Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 726
1.
Water Res ; 258: 121791, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38830291

Changes in rainfall patterns driven by climate change affect the transport of dissolved organic matter (DOM) and nutrients through runoff to freshwater systems. This presents challenges for drinking water providers. DOM, which is a heterogeneous mix of organic molecules, serves as a critical precursor for disinfection by-products (DBPs) which are associated with adverse health effects. Predicting DBP formation is complex due to changes in DOM concentration and composition in source waters, intensified by altered rainfall frequency and intensity. We employed a novel mesocosm approach to investigate the response of DBP precursors to variability in DOM composition and inorganic nutrients, such as nitrogen and phosphorus, export to lakes. Three distinct pulse event scenarios, mimicking extreme, intermittent, and continuous runoff were studied. Simultaneous experiments were conducted at two boreal lakes with distinct DOM composition, as reflected in their color (brown and clear lakes), and bromide content, using standardized methods. Results showed primarily site-specific changes in DBP precursors, some heavily influenced by runoff variability. Intermittent and daily pulse events in the clear-water mesocosms exhibited higher haloacetonitriles (HANs) formation potential linked to freshly produced protein-like DOM enhanced by light availability. In contrast, trihalomethanes (THMs), associated with humic-like DOM, showed no significant differences between pulse events in the brown-water mesocosms. Elevated bromide concentration in the clear mesocosms critically influenced THMs speciation and concentrations. These findings contribute to understanding how changing precipitation patterns impact the dynamics of DBP formation, thereby offering insights for monitoring the mobilization and alterations of DBP precursors within catchment areas and lake ecosystems.


Disinfection , Lakes , Water Pollutants, Chemical , Lakes/chemistry , Water Pollutants, Chemical/analysis , Phosphorus/analysis , Water Purification , Nutrients/analysis , Trihalomethanes/analysis , Nitrogen/analysis
2.
Birth Defects Res ; 116(6): e2370, 2024 Jun.
Article En | MEDLINE | ID: mdl-38888449

BACKGROUND: Associations between maternal periconceptional exposure to disinfection by-products (DBPs) in drinking water and neural tube defects (NTDs) in offspring are inconclusive, limited in part by exposure misclassification. METHODS: Maternal interview reports of drinking water sources and consumption from the National Birth Defects Prevention Study were linked with DBP concentrations in public water system monitoring data for case children with an NTD and control children delivered during 2000-2005. DBPs analyzed were total trihalomethanes, the five most common haloacetic acids combined, and individual species. Associations were estimated for all NTDs combined and selected subtypes (spina bifida, anencephaly) with maternal periconceptional exposure to DBPs in public water systems and with average daily periconceptional ingestion of DBPs accounting for individual-level consumption and filtration information. Mixed effects logistic regression models with maternal race/ethnicity and educational attainment at delivery as fixed effects and study site as a random intercept were applied. RESULTS: Overall, 111 case and 649 control children were eligible for analyses. Adjusted odds ratios for maternal exposure to DBPs in public water systems ranged from 0.8-1.5 for all NTDs combined, 0.6-2.0 for spina bifida, and 0.7-1.9 for anencephaly; respective ranges for average daily maternal ingestion of DBPs were 0.7-1.1, 0.5-1.5, and 0.6-1.8. Several positive estimates (≥1.2) were observed, but all confidence intervals included the null. CONCLUSIONS: Using community- and individual-level data from a large, US, population-based, case-control study, we observed statistically nonsignificant associations between maternal periconceptional exposure to total and individual DBP species in drinking water and NTDs and subtypes.


Disinfection , Drinking Water , Maternal Exposure , Neural Tube Defects , Humans , Female , Drinking Water/adverse effects , Neural Tube Defects/etiology , Neural Tube Defects/epidemiology , Pregnancy , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data , Disinfection/methods , Adult , Case-Control Studies , Disinfectants/adverse effects , Disinfectants/analysis , Water Purification/methods , Trihalomethanes/analysis , Trihalomethanes/adverse effects , Male , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/adverse effects , Prenatal Exposure Delayed Effects , Spinal Dysraphism/etiology , Spinal Dysraphism/epidemiology
3.
J Water Health ; 22(6): 1064-1074, 2024 Jun.
Article En | MEDLINE | ID: mdl-38935457

We characterized concentrations of trihalomethanes (THMs), a measure of disinfection byproducts (DBPs), in tap water samples collected from households with utility-supplied water in two rural counties in Appalachian Virginia, and assessed associations with pH, free chlorine, and metal ions which can impact THM formation. Free chlorine concentrations in all samples (n = 27 homes) complied with EPA drinking water guidelines, though 7% (n = 2) of first draw samples and 11% (n = 3) of 5-min flushed-tap water samples exceeded the US Safe Drinking Water Act (SDWA) maximum contaminant level (MCL) for THM (80 ppb). Regression analyses showed that free chlorine and pH were positively associated with the formation of THM levels above SDWA MCLs (OR = 1.04, p = 0.97 and OR = 1.74, p = 0.79, respectively), while temperature was negatively associated (OR = 0.78, p = 0.38). Of the eight utilities serving study households, samples from water served by three different utilities exceeded the EPA MCL for THM. Overall, these findings do not indicate substantial exposures to DBPs for rural households with utility-supplied water in this region of southwest Virginia. However, given the observed variability in THM concentrations between and across utilities, and established adverse health impacts associated with chronic and acute DBP exposure, more research on DBPs in rural Central Appalachia is warranted.


Chlorine , Drinking Water , Rural Population , Trihalomethanes , Water Pollutants, Chemical , Water Supply , Virginia , Chlorine/analysis , Drinking Water/chemistry , Drinking Water/analysis , Water Pollutants, Chemical/analysis , Trihalomethanes/analysis , Water Purification/methods , Disinfection , Humans , Disinfectants/analysis , Appalachian Region , Family Characteristics
4.
Chemosphere ; 357: 142057, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636920

Recent leaks of underground fuel storage tanks in the Pearl Harbor region have led to direct release of un-weathered petroleum hydrocarbons (PHCs) into drinking water sources, which then directly underwent chlorination disinfection treatment. Since the control of disinfection byproducts (DBPs) traditionally focuses natural organic matters (NOM) from source water and little is known about the interactions between free chlorine and un-weathered PHCs, laboratory chlorination experiments in batch reactors were conducted to determine the formation potential of DBPs during chlorination of PHC-contaminated drinking water. Quantitative analysis of regulated DBPs showed that significant quantities of THM4 (average 3,498 µg/L) and HAA5 (average 355.4 µg/L) compounds were formed as the result of chlorination of un-weathered PHCs. Amongst the regulated DBPs, THM4, which were comprised primarily of chloroform and bromodichloromethane, were more abundant than HAA5. Numerous unregulated DBPs and a large diversity of unidentified potentially halogenated organic compounds were also produced, with the most abundant being 1,1-dichloroacetone, 1,2-dibromo-3-chloropropane, chloropicrin, dichloroacetonitrile, and trichloracetonitrile. Together, the results demonstrated the DBP formation potential when PHC-contaminated water undergoes chlorination treatment. Further studies are needed to confirm the regulated DBP production and health risks under field relevant conditions.


Disinfection , Drinking Water , Halogenation , Hydrocarbons , Petroleum , Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Drinking Water/chemistry , Water Purification/methods , Petroleum/analysis , Hydrocarbons/analysis , Disinfectants/analysis , Disinfectants/chemistry , Chlorine/chemistry , Trihalomethanes/analysis , Trihalomethanes/chemistry
5.
Chemosphere ; 358: 142055, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641292

The impact of desalination brine on the marine environment is a global concern. Regarding this, salinity is generally accepted as the major environmental factor in desalination concentrate. However, recent studies have shown that the influence of organic contaminants in brine cannot be ignored. Therefore, a non-targeted screening method based on comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS) was developed for identifying organic contaminants in the desalination brine. A total of 404 compounds were tentatively identified from four seawater desalination plants (three reverse osmosis plants and one multiple effect distillation plant) in China. The identified compounds were prioritized based on their persistence, bioaccumulation, ecotoxicity, usage, and detection frequency. Twenty-one (21) compounds (seven phthalates, ten pesticides, four trihalomethanes) were then selected for further quantitative analysis and ecological risk assessment, including compounds from the priority list along with substances from the same chemical classes. Ecologically risky substances in brine include diisobutylphthalate and bis(2-Ethylhexyl) phthalate, atrazine and acetochlor, and bromoform. Most of the contaminants come from raw seawater, and no high risk contaminants introduced by the desalination process have been found except for disinfection by-products. In brine discharge management, people believed that all pollution in raw seawater was concentrated by desalination process. This study shows that not all pollutants are concentrated during the desalination process. In this study, the total concentration of pesticide in the brine increased by 58.42%. The concentration of ∑PAEs decreased by 13.65% in reverse osmosis desalination plants and increased by 10.96% in the multi-effect distillation plant. The concentration of trihalomethane increased significantly in the desalination concentrate. The change in the concentration of pollutants in the desalination concentrate was related to the pretreatment method and the chemical characteristics of the contaminants. The method and results given in this study hinted a new idea to identify and control the environmental impact factors of brine.


Salinity , Seawater , Water Pollutants, Chemical , Water Purification , Seawater/chemistry , Water Pollutants, Chemical/analysis , Risk Assessment , Water Purification/methods , China , Environmental Monitoring/methods , Pesticides/analysis , Gas Chromatography-Mass Spectrometry , Salts/chemistry , Phthalic Acids/analysis , Trihalomethanes/analysis
6.
Chemosphere ; 358: 142121, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677607

Disinfection by-products (DBPs) are prevalent contaminants in drinking water and are primarily linked to issues regarding water quality. These contaminants have been associated with various adverse health effects. Among different treatment processes, nanofiltration (NF) has demonstrated superior performance in effectively reducing the levels of DBPs compared to conventional processes and ozone-biological activated carbon (O3-BAC) processes. In this experiment, we systematically investigated the performance of three advanced membrane filtration treatment schemes, namely "sand filter + nanofiltration" (SF + NF), "sand filter + ozone-biological activated carbon + nanofiltration" (SF + O3-BAC + NF), and "ultrafiltration + nanofiltration" (UF + NF), in terms of their ability to control disinfection by-product (DBP) formation in treated water, analyzed the source and fate of DBP precursors during chlorination, and elucidated the role of precursor molecular weight distribution during membrane filtration in relation to DBP formation potential (DBPFP). The results indicated that each treatment process reduced DBPFP, as measured by trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP), with the SF + O3-BAC + NF process being the most effective (14.27 µg/L and 14.88 µg/L), followed by the SF + NF process (21.04 µg/L and 16.29 µg/L) and the UF + NF process (26.26 µg/L and 21.75 µg/L). Tyrosine, tryptophan, and soluble microbial products were identified as the major DBP precursors during chlorination, with their fluorescence intensity decreasing gradually as water treatment progressed. Additionally, while large molecular weight organics (60-100,000 KDa) played a minor role in DBPFP, small molecular weight organics (0.2-5 KDa) were highlighted as key contributors to DBPFP, and medium molecular weight organics (5-60 KDa) could adhere to the membrane surface and reduce DBPFP. Based on these findings, the combined NF process can be reasonably selected for controlling DBP formation, with potential long-term benefits for human health.


Disinfection , Drinking Water , Filtration , Halogenation , Trihalomethanes , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Drinking Water/chemistry , Water Purification/methods , Trihalomethanes/chemistry , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Filtration/methods , Ozone/chemistry , Disinfectants/chemistry , Disinfectants/analysis , Acetates/chemistry , Charcoal/chemistry , Water Quality
7.
J Hazard Mater ; 469: 133760, 2024 May 05.
Article En | MEDLINE | ID: mdl-38522206

This study aimed to assess the global spatiotemporal variations of trihalomethanes (THMs) in drinking water, evaluate their cancer and non-cancer risks, and THM-attributable bladder cancer burden. THM concentrations in drinking water around fifty years on a global scale were integrated. Health risks were assessed using Monte Carlo simulations and attributable bladder cancer burden was estimated by comparative risk assessment methodology. The results showed that global mean THM concentrations in drinking water significantly decreased from 78.37 µg/L (1973-1983) to 51.99 µg/L (1984-2004) and to 21.90 µg/L (after 2004). The lifestage-integrative cancer risk and hazard index of THMs through all exposure pathways were acceptable with the average level of 6.45 × 10-5 and 7.63 × 10-2, respectively. The global attributable disability adjusted of life years (DALYs) and the age-standardized DALYs rate (ASDR) dropped by 16% and 56% from 1990-1994 to 2015-2019, respectively. A big decline in the attributable ASDR was observed in the United Kingdom (62%) and the United States (27%), while China experienced a nearly 3-fold increase due to the expanded water supply coverage and increased life expectancy. However, China also benefited from the spread of chlorination, which helped reduce nearly 90% of unsafe-water-caused mortality from 1998 to 2018.


Drinking Water , Urinary Bladder Neoplasms , Water Pollutants, Chemical , Humans , Trihalomethanes/toxicity , Trihalomethanes/analysis , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/epidemiology , Cost of Illness , Risk Assessment , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
8.
J Environ Manage ; 355: 120470, 2024 Mar.
Article En | MEDLINE | ID: mdl-38422852

The global change in surface water quality calls for increased preparedness of drinking water utilities. The increasing frequency of extreme climatic events combined with global warming can impact source and treated water characteristics such as temperature and natural organic matter. On the other hand, water saving policies in response to water and energy crisis in some countries can aggravate the situation by increasing the water residence time in the drinking water distribution system (DWDS). This study investigates the individual and combined effect of increased dissolved organic carbon (DOC), increased temperature, and reduced water demand on fate and transport of chlorine and trihalomethanes (THMs) within a full-scale DWDS in Canada. Chlorine and THM prediction models were calibrated with laboratory experiments and implemented in EPANET-MATLAB toolkit for prediction in the DWDS under different combinations of DOC, temperature, and demand. The duration of low chlorine residuals (<0.2 mg/L) and high THM (>80 µg/L) periods within a day in each scenario was reported using a reliability index. Low-reliability zones prone to microbial regrowth or high THM exposure were then delineated geographically on the city DWDS. Results revealed that water demand reduction primarily affects chlorine availability, with less concern for THM formation. The reduction in nodal chlorine reliability was gradual with rising temperature and DOC of the treated water and reducing water demand. Nodal THM reliability remained unchanged until certain thresholds were reached, i.e., temperature >25 °C for waters with DOC <1.52 mg/L, and DOC >2.2 mg/L for waters with temperature = 17 °C. At these critical thresholds, an abrupt network-wide THM exceedance of 80 µg/L occurred. Under higher DOC and temperature levels in future, employing the proposed approach revealed that increasing the applied chlorine dosage (which is a conventional method used to ensure sufficient chlorine coverage) results in elevated exposure toTHMs and is not recommended. This approach aids water utilities in assessing the effectiveness of different intervention measures to solve water quality problems, identify site-specific thresholds leading to major decreases in system reliability, and integrate climate adaptation into water safety management.


Drinking Water , Water Pollutants, Chemical , Water Purification , Chlorine , Water Purification/methods , Trihalomethanes/analysis , Climate Change , Reproducibility of Results , Chlorides , Water Pollutants, Chemical/analysis , Disinfection
9.
Environ Res ; 250: 118474, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38368920

Dual-source drinking water distribution systems (DWDS) over single-source water supply systems are becoming more practical in providing water for megacities. However, the more complex water supply problems are also generated, especially at the hydraulic junction. Herein, we have sampled for a one-year and analyzed the water quality at the hydraulic junction of a dual-source DWDS. The results show that visible changes in drinking water quality, including turbidity, pH, UV254, DOC, residual chlorine, and trihalomethanes (TMHs), are observed at the sample point between 10 and 12 km to one drinking water plant. The average concentration of residual chlorine decreases from 0.74 ± 0.05 mg/L to 0.31 ± 0.11 mg/L during the water supplied from 0 to 10 km and then increases to 0.75 ± 0.05 mg/L at the end of 22 km. Whereas the THMs shows an opposite trend, the concentration reaches to a peak level at hydraulic junction area (10-12 km). According to parallel factor (PARAFAC) and high-performance size-exclusion chromatography (HPSEC) analysis, organic matters vary significantly during water distribution, and tryptophan-like substances and amino acids are closely related to the level of THMs. The hydraulic junction area is confirmed to be located at 10-12 km based on the water quality variation. Furthermore, data-driven models are established by machine learning (ML) with test R2 higher than 0.8 for THMs prediction. And the SHAP analysis explains the model results and identifies the positive (water temperature and water supply distance) and negative (residual chlorine and pH) key factors influencing the THMs formation. This study conducts a deep understanding of water quality at the hydraulic junction areas and establishes predictive models for THMs formation in dual-sources DWDS.


Drinking Water , Machine Learning , Water Quality , Water Supply , Drinking Water/chemistry , Drinking Water/analysis , Trihalomethanes/analysis , Models, Theoretical , Water Pollutants, Chemical/analysis , Chlorine/analysis
10.
Environ Pollut ; 346: 123536, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38365079

The increasing demand for trichloroisocyanuric acid (TCCA) in swimming pool disinfection highlights the need to evaluate its applicability in terms of disinfection by-product (DBP) formation. Nevertheless, there is limited understanding of DBP formation and control during TCCA disinfection, particularly concerning the effects of various management parameters. This study aimed to fill this knowledge gap by comprehensively investigating DBP formation during TCCA chlorination, with a particular focus on assessing the contribution and interaction of influencing factors using Box-Behnken Design and response surface methodology. Results indicated that the concentrations of trichloroacetaldehyde, chloroform, dichloroacetic acid, trichloroacetic acid, and dichloroacetonitrile produced by TCCA disinfectant were 42.5%, 74.0%, 48.1%, 94.7% and 42.6% of those by the conventional sodium hypochlorite disinfectant, respectively. Temperature exhibited the most significant impact on chloroform formation (49%), while pH played a major role in trichloroacetaldehyde formation (44%). pH2 emerged as the primary contributor to dichloroacetic acid (90%) and trichloroacetic acid (93%) formation. The optimum water quality conditions were determined based on the minimum total DBPs (pH = 7.32, Temperature = 23.7 °C, [Cl-] = 437 mg/L). Chlorine dosage and contact time exhibited greater influence than precursor concentration on chloroform, dichloroacetonitrile, trichloroacetaldehyde, trichloroacetic acid, and total DBPs. Although the interaction between water quality parameters was weak, the interaction between disinfection operating parameters demonstrated substantial effects on DBP formation (8.56-19.06%). Furthermore, the DBP predictive models during TCCA disinfection were provided for the first time, which provides valuable insights for DBP control and early warning programs.


Acetonitriles , Chloral Hydrate/analogs & derivatives , Disinfectants , Swimming Pools , Triazines , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Chloroform , Trichloroacetic Acid , Trihalomethanes/analysis , Chlorine , Halogenation , Water Purification/methods , Water Pollutants, Chemical/analysis
11.
Water Res ; 253: 121298, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38401470

As an important class of disinfection byproducts (DBPs) of emerging concern, haloacetaldehydes (HALs) undergo degradation and transformation under environmentally relevant conditions. In this study, the stability of chlorinated and brominated HALs was investigated at different pHs and water temperatures. Results indicated that the degradation of HALs followed second-order kinetics. Surprisingly, rapid degradation of Br-HALs at elevated temperature was newly discovered in this study. At 50 °C and pH 7.5, over 90 % of TBAL degraded in 8 min, while the degradation of TCAL was ∼1 %. Moreover, increasing pH also facilitated the degradation of HALs and the alkaline degradation rate constants ( [Formula: see text] ) were found to be 7-9 orders of magnitude higher than their neutral degradation rate constants ( [Formula: see text] ). Under conditions relevant to environment and DBP measurement, HALs mainly degraded to form corresponding trihalomethanes and formate via decarburization pathway, which accounted for 70-93 % of HALs loss. The remaining 7-30 % of HAL loss was attributed to the dehalogenation pathway newly proposed in this study, successfully closing halogen balance during HAL degradation. In addition, a quantitative structure-activity relationship (QSAR) model was established for HAL degradation and the degradation rate constants for three mono-HALs were predicted at different temperature. The kinetic models and reaction rate constants obtained in this study can be used for quantitative predictions of HAL concentrations in drinking water, which is beneficial for monitoring and control of these emerging DBPs. Furthermore, considering the rapid degradation of Br-HALs into corresponding products, the temperature during sample pre-treatment can have a significant impact on DBP analysis.


Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfectants/analysis , Temperature , Water Purification/methods , Halogenation , Disinfection/methods , Drinking Water/analysis , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis
12.
Ecotoxicol Environ Saf ; 270: 115925, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38183752

Disinfection by-products (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs), have attracted attention due to their carcinogenic properties, leading to varying conclusions. This meta-analysis aimed to evaluate the dose-response relationship and the dose-dependent effect of DBPs on cancer risk. We performed a selective search in PubMed, Web of Science, and Embase databases for articles published up to September 15th, 2023. Our meta-analysis eventually included 25 articles, encompassing 8 cohort studies with 6038,525 participants and 10,668 cases, and 17 case-control studies with 10,847 cases and 20,702 controls. We observed a positive correlation between increased cancer risk and higher concentrations of total trihalomethanes (TTHM) in water, longer exposure durations, and higher cumulative TTHM intake. These associations showed a linear trend, with relative risks (RRs) and 95 % confidence intervals (CIs) being 1.02 (1.01-1.03), 1.04 (1.02-1.06), and 1.02 (1.00-1.03), respectively. Gender-specific analyses revealed slightly U-shaped relationships in both males and females, with males exhibiting higher risks. The threshold dose for TTHM in relation to cancer risk was determined to be 55 µg/L for females and 40 µg/L for males. A linear association was also identified between bladder cancer risk and TTHM exposure, with an RR and 95 % CI of 1.08 (1.05-1.11). Positive linear associations were observed between cancer risk and exposure to chloroform, bromodichloromethane (BDCM), and HAA5, with RRs and 95 % CIs of 1.02 (1.01-1.03), 1.33 (1.18-1.50), and 1.07 (1.03-1.12), respectively. Positive dose-dependent effects were noted for brominated THMs above 35 µg/L and chloroform above 75 µg/L. While heterogeneity was observed in the studies for quantitative synthesis, no publication bias was detected. Exposure to TTHM, chloroform, BDCM, or HAA5 may contribute to carcinogenesis, and the risk of cancer appears to be dose-dependent on DBP exposure levels. A cumulative effect is suggested by the positive correlation between TTHM exposure and cancer risk. Bladder cancer and endocrine-related cancers show dose-dependent and positive associations with TTHM exposure. Males may be more susceptible to TTHM compared to females.


Disinfectants , Urinary Bladder Neoplasms , Water Pollutants, Chemical , Male , Female , Humans , Disinfection , Chloroform/analysis , Trihalomethanes/toxicity , Trihalomethanes/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Disinfectants/toxicity
13.
Environ Sci Technol ; 58(2): 1321-1328, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38159052

Disinfection byproducts (DBPs) are ubiquitous environmental contaminants, which are present in virtually all drinking water and linked to detrimental health effects. Iodinated-DBPs are more cytotoxic and genotoxic than chloro- and bromo-DBPs and are formed during disinfection of iodide-containing source water. Liquid-liquid extraction (LLE) paired with gas chromatography (GC)-mass spectrometry (MS) has been the method of choice in the study of low molecular weight iodinated-DBPs; however, this method is laborious and time-consuming and struggles with complex matrices. We developed an environmentally friendly method utilizing headspace solid phase extraction with the application of vacuum to measure six iodinated-trihalomethanes (I-THMs) in drinking water and urine. Vacuum-assisted sorbent extraction (VASE) has the ability to exhaustively and rapidly extract volatile and semivolatile compounds from liquid matrices without the use of solvent. Using VASE with GC-MS/MS provides improved analyte recovery and reduced matrix interference compared to LLE. Additionally, VASE enables extraction of 30 samples simultaneously with minimal sample handling and improved method reproducibility. Using VASE with GC-MS/MS, we achieved quantification limits of 3-4 ng/L. This technique was demonstrated on drinking water from four cities, where five I-THMs were quantified at levels 10-33 times below comparable LLE methods with 10 times lower volumes of sample (10 mL vs 100 mL).


Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Drinking Water/analysis , Drinking Water/chemistry , Gas Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Reproducibility of Results , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Disinfectants/analysis , Halogenation
14.
Sci Total Environ ; 912: 169468, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38143003

Disinfection by-products (DBPs) generated in drinking water have become a global concern due to their potential harm to human health. Nevertheless, there are few studies about different point-of-use water treatments in household drinking water. The study aims to compare the effectiveness of three point-of-use water treatments: adsorption, boiling, and membrane filtration. The experimental results showed that the initial average concentration of volatile DBPs and non-volatile DBPs for tap water were 63.71 µg/L and 6.33 µg/L. The removal efficiency of DBPs for adsorption which were 75.6 % (the filter volumes from 0 L to 20 L) and 45.4 % (the filter volumes from 20 L to 50 L) during the service life of the filter element (50 L). Boiling had a high removal efficiency for volatile DBPs like trihalomethanes (THMs), haloacetaldehydes (HALs), haloacetonitriles (HANs), and haloketones (HKs) (90.5 %, 100 %, 100 %, and 100 %, respectively). However, boiling had a low removal efficiency which was 15 % in removing non-volatile DBPs like haloacetic acids (HAAs). Membrane filtration had a middle removal efficiency for THMs, HAAs, HALs, HKs, and HANs (45.3 %, 75.2 %, 46.5 %, 47.6 %, and 100 %, respectively). Through analysis of the correlation between dissolved organic matter (DOM) removal efficacy and DBP removal efficiency, it was found that the strongest correlation was observed between UV254 and DBP removal efficiency. Boiling showed a lower estimated cytotoxicity of DBPs compared to adsorption and membrane filtration. Cancer risk assessment of DBPs was below the specified risk range for three point-of-use water treatments. This study provides a reference for choosing point-of-use water treatments in household drinking water.


Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Humans , Disinfection/methods , Disinfectants/analysis , Drinking Water/analysis , Adsorption , Water Pollutants, Chemical/analysis , Water Purification/methods , Trihalomethanes/analysis , Halogenation
15.
Environ Sci Technol ; 57(51): 21616-21626, 2023 Dec 26.
Article En | MEDLINE | ID: mdl-38091484

Animal and human studies have suggested that trihalomethane (THM) has toxicity to bone. In this study, we included adolescents from the National Health and Nutrition Examination Survey who had quantified blood and tap water THM concentrations [chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)] and lumbar spine or total body less head (TBLH) bone mineral density (BMD). A 2.7-fold increase in concentrations of blood TCM, DBCM, chlorinated THMs (the sum of TCM, BDCM, and DBCM), and total THMs (the sum of 4 THMs) was associated with lower lumbar spine BMD z-scores by -0.06 [95% confidence interval (CI): -0.12, -0.01], -0.06 (95% CI: -0.11, -0.003), -0.08 (95% CI: -0.14, -0.02), and -0.07 (95% CI: -0.13, -0.003), respectively, in adjusted models. Similarly, a 2.7-fold increase in blood BDCM, DBCM, and chlorinated THM concentrations was associated with lower TBLH BMD z-scores by -0.10 (95% CI: -0.17, -0.02), -0.10 (95% CI: -0.17, -0.03), and -0.11 (95% CI: -0.20, -0.01), respectively. Low-to-moderate predictive power was attained when tap water THM concentrations were used to predict blood THM measurements. Notably, the inverse associations for blood THMs persisted exclusively between water concentrations of DBCM and Br-THMs and the TBLH BMD z-scores. Our findings suggest that exposure to THMs may adversely affect the adolescent BMD.


Bone Density , Water Pollutants, Chemical , Animals , Humans , Adolescent , Cross-Sectional Studies , Nutrition Surveys , Trihalomethanes/analysis , Water , Water Pollutants, Chemical/analysis
16.
Environ Monit Assess ; 196(1): 17, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38057440

The reactions between natural organic matter, anthropogenic contaminants, ions, and disinfectants lead to the formation of disinfection by-products (DBPs) such as trihalomethanes (THMs) in drinking water. The formation of THMs is strongly related to the chlorination of water. The study's central objective was to compare the concentration of THMs in twenty developed and developing countries and their disinfection techniques. The THM concentration in 11 developed and 9 developing countries ranged from 0.5 µg/L (Germany) to 215 µg/L (Russia) and 3 µg/L (China) to 439.2 µg/L (Bangladesh), respectively. The developed country has partially succeeded in reducing THM concentration in drinking water, whereas significant steps are needed in developing countries to reduce the existing high THM concentration. The concentration of THMs in water varies among these countries because of the different water sources, water quality, environmental conditions, and efficiency of water treatment technologies. A meaningful relationship has been observed between the properties of water and the THM formation. The use of chemical disinfectants will result in new forms of DBPs that are undesirable due to their carcinogenic and mutagenic effects on human health. The DBP guidelines by various national and international agencies have helped to control and manage the THM concentration in drinking water. However, these regulatory standards are not continuously monitored. Therefore, the formation of these compounds should be prevented either by removing THMs forming precursors or by using an integrated approach for controlling THM formation by implementing advanced water treatment technology. Extensive research is desirable in domains like THM minimization strategies which are easy to deploy, scalable, and cost-effective.


Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Humans , Trihalomethanes/analysis , Developing Countries , Water Pollutants, Chemical/analysis , Environmental Monitoring , Disinfectants/analysis , Disinfection/methods , Water Purification/methods , Halogenation
17.
Environ Sci Technol ; 57(48): 19316-19329, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37962559

We investigated the metabolomic profile associated with exposure to trihalomethanes (THMs) and nitrate in drinking water and with colorectal cancer risk in 296 cases and 295 controls from the Multi Case-Control Spain project. Untargeted metabolomic analysis was conducted in blood samples using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. A variety of univariate and multivariate association analyses were conducted after data quality control, normalization, and imputation. Linear regression and partial least-squares analyses were conducted for chloroform, brominated THMs, total THMs, and nitrate among controls and for case-control status, together with a N-integration model discriminating colorectal cancer cases from controls through interrogation of correlations between the exposure variables and the metabolomic features. Results revealed a total of 568 metabolomic features associated with at least one water contaminant or colorectal cancer. Annotated metabolites and pathway analysis suggest a number of pathways as potentially involved in the link between exposure to these water contaminants and colorectal cancer, including nicotinamide, cytochrome P-450, and tyrosine metabolism. These findings provide insights into the underlying biological mechanisms and potential biomarkers associated with water contaminant exposure and colorectal cancer risk. Further research in this area is needed to better understand the causal relationship and the public health implications.


Colorectal Neoplasms , Drinking Water , Water Pollutants, Chemical , Humans , Drinking Water/analysis , Drinking Water/chemistry , Trihalomethanes/analysis , Nitrates/analysis , Spain/epidemiology , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/epidemiology , Water Pollutants, Chemical/analysis
18.
J Water Health ; 21(10): 1503-1517, 2023 Oct.
Article En | MEDLINE | ID: mdl-37902205

Some disinfection by-products (DBPs) in drinking water present a potential safety concern. This study focuses on the elements influencing DBPs formation. A total of 120 water samples were collected from 10 different drinking water facilities spanning 5 counties within Huzhou, Zhejiang Province, China. Concentrations of trihalomethanes (THMs) and haloacetic acids (HAAs) were observed to be 14.5 and 27.4 µg/L, respectively, constituting 34 and 64% of the total DBPs. Seasonal fluctuations demonstrated that HAAs, THMs, halonitromethanes (HNMs), and haloacetonitriles (HANs) followed a similar pattern with higher levels in summer or autumn compared to spring. Importantly, the concentrations of HAAs and THMs were markedly higher in Taihu-sourced water compared to other sources. Geographically, Nanxun exhibited the highest levels of total DBPs, HAAs, and THMs, while Deqing and Changxing demonstrated significantly lower levels. Correlation studies between water quality parameters and DBPs revealed that factors such as chloride content, temperature, and residual chlorine positively influenced DBPs formation, whereas turbidity negatively affected it. Principal component analysis suggested similar formation processes for HANs, haloketones (HKs), HNMs, and THMs. Factors such as temperature, chemical oxygen demand (COD), and residual chlorine were identified as significant contributors to the prevalence of HAAs.


Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfection , Disinfectants/analysis , Drinking Water/analysis , Chlorine/analysis , Water Pollutants, Chemical/analysis , Trihalomethanes/analysis , China , Halogenation
19.
Environ Sci Technol ; 57(43): 16166-16175, 2023 10 31.
Article En | MEDLINE | ID: mdl-37852642

Exposure to trihalomethanes (THMs) has been associated with inflammation and oxidative stress, which are implicated in osteoarthritis. However, the association of THM exposure with osteoarthritis is unknown. Therefore, we pooled seven independent National Health and Nutrition Examination Survey cycles (1999-2012) among participants aged over 50 years who had quantified blood concentrations of chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM). Among 4,077 adults aged over 50 years, 781 (21.3%) reported osteoarthritis. Logistic regression models showed increased odds of osteoarthritis across the categories of blood BDCM, DBCM, and brominated THM (Br-THM, which was the sum of BDCM, DBCM, and TBM) concentrations [odds ratios = 1.46 (95% CI 1.09-1.94), 1.53 (95% CI 1.15-2.04), and 1.35 (95% CI 0.97-1.88), respectively], comparing highest versus lowest exposure categories (quartiles or tertiles). Additionally, we found positive dose-response relationships between blood BDCM, DBCM, and Br-THM concentrations and serum markers of oxidative stress (i.e., gamma-glutamyltransferase). In summary, blood Br-THM concentrations were associated with elevated serum levels of gamma-glutamyltransferase as well as an increased risk of osteoarthritis among U.S. adults aged over 50 years. However, more prospective population studies are needed to verify these findings and explore the underlying mechanisms.


Osteoarthritis , Water Pollutants, Chemical , Adult , Humans , Middle Aged , Prospective Studies , Nutrition Surveys , gamma-Glutamyltransferase , Trihalomethanes/analysis , Osteoarthritis/epidemiology
20.
Environ Pollut ; 338: 122716, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37832779

The issue of biofilm-related disinfection byproducts (DBPs) in drinking water distribution system (DWDS) has garnered significant attention. This study sought to examine the changes in biofilm-originated halogenated DBP formation potential (biofilm DBP-FP) in simulated continuous-flow DWDSs subjected to sequential UV and chlorine disinfection (UV-Cl2) treatments with varying UV doses and to propose the underlying mechanism. The formation potential of trihalomethanes (THMs), haloacetic acids (HAAs), and the total organic halogen (TOX, X = Cl and Br) produced by biofilm were measured. Results showed that the biofilm TOCl-FP was at a minimum with a UV dose of 80 mJ/cm2, corresponding to the lowest amounts of protein and polysaccharides in the extracellular polymeric substances (EPS). Sphingobium, Methylobacterium, and Sphingomonas played a crucial role in protein and polysaccharide biosynthesis. Bacterial community composition characterization together with metabolic function analysis indicated that dominant bacteria varied and metabolic function shifted due to UV-Cl2 disinfection, with Alphaproteobacteria increasing in relative abundance and Bacteroidia showing the opposite trend with increasing UV doses. Correlation analysis suggested that the UV-Cl2 disinfection process led to changes in the water matrix, including organics, inorganics, bacteria, and components that provide environmental pressure for the biofilm. These changes ultimately influenced the properties of the biofilm EPS, which had a direct impact on biofilm DBP-FP.


Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Chlorine , Disinfectants/pharmacology , Water Purification/methods , Chlorides , Halogenation , Biofilms , Bacteria , Water Pollutants, Chemical/analysis , Trihalomethanes/analysis
...