalose production facilitates salinity tolerance. Salinity-tolerant animals showed a positive correlation between water salinity and trehalose concentrations, while intolerant animals failed to produce trehalose. Animals with a non-functional TPS gene, generated through CRISPR-Cas9, supported the trehalose role in salinity stress. Our study highlights how a keystone freshwater animal adapts to salinity stress using an evolutionary mechanism known in bacteria, plants, and arthropods.


Asunto(s)
Daphnia , Agua Dulce , Trehalosa , Animales , Trehalosa/metabolismo , Daphnia/fisiología , Daphnia/genética , Tolerancia a la Sal/genética , Salinidad , Estudio de Asociación del Genoma Completo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Estrés Salino
11.
New Phytol ; 244(3): 900-913, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39187924

RESUMEN

The phytohormone strigolactone (SL) inhibits shoot branching, whereas the signalling metabolite trehalose 6-phosphate (Tre6P) promotes branching. How Tre6P and SL signalling may interact and which molecular mechanisms might be involved remains largely unknown. Transcript profiling of Arabidopsis SL mutants revealed a cluster of differentially expressed genes highly enriched in the Tre6P pathway compared with wild-type (WT) plants or brc1 mutants. Tre6P-related genes were also differentially expressed in axillary buds of garden pea (Pisum sativum) SL mutants. Tre6P levels were elevated in the SL signalling mutant more axillary (max) growth 2 compared with other SL mutants or WT plants indicating a role of MAX2-dependent SL signalling in regulating Tre6P levels. A transgenic approach to increase Tre6P levels demonstrated that all SL mutant lines and brc1 flowered earlier, showing all of these mutants were responsive to Tre6P. Elevated Tre6P led to increased branching in WT plants but not in max2 and max4 mutants, indicating some dependency between the SL pathway and Tre6P regulation of shoot branching. By contrast, elevated Tre6P led to an enhanced branching phenotype in brc1 mutants indicating independence between BRC1 and Tre6P. A model is proposed whereby SL signalling represses branching via Tre6P and independently of the BRC1 pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Lactonas , Mutación , Brotes de la Planta , Transducción de Señal , Fosfatos de Azúcar , Trehalosa , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/genética , Lactonas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosfatos de Azúcar/metabolismo , Mutación/genética , Trehalosa/análogos & derivados , Trehalosa/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Pisum sativum/genética , Pisum sativum/crecimiento & desarrollo , Pisum sativum/metabolismo , Pisum sativum/efectos de los fármacos , Plantas Modificadas Genéticamente , Compuestos Heterocíclicos con 3 Anillos
12.
BMC Plant Biol ; 24(1): 783, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152388

RESUMEN

BACKGROUND: Chromium (Cr) toxicity significantly threatens agricultural ecosystems worldwide, adversely affecting plant growth and development and reducing crop productivity. Trehalose, a non-reducing sugar has been identified as a mitigator of toxic effects induced by abiotic stressors such as drought, salinity, and heavy metals. The primary objective of this study was to investigate the influence of exogenously applied trehalose on maize plants exposed to Cr stress. RESULTS: Two maize varieties, FH-1046 and FH-1453, were subjected to two different Cr concentrations (0.3 mM, and 0.5 mM). The results revealed significant variations in growth and biochemical parameters for both maize varieties under Cr-induced stress conditions as compared to the control group. Foliar application of trehalose at a concentration of 30 mM was administered to both maize varieties, leading to a noteworthy reduction in the detrimental effects of Cr stress. Notably, the Cr (0.5 mM) stress more adversely affected the shoot length more than 0.3mM of Cr stress. Cr stress (0.5 mM) significantly reduced the shoot length by 12.4% in FH-1046 and 24.5% in FH-1453 while Trehalose increased shoot length by 30.19% and 4.75% in FH-1046 and FH-1453 respectively. Cr stress significantly constrained growth and biochemical processes, whereas trehalose notably improved plant growth by reducing Cr uptake and minimizing oxidative stress caused by Cr. This reduction in oxidative stress was evidenced by decreased production of proline, SOD, POD, MDA, H2O2, catalase, and APX. Trehalose also enhanced photosynthetic activities under Cr stress, as indicated by increased values of chlorophyll a, b, and carotenoids. Furthermore, the ameliorative potential of trehalose was demonstrated by increased contents of proteins and carbohydrates and a decrease in Cr uptake. CONCLUSIONS: The study demonstrates that trehalose application substantially improved growth and enhanced photosynthetic activities in both maize varieties. Trehalose (30 mM) significantly increased the plant biomass, reduced ROS production and enhanced resilience to Cr stress even at 0.5 mM.


Asunto(s)
Cromo , Estrés Fisiológico , Trehalosa , Zea mays , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Zea mays/fisiología , Zea mays/metabolismo , Trehalosa/metabolismo , Estrés Fisiológico/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Clorofila/metabolismo , Antioxidantes/metabolismo
13.
J Agric Food Chem ; 72(32): 18234-18246, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39087623

RESUMEN

Escherichia coli Nissle 1917 (EcN) is one of the most widely used probiotics to treat gastrointestinal diseases. Recently, many studies have engineered EcN to release therapeutic proteins to treat specific diseases. However, because EcN exhibits intestinal metabolic activities, it is difficult to predict outcomes after administration. In silico and fermentation profiles revealed mucin metabolism of EcN. Multiomics revealed that fucose metabolism contributes to the intestinal colonization of EcN by enhancing the synthesis of flagella and nutrient uptake. The multiomics results also revealed that excessive intracellular trehalose synthesis in EcN, which is responsible for galactose metabolism, acts as a metabolic bottleneck, adversely affecting growth. To improve the ability of EcN to metabolize galactose, otsAB genes for trehalose synthesis were deleted, resulting in the ΔotsAB strain; the ΔotsAB strain exhibited a 1.47-fold increase in the growth rate and a 1.37-fold increase in the substrate consumption rate relative to wild-type EcN.


Asunto(s)
Escherichia coli , Intestinos , Ingeniería Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Intestinos/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Probióticos/metabolismo , Galactosa/metabolismo , Fermentación , Trehalosa/metabolismo , Humanos , Fucosa/metabolismo
14.
J Agric Food Chem ; 72(33): 18649-18657, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39109746

RESUMEN

Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose to trehalose, playing a vital role in trehalose production. Understanding the catalytic mechanism of TreS is crucial for optimizing the enzyme activity and enhancing its suitability for industrial applications. Here, we report the crystal structures of both the wild type and the E324D mutant of Deinococcus radiodurans trehalose synthase in complex with the trehalose analogue, validoxylamine A. By employing structure-guided mutagenesis, we identified N253, E320, and E324 as crucial residues within the +1 subsite for isomerase activity. Based on these complex structures, we propose the catalytic mechanism underlying the reversible interconversion of maltose to trehalose. These findings significantly advance our comprehension of the reaction mechanism of TreS.


Asunto(s)
Proteínas Bacterianas , Deinococcus , Glucosiltransferasas , Maltosa , Trehalosa , Glucosiltransferasas/genética , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Deinococcus/enzimología , Deinococcus/genética , Deinococcus/química , Trehalosa/metabolismo , Trehalosa/química , Maltosa/metabolismo , Maltosa/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mutación
15.
Molecules ; 29(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124891

RESUMEN

Desert strains of the genus Chroococcidiopsis are among the most desiccation-resistant cyanobacteria capable of anhydrobiosis. The accumulation of two sugars, sucrose and trehalose, facilitates the entrance of anhydrobiotes into a reversible state of dormancy by stabilizing cellular components upon water removal. This study aimed to evaluate, at the atomistic level, the role of trehalose in desiccation resistance by using as a model system the 30S ribosomal subunit of the desert cyanobacterium Chroococcidiopsis sp. 029. Molecular dynamic simulations provided atomistic evidence regarding its protective role on the 30S molecular structure. Trehalose forms an enveloping shell around the ribosomal subunit and stabilizes the structures through a network of direct interactions. The simulation confirmed that trehalose actively interacts with the 30S ribosomal subunit and that, by replacing water molecules, it ensures ribosomal structural integrity during desiccation, thus enabling protein synthesis to be carried out upon rehydration.


Asunto(s)
Cianobacterias , Simulación de Dinámica Molecular , Trehalosa , Trehalosa/metabolismo , Trehalosa/química , Cianobacterias/metabolismo , Cianobacterias/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química , Desecación , Modelos Moleculares
16.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125965

RESUMEN

Tardigrades are unique among animals in their resistance to dehydration, mainly due to anhydrobiosis and tun formation. They are also very resistant to high-energy radiation, low and high temperatures, low and high pressure, and various chemical agents, Interestingly, they are resistant to ionizing radiation both in the hydrated and dehydrated states to a similar extent. They are able to survive in the cosmic space. Apparently, many mechanisms contribute to the resistance of tardigrades to harmful factors, including the presence of trehalose (though not common to all tardigrades), heat shock proteins, late embryogenesis-abundant proteins, tardigrade-unique proteins, DNA repair proteins, proteins directly protecting DNA (Dsup and TDR1), and efficient antioxidant system. Antioxidant enzymes and small-molecular-weight antioxidants are an important element in the tardigrade resistance. The levels and activities of many antioxidant proteins is elevated by anhydrobiosis and UV radiation; one explanation for their induction during dehydration is provided by the theory of "preparation for oxidative stress", which occurs during rehydration. Genes coding for some antioxidant proteins are expanded in tardigrades; some genes (especially those coding for catalases) were hypothesized to be of bacterial origin, acquired by horizontal gene transfer. An interesting antioxidant protein found in tardigrades is the new Mn-dependent peroxidase.


Asunto(s)
Antioxidantes , Tardigrada , Animales , Tardigrada/metabolismo , Tardigrada/genética , Antioxidantes/metabolismo , Estrés Oxidativo , Planeta Tierra , Trehalosa/metabolismo
17.
Food Chem ; 460(Pt 2): 140607, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39068804

RESUMEN

The high temperature induces conformational changes in ß-glucosidase, making it inactive and limiting its application field. In this paper, the effect of trehalose on the thermostability of ß-glucosidase from low-moisture Hevea brasiliensis seeds was investigated. The results showed that the residual enzyme activities of ß-glucosidase supplemented with trehalose after high-temperature treatment were significantly higher than that of the control group. The improvement of thermostability could be explained by low-field nuclear magnetic resonance (LF-NMR) and molecular dynamics (MD) simulations at the molecular level. Moreover, adding trehalose increased the water activity and water content of ß-glucosidase, leading to a more stable conformation. Trehalose replaced some water and formed a stable network of hydrogen bonds with protein and surrounding water. The glass formed by trehalose also reduced molecular movement, thus providing good protection for enzymes.


Asunto(s)
Estabilidad de Enzimas , Simulación de Dinámica Molecular , Trehalosa , Agua , beta-Glucosidasa , Trehalosa/química , Trehalosa/metabolismo , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo , Agua/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Calor , Semillas/química , Semillas/enzimología , Enlace de Hidrógeno
18.
Plant J ; 119(5): 2349-2362, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981025

RESUMEN

Mangroves grow in tropical/subtropical intertidal habitats with extremely high salt tolerance. Trehalose and trehalose-6-phosphate (T6P) have an alleviating function against abiotic stress. However, the roles of trehalose in the salt tolerance of salt-secreting mangrove Avicennia marina is not documented. Here, we found that trehalose was significantly accumulated in A. marina under salt treatment. Furthermore, exogenous trehalose can enhance salt tolerance by promoting the Na+ efflux from leaf salt gland and root to reduce the Na+ content in root and leaf. Subsequently, eighteen trehalose-6-phosphate synthase (AmTPS) and 11 trehalose-6-phosphate phosphatase (AmTPP) genes were identified from A. marina genome. Abscisic acid (ABA) responsive elements were predicted in AmTPS and AmTPP promoters by cis-acting elements analysis. We further identified AmTPS9A, as an important positive regulator, that increased the salt tolerance of AmTPS9A-overexpressing Arabidopsis thaliana by altering the expressions of ion transport genes and mediating Na+ efflux from the roots of transgenic A. thaliana under NaCl treatments. In addition, we also found that ABA could promote the accumulation of trehalose, and the application of exogenous trehalose significantly promoted the biosynthesis of ABA in both roots and leaves of A. marina. Ultimately, we confirmed that AmABF2 directly binds to the AmTPS9A promoter in vitro and in vivo. Taken together, we speculated that there was a positive feedback loop between trehalose and ABA in regulating the salt tolerance of A. marina. These findings provide new understanding to the salt tolerance of A. marina in adapting to high saline environment at trehalose and ABA aspects.


Asunto(s)
Ácido Abscísico , Avicennia , Regulación de la Expresión Génica de las Plantas , Tolerancia a la Sal , Sodio , Trehalosa , Trehalosa/metabolismo , Tolerancia a la Sal/genética , Ácido Abscísico/metabolismo , Avicennia/fisiología , Avicennia/genética , Sodio/metabolismo , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología
19.
Proc Natl Acad Sci U S A ; 121(32): e2314087121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39083421

RESUMEN

Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement toward the catalytic pocket by the N terminus upon ligand binding and identifies residues required for substrate binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved among Cryptococcal species and closely related basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.


Asunto(s)
Antifúngicos , Cryptococcus neoformans , Glucosiltransferasas , Trehalosa , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/genética , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/metabolismo , Trehalosa/metabolismo , Trehalosa/análogos & derivados , Trehalosa/biosíntesis , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Modelos Moleculares , Humanos , Dominio Catalítico , Cristalografía por Rayos X
20.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-39046035

RESUMEN

Trehalose serves as a primary circulatory sugar in insects which is crucial in energy metabolism and stress recovery. It is hydrolyzed into two glucose molecules by trehalase. Silencing or inhibiting trehalase results in reduced fitness, developmental defects, and insect mortality. Despite its importance, the molecular response of insects to trehalase inhibition is not known. Here, we performed transcriptomic analyses of Helicoverpa armigera treated with validamycin A (VA), a trehalase inhibitor. VA ingestion resulted in increased mortality, developmental delay, and reduced ex vivo trehalase activity. Pathway enrichment and gene ontology analyses suggest that key genes involved in carbohydrate, protein, fatty acid, and mitochondria-related metabolisms are deregulated. The activation of protein and fat degradation may be necessary to fulfil energy requirements, evidenced by the dysregulated expression of critical genes in these metabolisms. Co-expression analysis supports the notion that trehalase inhibition leads to putative interaction with key regulators of other pathways. Metabolomics correlates with transcriptomics to show reduced levels of key energy metabolites. VA generates an energy-deficient condition, and insects activate alternate pathways to facilitate the energy demand. Overall, this study provides insights into the molecular mechanisms underlying the response of insects to trehalase inhibition and highlights potential targets for insect control.


Asunto(s)
Metabolismo Energético , Trehalasa , Animales , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Perfilación de la Expresión Génica , Helicoverpa armigera , Inositol/farmacología , Inositol/metabolismo , Inositol/análogos & derivados , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva , Transcriptoma/genética , Trehalasa/metabolismo , Trehalasa/genética , Trehalasa/antagonistas & inhibidores , Trehalosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA