Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 623
Filtrar
1.
Mycotoxin Res ; 40(4): 641-649, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39153044

RESUMEN

Maize (Zea mays L.) is an important cereal crop worldwide. Contaminated maize kernels pose a significant mycotoxin exposure risk for humans in Latin America. Fumonisins, the most prevalent mycotoxin in maize, typically occur during pre-harvest conditions leading to significant economic losses. Various factors, including weather conditions, may influence this contamination. This study aimed to determine the association between fumonisin B1 (FB1) contamination, prevalence of Fusarium verticillioides, weather conditions and kernel quality in the two primary maize production areas in Costa Rica (Brunca and Chorotega). All maize samples (100%) showed FB1 contamination, with higher concentrations in samples from Brunca region, consistent with the presence of F. verticilliodes. Weather conditions appeared to play an important role in this contamination, since Brunca region had the highest mean temperature and relative humidity after maize silking (R1) and the total monthly rainfall in this region was significantly higher during the last two months of maize cultivation (grain-filling and physiological maturity stages R3 to R6). Interestingly, this study found a negative correlation between grain damage and kernel contamination with FB1 and F. verticillioides. The concentration of mineral nutrients in kernels from both regions was largely similar. Most nutrients in kernels exhibited a negative correlation with FB1, particularly nitrogen. Zinc and phosphorus were the only nutrients in kernels showing a positive correlation with FB1 in samples from the Brunca region. The results highlight elevated levels of FB1 contamination in maize and contribute to a better understanding of pre-harvest factors influencing FB1 contamination in tropical conditions.


Asunto(s)
Fumonisinas , Fusarium , Zea mays , Fumonisinas/análisis , Zea mays/microbiología , Zea mays/química , Costa Rica , Contaminación de Alimentos/análisis , Tiempo (Meteorología)
2.
Braz J Biol ; 84: e283233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39140505

RESUMEN

The cotton or solenopsis mealybug, Phenacoccus solenopsis (Tinsley, 1898) (Hemiptera: Pseudococcidae), infests various host plants in Egypt. A study was conducted to observe the incidence of mealybugs and the possible influences of meteorological variables and plant age on the insect population of maize (single-hybrid 168 yellow maize cultivar) plants in Esna district, Luxor governorate, Egypt, in two consecutive seasons (2021 and 2022). P. solenopsis infested maize plants from the 3rd week of June to harvest, and had three peaks of seasonal incidence/season namely; in the 1st week of June in the 3rd/4th week of July, and the 2nd week of August. Similarly, there were three peaks in the percent of infestations per season. In the first season, the average population density of P. solenopsis per sample was 174.04 ± 16.93 individuals, and in the second season, 156.72 ± 14.28 individuals. The most favorable climate for P. solenopsis population increase and infestation occurred in August in the first season and in September in the second season, while June was less suitable in both growing seasons (as estimated by weekly surveys). The combined effects of weather conditions and plant age are significantly related to the estimates of P. solenopsis populations, with an explained variance (E.V.) of 93.18 and 93.86%, respectively, in the two seasons. In addition, their influences explained differences in infestation percentages of 93.30 and 95.54%, respectively, in the two seasons. Maize plant age was the most effective factor in determining changes in P. solenopsis population densities in each season. The mean daily minimum temperature in the first season and mean daily dew point in the second season were the most important factors affecting the percent changes in infestation. However, in both seasons, the mean daily maximum temperature was the least effective variable in population and infestation variation. This study paves the way for monitoring and early detection of mealybugs in maize; as well as the optimal climatic conditions for its development.


Asunto(s)
Hemípteros , Densidad de Población , Estaciones del Año , Tiempo (Meteorología) , Zea mays , Hemípteros/fisiología , Animales , Zea mays/parasitología , Egipto , Dinámica Poblacional
3.
Braz J Microbiol ; 55(2): 1601-1618, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38587763

RESUMEN

Monitoring dynamics of airborne fungal species and controlling of harmful ones are of vital importance to conservation of cultural relics. However, the evaluation of air quality and the community structure characteristics of microorganisms, especially fungi, in the atmosphere of archives is in a stage of continuous exploration though more than 4,000 archives were constructed in China. Seventy-two air samples were collected in this study under different spatial and weather conditions from the archives of Kunming Medical University, located in the Kunming metropolitan area, Yunnan province, southwestern China. A total of 22 airborne fungal classes, 160 genera and 699 ASVs were identified, the species diversity is on the rise with the strengthening of air circulation with the outside space, and thus the intensive energy metabolism and activity were found in the spaces with window and sunny weather, except for the higher lipid synthesis of indoor samples than that of outdoor ones. Furthermore, there were significant differences in fungal community composition and abundance between sunny and rainy weathers. A considerable number of species have been identified as indicator in various environmental and weather conditions of the archives, and temperature and humidity were thought to have significant correlations with the abundance of these species. Meanwhile, Cladosporium and Alternaria were the dominant genera here, which may pose a threat to the health of archive professionals. Therefore, monitoring and controlling the growth of these fungal species is crucial for both conservation of paper records and health of archive professionals.


Asunto(s)
Microbiología del Aire , Biodiversidad , Hongos , China , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Contaminación del Aire Interior/análisis , Archivos , Monitoreo del Ambiente , Micobioma , Tiempo (Meteorología)
4.
Int J Biometeorol ; 68(6): 1043-1060, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38453789

RESUMEN

In 2022, Mexico registered an increase in dengue cases compared to the previous year. On the other hand, the amount of precipitation reported annually was slightly less than the previous year. Similarly, the minimum-mean-maximum temperatures recorded annually were below the previous year. In the literature, it is possible to find studies focused on the spread of dengue only for some specific regions of Mexico. However, given the increase in the number of cases during 2022 in regions not considered by previously published works, this study covers cases reported in all states of the country. On the other hand, determining a relationship between the dynamics of dengue cases and climatic factors through a computational model can provide relevant information on the transmission of the virus. A multiple-learning computational approach was developed to simulate the number of the different risks of dengue cases according to the classification reported per epidemiological week by considering climatic factors in Mexico. For the development of the model, the data were obtained from the reports published in the Epidemiological Panorama of Dengue in Mexico and in the National Meteorological Service. The classification of non-severe dengue, dengue with warning signs, and severe dengue were modeled in parallel through an artificial neural network model. Five variables were considered to train the model: the monthly average of the minimum, mean, and maximum temperatures, the precipitation, and the number of the epidemiological week. The selection of variables in this work is focused on the spread of the different risks of dengue once the mosquito begins transmitting the virus. Therefore, temperature and precipitation were chosen as climatic factors due to the close relationship between the density of adult mosquitoes and the incidence of the disease. The Levenberg-Marquardt algorithm was applied to fit the coefficients during the learning process. In the results, the ANN model simulated the classification of the different risks of dengue with the following precisions (R2): 0.9684, 0.9721, and 0.8001 for non-severe dengue, with alarm signs and severe, respectively. Applying a correlation matrix and a sensitivity analysis of the ANN model coefficients, both the average minimum temperature and precipitation were relevant to predict the number of dengue cases. Finally, the information discovered in this work can support the decision-making of the Ministry of Health to avoid a syndemic between the increase in dengue cases and other seasonal diseases.


Asunto(s)
Dengue , Redes Neurales de la Computación , México/epidemiología , Dengue/epidemiología , Humanos , Tiempo (Meteorología) , Riesgo , Temperatura
5.
Plant Dis ; 108(7): 2206-2213, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38549278

RESUMEN

Wheat head blast is a major disease of wheat in the Brazilian Cerrado. Empirical models for predicting epidemics were developed using data from field trials conducted in Patos de Minas (2013 to 2019) and trials conducted across 10 other sites (2012 to 2020) in Brazil, resulting in 143 epidemics, with each being classified as either outbreak (≥20% head blast incidence) or nonoutbreak. Daily weather variables were collected from the National Aeronautics and Space Administration (NASA) Prediction of Worldwide Energy Resources (POWER) website and summarized for each epidemic. Wheat heading date (WHD) served to define four time windows, with each comprising two 7-day intervals (before and after WHD), which combined with weather-based variables resulted in 36 predictors (nine weather variables × four windows). Logistic regression models were fitted to binary data, with variable selection using least absolute shrinkage and selection operator (LASSO) and sequentially best subset analyses. The models were validated using the leave-one-out cross-validation (LOOCV) technique, and their statistical performance was compared. One model was selected, implemented in a 24-year series, and assessed by experts and literature. Models with two to five predictors showed accuracies between 0.80 and 0.85, sensitivities from 0.80 to 0.91, specificities from 0.72 to 0.86, and area under the curve (AUC) from 0.89 to 0.91. The accuracy of LOOCV ranged from 0.76 to 0.81. The model applied to a historical series included temperature and relative humidity in preheading date, as well as postheading precipitation. The model accurately predicted the occurrence of outbreaks, aligning closely with real-world observations, specifically tailored for locations with tropical and subtropical climates.


Asunto(s)
Enfermedades de las Plantas , Triticum , Tiempo (Meteorología) , Enfermedades de las Plantas/estadística & datos numéricos , Modelos Logísticos , Brasil/epidemiología , Epidemias , Puccinia
7.
Mar Pollut Bull ; 201: 116267, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522334

RESUMEN

Weather radiosondes play a crucial role in gathering atmospheric data for weather modeling and forecasting. However, their impact on marine wildlife, particularly seabirds, has raised concerns regarding the potential threats posed by these instruments. This study aims to assess the adverse effects of weather balloons on albatrosses, with a focus on the Southwest Atlantic region. The research reveals seven cases of entanglement of radiosonde equipment, leading to severe injuries and mortality along the Southern and Southeastern coasts of Brazil. Recommendations for mitigating the environmental impact of weather balloons include the adoption of biodegradable materials in their design and the implementation of improved retrieval protocols. Furthermore, the study stresses the importance of continued monitoring and research to address the interaction of weather radiosondes with marine animals. This approach is vital for ensuring the sustainable collection of scientific data while minimizing harm to marine life and ecosystems.


Asunto(s)
Aves , Ecosistema , Animales , Brasil , Tiempo (Meteorología) , Animales Salvajes , Monitoreo del Ambiente
8.
Environ Geochem Health ; 46(3): 87, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367090

RESUMEN

The ecotoxic effect of Zn species arising from the weathering of the marmatite-like sphalerite ((Fe, Zn)S) in Allium cepa systems was herein evaluated in calcareous soils and connected with its sulfide oxidation mechanism to determine the chemical speciation responsible of this outcome. Mineralogical analyses (X-ray diffraction patterns, Raman spectroscopy, scanning electron microscopy and atomic force microscopy), chemical study of leachates (total Fe, Zn, Cd, oxidation-reduction potential, pH, sulfates and total alkalinity) and electrochemical assessments (chronoamperometry, chronopotentiometry, cyclic voltammetry, and electrochemical impedance spectroscopy) were carried out using (Fe, Zn)S samples to elucidate interfacial mechanisms simulating calcareous soil conditions. Results indicate the formation of polysulfides (Sn2-), elemental sulfur (S0), siderite (FeCO3)-like, hematite (Fe2O3)-like with sorbed CO32- species, gunningite (ZnSO4·H2O)-like phase and smithsonite (ZnCO3)-like compounds in altered surface under calcareous conditions. However, the generation of gunningite (ZnSO4·H2O)-like phase was predominant bulk-solution system. Quantification of damage rates ranges from 75 to 90% of bulb cells under non-carbonated conditions after 15-30 days, while 50-75% of damage level is determined under neutral-alkaline carbonated conditions. Damage ratios are 70.08 and 30.26 at the highest level, respectively. These findings revealed lower ecotoxic damage due to ZnCO3-like precipitation, indicating the effect of carbonates on Zn compounds during vegetable up-taking (exposure). Other environmental suggestions of the (Fe, Zn)S weathering and ecotoxic effects under calcareous soil conditions are discussed.


Asunto(s)
Cebollas , Contaminantes del Suelo , Compuestos de Zinc , Suelo/química , Sulfuros/química , Tiempo (Meteorología) , Contaminantes del Suelo/análisis
9.
JAMA ; 331(8): 696-697, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38315469

RESUMEN

This JAMA Insights in the Climate Change and Health series discusses the increase in extreme weather events caused by climate change and how these events bring about increased migration due to effects on water availability, food access, and rates of endemic diseases.


Asunto(s)
Cambio Climático , Emigración e Inmigración , Inequidades en Salud , México , Salud Pública , Tiempo (Meteorología) , Estados Unidos
10.
Int J Biometeorol ; 68(3): 479-494, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177806

RESUMEN

The objective of this study was to propose bioclimatic zoning to classify human thermal comfort and discomfort in the state of Minas Gerais, Brazil; both historical and future scenarios are considered. Thus, historical series (1961 to 2017) of the effective temperature index as a function of the wind (ETW) were obtained as a function of the monthly average values of the minimum, mean, and maximum dry-bulb air temperatures (tdb,min, tdb,mean, and tdb,max, respectively), in addition to the mean relative humidity ([Formula: see text], %) and mean wind speed ([Formula: see text], m s -1). The data were obtained from 34 weather stations and subjected to trend analysis by using the nonparametric Mann-Kendall test, thus enabling the simulation of future scenarios (for 2028 and 2038). Then, to define the thermal ranges of the bioclimatic zoning, maps of ETWmin, ETWmean, and ETWmax were created from geostatistical analysis. Overall, the results show warming trends for the upcoming years in Minas Gerais municipalities. All climatic seasons showed an increase in the frequency of new classifications in the upper adjacent classes, which indicates climate warming. Therefore, when considering future scenarios for the autumn and winter seasons, attention should be given to changes in predicted thermal sensation, especially in the Central Minas Gerais, Belo Horizonte Metropolitan, South/Southwest Minas, Campo das Vertentes, and Zona da Mata.


Asunto(s)
Percepción , Tiempo (Meteorología) , Humanos , Brasil , Estaciones del Año , Temperatura
11.
Int J Biometeorol ; 68(3): 463-477, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38189989

RESUMEN

Here, we evaluated the influence of outdoor environmental conditions (synoptic weather conditions) on human thermal discomfort in the five macro-regions of Pelotas city, located in the southernmost region of Brazil. To do this, meteorological sensors (HOBO MX2301A) were installed outside the residences to measure the air temperature, dew point temperature, and relative humidity between 18 January and 20 August 2019. Two well-established simplified biometeorological indices were examined seasonally: (i) humidex for the summer months and (ii) effective temperature as a function of wind for the autumn and winter months. Our findings showed seasonal differences related to human thermal discomfort and outdoor environmental conditions. The thermal discomfort was highest in the afternoons during the summer months and at night during the winter months. The seasonal variation in human thermal discomfort was highly associated with the meteorological conditions. In summer, the presence of the South Atlantic Subtropical Anticyclone (SASA) contributed to heat stress. The SASA combined with the continent's low humidity contributed to the perceived sensation of thermal discomfort. In the winter, thermal discomfort was associated with the decrease in air humidity caused by high atmospheric pressure systems, which led to a decrease in both air temperature and air moisture content. Our findings suggest that a better understanding of the complex interplay between outdoor environmental factors and human thermal comfort is needed in order to mitigate the negative effects of thermal discomfort.


Asunto(s)
Sensación Térmica , Tiempo (Meteorología) , Humanos , Brasil/epidemiología , Humedad , Temperatura , Estaciones del Año
12.
Mar Pollut Bull ; 199: 115981, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171164

RESUMEN

Remote sensing data and numerical simulation are important tools to rebuild any oil spill accident letting to identify its source and trajectory. Through these tools was identified an oil spill that affected Oaxacan coast in October 2022. The SAR images were processed with a standard method included in SNAP software, and the numerical simulation was made using Lagrangian transport model included in GNOME software. With the combining of these tools was possible to discriminate the look-alikes from true oil slicks; which are the main issue when satellite images are used. Obtained results showed that 4.3m3 of crude oil were released into the ocean from a punctual point of oil pollution. This oil spill was classified such as a small oil spill. The marine currents and weathering processes were the main drivers that controlled the crude oil displacement and its dispersion. It was estimated in GNOME that 1.6 m3 of crude oil was floating on the sea (37.2 %), 2.4 m3 was evaporated into the atmosphere (55.8 %) and 0.3 m3 reached the coast of Oaxaca (7 %). This event affected 82 km of coastline, but the most important touristic areas as well as turtle nesting zones were not affected by this small crude oil spill. Results indicated that the marine-gas-pump number 3 in Salina Cruz, Oaxaca, is a punctual point of oil pollution in the Southern Mexican Pacific Ocean. Further work is needed to assess the economic and ecological damage to Oaxacan coast caused by this small oil spill.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminación por Petróleo/análisis , Monitoreo del Ambiente/métodos , Tecnología de Sensores Remotos , Petróleo/análisis , Tiempo (Meteorología)
13.
Mar Pollut Bull ; 198: 115828, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000262

RESUMEN

This paper presents the graphical results of the Lagrangian-model and the weathering processes associated with oil spills in the tropical South Atlantic, taking into account the meteorological and oceanographic conditions of the study region. The scenarios were created in the Brazilian-NE waters adjacent, with simulation times of 670 h, and densities of 35, 25, and 15API with volume of 1590 m3 were considered. The main results showed that the meteo-oceanographic characteristics of the study region influence the trajectories and weathering processes in the oil spill. The trajectories varied for each launch point and reached the continent severely in January and October. The associated weathering processes showed higher rates in September and lower rates in April, indicative of the influence of phenomena such as Intertropical Tropical Convergence Zone and warm pool in the South Atlantic region. Sea surface temperature and wind speed are key factors that correlate positively with these months.


Asunto(s)
Contaminación por Petróleo , Contaminantes Químicos del Agua , Contaminación por Petróleo/análisis , Brasil , Modelos Teóricos , Tiempo (Meteorología) , Simulación por Computador
14.
Int J Biometeorol ; 68(1): 57-67, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37880506

RESUMEN

Crop irrigation requirements are usually estimated based on crop evapotranspiration (ETc) as determined by the reference evapotranspiration (ETo) and crop coefficient (Kc). There is a lack of knowledge on the irrigation requirements of tropical forage crops in Brazil, contrasting with the increasing use of irrigation in pastures. The effort of this study was to investigate what would be the water needs of tropical forages in Southern Brazil, based on a robust experimental database. The study was carried out in São Paulo State-Brazil using different forages species and their combinations [Guinea grass (GG); Guinea grass + black oat + ryegrass (GOR); Bermuda grass (BG), and Bermuda + black oat + ryegrass (BOR)]. The experimental fields were fully irrigated, and the Kc values were derived from ETc measurements on lysimeters; ETo was estimated using daily data from a nearby weather station and the standard FAO56 parameterization. Mean daily ETc values for GG, GOR, BG and BOR were 4.1, 2.9, 3.6, and 3.4 mm, respectively, and respective mean Kc values were 0.99, 0.90, 1.0, and 0.94. Average Kc values for all plots decreased as ETo increased, producing a negative Kc-ETo relationship, mainly when ETo reached values greater than 5 mm d-1. This was most likely due to internal plant stomatal resistance to vapor release from the leaves diffusing to the atmosphere at high ETo. So, the time-based Kc curves described by FAO 56 manual should be adjusted for the analyzed crops considering different ranges of ETo to improve the required irrigation depth.


Asunto(s)
Riego Agrícola , Productos Agrícolas , Brasil , Tiempo (Meteorología) , Agua
15.
Integr Zool ; 19(1): 37-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37243424

RESUMEN

During the 20th century, there has been an ongoing agricultural expansion and global warming, two of the main determinants influencing biodiversity changes in Argentina. The red hocicudo mouse (Oxymycterus rufus) inhabits subtropical grasslands and riparian habitats and has increased its abundance in recent years in central Argentina agroecosystems. This paper describes the long-term temporal changes in O. rufus abundance in Exaltación de la Cruz department, Buenos Aires province, Argentina, in relation to weather fluctuations and landscape features, as well as analyzes the spatio-temporal structure of captures of animals. We used generalized liner models, semivariograms, the Mantel test, and autocorrelation functions for the analysis of rodent data obtained from trappings conducted between 1984 and 2014. O. rufus showed an increase in abundance across the years of study, with its distribution depending on landscape features, such as habitat types and the distance to floodplains. Capture rates showed a spatio-temporal aggregation, suggesting expansion from previously occupied sites. O. rufus was more abundant at lower minimum temperatures in summer, higher precipitation in spring and summer, and lower precipitations in winter. Weather conditions affected O. rufus abundance, but there was local variation that differed from global patterns of climate change.


Asunto(s)
Ecosistema , Sigmodontinae , Tiempo (Meteorología) , Animales , Argentina , Biodiversidad , Estaciones del Año
16.
An Acad Bras Cienc ; 95(suppl 3): e20230990, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38126388

RESUMEN

This work consists of the sedimentological, mineralogical, and geochemical characterization of eight marine sediment cores collected in the Central Bransfield Basin, along a transect between the South Shetland Islands to the Antarctic Peninsula and its correlation to the sedimentary and oceanographic processes of the area. A chemical characterization based on X-ray fluorescence dispersive spectrometry was implemented to obtain geochemical data of the marine sediment while the minerals were identified by X-ray diffraction. The study allowed to classify the cores into three groups according to their sediment source and chemical and mineralogical characteristics. The joint assessment of the geochemical and mineralogical signature of the sediment has confirmed that the elemental ratios Ti/Ca and Fe/Ca can be applied as proxies in the reconstitution of the terrigenous contribution to the Central Bransfield Basin if we consider the sedimentary contribution of the volcanic edifices present in the region. The Fe/K ratio associated with the Chemical Index of Alteration reinforced an increase in the degree of weathering near South Shetland Island, which is also pointed out by other authors in studies on climate change mainly in the subantarctic islands. The trend of temperature increase implies the importance of monitoring the region.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Tiempo (Meteorología) , Minerales/análisis , Regiones Antárticas
17.
An Acad Bras Cienc ; 95(suppl 3): e20210816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37937655

RESUMEN

Aerosols have implications to climate and biogeochemical cycles in the global oceans. At sites under indirect influence of dust emitted by the Patagonian semi-desert, a debate exists on the potential fertilization effects of iron enriched aerossol. Considering this subject we conducted measurements of aerosols optical properties using a Microtops II sun photometer to access aerosol size distributions and other intrinsic properties oversea from Atlantic Southern mid-latitudes to Antarctica. Oceanographic cruises were developed between December 2010 to April 2011 and October 2011 to April 2012, in the context of the Brazilian Antarctic Program, and between November 2011 to December 2011. This survey was taken as part of the Global Maritime Aerosol Network (MAN/NASA). Our data of AOD (500 nm) along the South American coast depicts a steady decrease southwards following the decreased latitudinal continental extent. However, the influence of the aerosols blown from Patagonia semi-desert region was clear from latitude 53°S to 64°S. The predominance of aerosol fine mode was observed in Central Atlantic and close to the Drake Passage. An unexpected aerosol coarse mode predominance was found close to the Antarctic Peninsula. We attribute that to a possible weathering of rock outcrops due to the strong westerly winds in that region.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Humanos , Estaciones del Año , Clima , Tiempo (Meteorología) , Aerosoles/análisis , Contaminantes Atmosféricos/análisis
18.
Int J Behav Nutr Phys Act ; 20(1): 124, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828506

RESUMEN

BACKGROUND: Public open spaces (POS) can offer various resources to promote visitation and engagement in moderate-to-vigorous physical activity (MVPA). However, the influence of seasonal variations and specific meteorological conditions on this relationship remains unclear. Thus, this study aims to investigate the effect of seasonal variations and specific meteorological elements on different days of the week and times of day on POS use and POS-based MVPA in the Brazilian context. METHODS: In 2018, repeated measurements carried out in Southern Brazil used a systematic observation to identify the presence of users in the POS and their engagement in MVPA. The meteorological elements (temperature, thermal sensation, and relative humidity), as well as seasonality (summer, autumn, winter, and spring), were aggregated into the observations. RESULTS: A total of 19,712 systematic observations were conducted across nine POS. During these observations, a total of 59,354 users were identified. Out of theses, 39,153 (66.0%) were engaged in POS-based MVPA. The presence of users was found to be more frequent during the spring season (38.7%) and on weekends (ranging from 37.6 to 50.1% across seasons). Additionally, user presence was higher in the late afternoon (ranging from 36.4 to 58.2% across seasons) and at higher temperatures with lower relative humidity (p-value < 0.001). Regarding POS-based MVPA, it was more frequent during the winter season (36.4%) and on weekdays (ranging from 73.2 to 79.9% across seasons). Similarly, MVPA was higher in the late afternoon (ranging from 58.3 to 67.5% across seasons) and at lower temperatures and thermal sensations (p-value < 0.005). CONCLUSIONS: Higher presence of users in POS, as well as their visiting, to practice POS-based MVPA, depending on the seasons and specific meteorological elements. By creating infrastructure and conducive conditions, cities can encourage individuals to adopt more active and healthy behaviors. These findings emphasize the importance of designing urban spaces that promote physical activity and contribute to overall well-being.


Asunto(s)
Ejercicio Físico , Tiempo (Meteorología) , Humanos , Estaciones del Año , Brasil , Ciudades
19.
An Acad Bras Cienc ; 95(suppl 3): e20210528, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37820118

RESUMEN

The impact of the Antarctic Ozone Hole Influence over Southern Brazil in October 2015 was analyzed using daily mean data of the Total Column Ozone (TCO), Ultraviolet Index (UVI) and Radiative Cloud Fraction (RCF) from the Ozone Monitoring Instrument satellite instrument. Vertical profiles and fields of ozone content and Potential Vorticity available from the European Centre for Medium-Range Weather Forecast reanalysis, air masses backward trajectories from the HYbrid Single-Particle Lagrangian Integrated Trajectory model and channel 3 water vapor images from the Geostationary Operational Environmental Satellite GOES-13 were also analyzed. The five identified events showed an -7.4±2.3% average TCO reduction, leading to an +16.6±54.6% UVI increase even with a predominance of partly cloudy days. Other impacts were observed in the ozone profiles, where the most significant anomalies occurred from 650 K reaching 1.2 ppmv at the 850 K level. In the ozone fields at 700 K, the presence of a polar origin tongue was observed causing negatives anomalies between -0.2 and 0.4 ppmv in a transient system format forced with eastward-traveling Rossby waves passing through the Southern of Brazil and Uruguay.


Asunto(s)
Pérdida de Ozono , Ozono , Brasil , Tiempo (Meteorología) , Regiones Antárticas
20.
Environ Monit Assess ; 195(11): 1284, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814090

RESUMEN

Urban climate analysis usually uses data from weather stations, traverse, or satellite images. However, this methodology also has its limitations, since the series of data for climate monitoring can be scarce. Another option that has been earning attention in recent years is numeric models, which perform simulations in urban climate. Obtaining climate data is extremely important for climatology, as well as for related areas, such as urban planning, which uses this data to know how to best order the territory according to climate conditions and their projections. Our study aimed to carry out a literature review regarding urban heat island analysis methodologies, with emphasis on the use of models. We evaluated over 200 scientific documents and we used 68 in the results of this work, reporting different types of models. The results indicated that most of the works on urban climate use a more traditional methodological approach, with fieldwork, whereas studies with models have been carried out in a specific way, especially in cities in the northern hemisphere. Among the articles evaluated, the majority were published in Elsevier publisher journals, which have a more interdisciplinary approach. The most studied models were ENVI-met, SOLWEIG, PALM-4U, RayMan, and TEB. In this way, this work pointed out, unlike other works of review in urban climate methodologies, the difficulty in obtaining field data, emphasizing their importance, with regard to studies of urban heat islands and urban planning. We also conclude that the progress and development of the state of the art in numerical models are conditioned to scientific investment in the area.


Asunto(s)
Monitoreo del Ambiente , Calor , Ciudades , Monitoreo del Ambiente/métodos , Clima , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA