Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.841
Filtrar
1.
Crit Rev Biomed Eng ; 52(6): 15-31, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39093445

RESUMEN

Cardiovascular and cerebrovascular disease (CCVD) is a complex disease with a long latency period, and the most effective diagnosis and treatment methods are risk assessment and preventive interventions before onset. According to traditional Chinese medicine (TCM), Zhu-Ye-Qing wine (ZYQW) has the effect of invigorating blood and removing blood stasis. However, whether ZYQW can improve the progression of CCVD has not been reported. This study aims to explore the possible mechanism of ZYQW on CCVD through network pharmacology, and finally 249 potential targets of ZYQW and 2080 potential targets of CCVD are obtained. The key targets mainly include MAPK3, TP53, RELA, MAPK1 and AKT1. The main KEGG pathways include TNF signaling pathway, lipid and atherosclerosis pathway signaling pathway. The components in ZYQW are identified by ultra-performance liquid chromatography-mass spectrometry (UHPLC-CQE-CQE-MS/MS). Through network pharmacology, molecular docking and molecular dynamics simulation, the potential key components and prevention mechanisms of ZYQW in the prevention of CCVD are determined. ZYQW may be an effective and safe health food for the prevention of CCVD, providing guidance and basis for the further development of medicinal foods.


Asunto(s)
Enfermedades Cardiovasculares , Trastornos Cerebrovasculares , Farmacología en Red , Vino , Vino/análisis , Humanos , Trastornos Cerebrovasculares/prevención & control , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/metabolismo , Transducción de Señal/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Simulación del Acoplamiento Molecular , Medicina Tradicional China , Simulación de Dinámica Molecular
2.
Sci Rep ; 14(1): 17852, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090231

RESUMEN

Melatonin is a multifunctional molecule with diverse biological roles that holds great value as a health-promoting bioactive molecule in any food product and yeast's ability to produce it has been extensively demonstrated in the last decade. However, its quantification presents costly analytical challenges due to the usual low concentrations found as the result of yeast metabolism. This study addresses these analytical challenges by optimizing a yeast biosensor based on G protein-coupled receptors (GPCR) for melatonin detection and quantitation. Strategic genetic modifications were employed to significantly enhance its sensitivity and fluorescent signal output, making it suitable for detection of yeast-produced melatonin. The optimized biosensor demonstrated significantly improved sensitivity and fluorescence, enabling the screening of 101 yeast strains and the detection of melatonin in various wine samples. This biosensor's efficacy in quantifying melatonin in yeast growth media underscores its utility in exploring melatonin production dynamics and potential applications in functional food development. This study provides a new analytical approach that allows a rapid and cost-effective melatonin analysis to reach deeper insights into the bioactivity of melatonin in fermented products and its implications for human health. These findings highlight the broader potential of biosensor technology in streamlining analytical processes in fermentation science.


Asunto(s)
Técnicas Biosensibles , Fermentación , Melatonina , Receptores Acoplados a Proteínas G , Saccharomyces cerevisiae , Técnicas Biosensibles/métodos , Melatonina/análisis , Melatonina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Vino/análisis , Bebidas/análisis
3.
Food Res Int ; 192: 114803, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147502

RESUMEN

Mannoproteins have traditionally been recognized as effective wine organoleptic modulators, however, ambiguous understanding of the relationship between their organoleptic functions and physiochemical characteristics often lead to inappropriate application in winemaking. To reveal the possible role the physiochemical characteristics of mannoproteins play in modulating wine color and aroma properties, three water-soluble mannoproteins (MP1, MP2, MP3) with different physiochemical characteristics have been prepared, and accelerated red wine aging, malvidin pigments formation experiments, accelerated aroma release experiments have been designed to observe their organoleptic modulating functions in this research. Results suggest that the phenolic/chromatic stability of red wines could be enhanced by MP3, probably due to its low steric hindrance potential, high reactivity, and good hydro-alcoholic stability conferred by its high Mannan/Glucan ratio (8.68), abundant hydrophobic/hydrophilic amino acids (65.29 % of total protein), and low/medium molecular weight level (30.71-57.77 kDa), respectively, which protected the phenolic compounds and promoted the formation of pyranoanthocyanins. Mannoproteins could modulate the volatility of aroma compounds by expelling or retention effects, which depended on the duration of mannoprotein application (the expelling effect was firstly observed possibly because of the significant adsorption of free H2O by MPs) and the types of mannoproteins. MP1 and MP2 were prone to retain and expel aroma compounds, respectively, probably due to their medium/high molecular weight levels (60.48-135.39 kDa) that conferred abundant interacting sites, and the high proportion of hydrophobic and hydrophilic components in MP1 (97.71 % polysaccharides of total mannoprotein, 34.58 % hydrophobic amino acids of total protein) and MP2 (97.96 % polysaccharides of total mannoprotein, 28.36 % hydrophobic amino acids of total protein) guaranteed a relatively higher interacting frequency with aroma compounds and free H2O molecules, respectively.


Asunto(s)
Glicoproteínas de Membrana , Odorantes , Vino , Vino/análisis , Glicoproteínas de Membrana/metabolismo , Odorantes/análisis , Color , Mucoproteínas/química , Interacciones Hidrofóbicas e Hidrofílicas , Humanos , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química
4.
Compr Rev Food Sci Food Saf ; 23(5): e13419, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39113609

RESUMEN

The use of pesticides in viticulture may play a crucial role in ensuring the health and quality of grapes. This review analyzes the most common pesticides used, illustrating their classification and toxicity, and their variations throughout the winemaking process. Fungicides are generally harmless or mildly toxic, whereas insecticides are classified as either highly or moderately hazardous. Potential alternatives to synthetic pesticides in wine production are also reviewed, thereby including biopesticides and biological agents. Analytical methods for detecting and quantifying pesticide residues in wine are then described, including liquid chromatography and gas chromatography coupled with mass spectrometry. This review also discusses the impact of the winemaking process on pesticide content. Pesticides with strong hydrophobicity were more likely to accumulate in solid byproducts, whereas hydrophilic pesticides were distributed more in the liquid phase. Grape's skin contains lipids, so hydrophobic pesticides adsorb strongly on grape surfaces and the clarification has been shown to be effective in the reduction of hydrophobic compounds. Therefore, the final wine could have more quantities of hydrophilic pesticides. Alcoholic fermentation has been shown to be crucial in pesticide dissipation. However, pesticide residues in wine have been shown an antagonistic effect on yeasts, affecting the safety and quality of wine products. Therefore, proteomic and genomic analyses of yeast growth are reviewed to understand the effects of pesticides on yeast during fermentation. The last section describes new effective methods used in removing pesticides from grapes and wine, thereby improving product quality and reducing harmful effects.


Asunto(s)
Fermentación , Plaguicidas , Vitis , Vino , Vino/análisis , Plaguicidas/química , Plaguicidas/análisis , Vitis/química , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/química , Manipulación de Alimentos/métodos , Contaminación de Alimentos/análisis
5.
Molecules ; 29(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125074

RESUMEN

Chardonnay is one of the most popular white grape wine varieties in the world, but this wine lacks typical aroma, considered a sensory defect. Our research group identified a Chardonnay bud sport with typical muscat characteristics. The goal of this work was to discover the key candidate genes related to muscat characteristics in this Chardonnay bud sport to reveal the mechanism of muscat formation and guide molecular design breeding. To this end, HS-SPME-GC-MS and RNA-Seq were used to analyze volatile organic compounds and the differentially expressed genes in Chardonnay and its aromatic bud sport. Forty-nine volatiles were identified as potential biomarkers, which included mainly aldehydes and terpenes. Geraniol, linalool, and phenylacetaldehyde were identified as the main aroma components of the mutant. The GO, KEGG, GSEA, and correlation analysis revealed HMGR, TPS1, TPS2, TPS5, novel.939, and CYP450 as key genes for terpene synthesis. MAO1 and MAO2 were significantly downregulated, but there was an increased content of phenylacetaldehyde. These key candidate genes provide a reference for the development of functional markers for muscat varieties and also provide insight into the formation mechanism of muscat aroma.


Asunto(s)
Metaboloma , Odorantes , Transcriptoma , Compuestos Orgánicos Volátiles , Odorantes/análisis , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Vitis/genética , Vitis/química , Vitis/metabolismo , Vino/análisis , Terpenos/metabolismo , Perfilación de la Expresión Génica , Monoterpenos Acíclicos/metabolismo , Regulación de la Expresión Génica de las Plantas , Cromatografía de Gases y Espectrometría de Masas , Acetaldehído/análogos & derivados , Acetaldehído/metabolismo , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo
6.
J Agric Food Chem ; 72(32): 18121-18131, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39093022

RESUMEN

The adsorbents used to remove taint compounds from wine can also remove constituents that impart desirable color, aroma, and flavor attributes, whereas molecularly imprinted polymers (MIPs) are tailor-made to selectively bind one or more target compounds. This study evaluated the potential for MIPs to ameliorate smoke taint in wine via removal of volatile phenols during or after fermentation. The addition of MIPs to smoke-tainted Pinot Noir wine (for 24 h with stirring) achieved 35-57% removal of guaiacol, 4-methylguaiacol, cresols, and phenol, but <10% of volatile phenol glycoconjugates were removed and some wine color loss occurred. Of the MIP treatments that were subsequently applied to Semillon and Merlot fermentations or wine, MIP addition post-inoculation of yeast yielded the best outcomes, both in terms of volatile phenol removal and wine sensory profiles. Despite some impact on other aroma volatiles and red wine color, the findings demonstrate that MIPs can ameliorate smoke-tainted wine.


Asunto(s)
Fermentación , Polímeros Impresos Molecularmente , Odorantes , Humo , Gusto , Vino , Vino/análisis , Odorantes/análisis , Polímeros Impresos Molecularmente/química , Humanos , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo , Fenoles/química , Fenoles/metabolismo , Masculino , Femenino , Adulto , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Polímeros/química , Polímeros/metabolismo , Adsorción
7.
Molecules ; 29(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38998924

RESUMEN

Wood chips contain numerous active compounds that can affect the wine's characteristics. They are commonly used in red grape wines, whisky, cherry and brandy, but in fruit wines, production is not typically utilised. The aim of this study was to compare the impact of an oak barrel ageing with the effect of the addition of chips made from various types of wood (oak, maple, cherry, apple) and with various degrees of toasting to the apple wines on their antioxidant, oenological and sensory properties. The oenological parameters, the polyphenols content, antioxidant activity and content of volatile odour-active compounds were assessed. It was shown that ageing in the presence of wood chips had a less noticeable effect on the oenological and sensory parameters of the wine than barrel ageing. Moreover, wood chips used did not significantly affect the acidity, alcohol and extract content of apple wines. Wines aged in the presence of oak chips (particularly lightly toasted) exhibited the greatest increase in polyphenols, while the polyphenol content of wines aged in the presence of other chips was not dependent on their toasting degree. The ageing of fruit wines with wood chips influences the volatile profile and the olfactory sensations, which can improve their quality.


Asunto(s)
Antioxidantes , Malus , Odorantes , Polifenoles , Compuestos Orgánicos Volátiles , Vino , Madera , Vino/análisis , Malus/química , Madera/química , Antioxidantes/química , Antioxidantes/análisis , Polifenoles/análisis , Polifenoles/química , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Frutas/química
8.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999011

RESUMEN

Coffee pulp wines were produced through the mixed fermentation of Saccharomyces cerevisiae, and the flavor and sensory characteristics were comparatively evaluated. A total of 87 volatile components were identified from five coffee pulp wines, of which 68 were present in all samples, accounting for over 99% of the total concentration. The sample fermented contained significantly higher levels of volatile metabolites (56.80 mg/g). Alcohols (22 species) and esters (26 species) were the main flavor components, with the contents accounting for 56.45 ± 3.93% and 31.18 ± 4.24%, respectively, of the total. Furthermore, 14 characteristic components were identified as potential odor-active compounds, contributing to sweet and floral apple brandy flavor. Although the characteristic components are similar, the difference in the content makes the overall sensory evaluation of the samples different. The samples formed by fermentation of four strains, which obtained the highest score (86.46 ± 0.36) in sensory evaluation, were further interpreted and demonstrated through the Mantel test. The results of the component analysis were effectively distinguished by OPLS-DA and PCA, and this validation was supported by sensory evaluation. The research results provided a technical reference for the production of coffee pulp wines.


Asunto(s)
Café , Fermentación , Gusto , Compuestos Orgánicos Volátiles , Vino , Vino/análisis , Café/química , Compuestos Orgánicos Volátiles/análisis , Aromatizantes/análisis , Odorantes/análisis , Saccharomyces cerevisiae/metabolismo , Humanos
9.
Nutrients ; 16(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38999848

RESUMEN

BACKGROUND: Our search for plant-derived ceramides from sustainable sources led to the discovery of ceramides and glucosylceramides in wine lees. OBJECTIVE: This study evaluated the efficacy and safety of wine lees extract (WLE)-derived ceramides and glucosylceramides in enhancing skin barrier function. METHODS: A randomized, double-blind, placebo-controlled study was conducted with 30 healthy Japanese subjects aged 20-64. Subjects were allocated to receive either the WLE-derived ceramides and glucosylceramides (test group) or placebo for 12 weeks. The primary outcome was transepidermal water loss (TEWL), and secondary outcomes included skin hydration, visual analog scale (VAS) of itching sensation, and the Japanese Skindex-29. RESULTS: One participant withdrew for personal reasons, resulting in 29 subjects for data analysis (placebo n = 15; test n = 14). The test group showed a tendency of lower TEWL compared to the placebo after 8 weeks (p = 0.07). Furthermore, after 12 weeks of administration, the test group had significantly lower TEWL than the placebo (p = 0.04). On the other hand, no significant differences were observed in the secondary outcome parameters. No adverse events related to the supplements were reported. CONCLUSIONS: Oral supplementation of WLE-derived ceramides and glucosylceramides is a prominent and safe approach to enhancing skin barrier function and health. TRIAL REGISTRATION: (UMIN000050422).


Asunto(s)
Ceramidas , Glucosilceramidas , Extractos Vegetales , Piel , Humanos , Método Doble Ciego , Adulto , Masculino , Femenino , Persona de Mediana Edad , Administración Oral , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Adulto Joven , Piel/efectos de los fármacos , Glucosilceramidas/administración & dosificación , Glucosilceramidas/farmacología , Vino/análisis , Pérdida Insensible de Agua/efectos de los fármacos
10.
PLoS One ; 19(7): e0300213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954729

RESUMEN

Rice wine, well known for its unique flavor, rich nutritional value, and health benefits, has potential for extensive market development. Rhizopus and Aspergillus are among several microorganisms used in rice wine brewing and are crucial for determining rice wine quality. The strains were isolated via Rose Bengal and starch as a combined separation medium, followed by oenological property and sensory evaluation screening. The strain exhibiting the best performance can be screened using the traditional rice wine Qu. The strains YM-8, YM-10, and YM-16, which exhibited strong saccharification and fermentation performance along with good flavor and taste, were obtained from traditional rice wine Qu. Based on ITS genetic sequence analysis, the YM-8, YM-10, and YM-16 strains were identified as Rhizopus microsporus, Rhizopus arrhizus, and Aspergillus oryzae. The optimum growth temperature of each of the three strains was 30°C, 32°C, and 30°C, and the optimum initial pH was 6.0, 6.5, and 6.5, respectively. The activities of α-amylase, glucoamylase, and protease of YM-16 were highest at 220.23±1.88, 1,269.04±30.32, and 175.16±1.81 U/g, respectively. The amino acid content of rice wine fermented in a 20-L bioreactor with the three mold strains was higher than that of the control group, except for arginine, which was significantly lower than that of the control group. The total amino acid content and the total content of each type of amino acid were ranked as YM-16 > YM-8 > YM-10 > control group, and the amino acid content varied greatly among the strains. The control group had a higher content, whereas YM-8 and YM-16 had lower contents of volatile aroma components than the control group and had the basic flavor substances needed for rice wine, which is conducive to the formation of rice wine aroma. This selected strain, YM-16, has strong saccharification and fermentation ability, is a rich enzyme system, and improves the flavor of rice wine, thereby demonstrating its suitability as a production strain for brewing.


Asunto(s)
Reactores Biológicos , Fermentación , Oryza , Vino , Vino/análisis , Vino/microbiología , Oryza/microbiología , Oryza/metabolismo , Reactores Biológicos/microbiología , Rhizopus/metabolismo , Gusto , Aspergillus oryzae/metabolismo , Aspergillus oryzae/genética , Concentración de Iones de Hidrógeno
11.
Food Microbiol ; 123: 104571, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038885

RESUMEN

The pieddecuve (PdC) technique involves using a portion of grape must to undergo spontaneous fermentation, which is then used to inoculate a larger volume of must. This allows for promoting autochthonous yeasts present in the must, which can respect the typicality of the resulting wine. However, the real impact of this practice on the yeast population has not been properly evaluated. In this study, we examined the effects of sulphur dioxide (SO2), temperature, ethanol supplementation, and time on the dynamics and selection of yeasts during spontaneous fermentation to be used as PdC. The experimentation was conducted in a synthetic medium and sterile must using a multi-species yeast consortium and in un-inoculated natural grape must. Saccharomyces cerevisiae dominated both the PdC and fermentations inoculated with commercial wine yeast, displaying similar population growth regardless of the tested conditions. However, using 40 mg/L of SO2 and 1% (v/v) ethanol during spontaneous fermentation of Muscat of Alexandria must allowed the non-Saccharomyces to be dominant during the first stages, regardless of the temperature tested. These findings suggest that it is possible to apply the studied parameters to modulate the yeast population during spontaneous fermentation while confirming the effectiveness of the PdC methodology in controlling alcoholic fermentation.


Asunto(s)
Etanol , Fermentación , Saccharomyces cerevisiae , Dióxido de Azufre , Vitis , Vino , Levaduras , Vitis/microbiología , Vino/microbiología , Vino/análisis , Etanol/metabolismo , Dióxido de Azufre/farmacología , Dióxido de Azufre/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Levaduras/metabolismo , Temperatura , Estrés Fisiológico
12.
Food Microbiol ; 123: 104582, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038888

RESUMEN

One of the best-known Hungarian products on world wine market is Aszú, which belongs to the family of Tokaj wine specialties and is made from aszú berries. An important condition for the formation of aszú berries is the noble rot of technologically mature grapes, which is caused by Botrytis cinerea. At the same time botrytized sweet wines are produced not only in Hungary, but in many locations of wine-producing areas of Europe as well as in certain wine growing regions of other continents. The determination of botrytization is mostly based on sensory evaluations, which is a highly subjective procedure and largely depends on the training and experience of the evaluator. Currently, the classification of aszú berries (class I and class II) is based only on visual inspection and determination of sugar content. Based on these facts the primary goal of our work was to develop a qPCR assay capable for objective rating and classification of aszú berries. The developed qPCR is highly specific and sensitive as can clearly distinguish between B. cinerea and other filamentous fungi and yeast species occur on grapes. Moreover, it is suitable for categorizing berries colonized by B. cinerea to varying degrees. Thus, the developed qPCR method can be a useful technique for classification of the grape berries into four quality groups: healthy, semi-shrivelled, Aszú Class II and Aszú Class I.


Asunto(s)
Botrytis , Frutas , Vitis , Vino , Vitis/microbiología , Vino/microbiología , Vino/análisis , Frutas/microbiología , Botrytis/genética , Botrytis/clasificación , Botrytis/aislamiento & purificación , Hungría , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Enfermedades de las Plantas/microbiología
13.
Food Microbiol ; 123: 104589, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038894

RESUMEN

To further explore strain potential and develop an aromatic kiwifruit wine fermentation technique, the feasibility of simultaneous inoculation by non-Saccharomyces yeast and lactic acid bacteria was investigated. Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, and Limosilactobacillus fermentum, which have robust ß-glucosidase activity as well as good acid and ethanol tolerance, were inoculated for simultaneous fermentation with Zygosaccharomyces rouxii and Meyerozyma guilliermondii, respectively. Subsequently, the chemical compositions and sensory characteristics of the wines were comprehensively evaluated. The results showed that the majority of the simultaneous protocols effectively improved the quality of kiwifruit wines, increasing the content of polyphenols and volatile compounds, thereby enhancing sensory acceptability compared to the fermentation protocols inoculated with non-Saccharomyces yeast individually. Particularly, the collaboration between Lacp. plantarum and Z. rouxii significantly increased the diversity and content of esters, alcohols, and ketones, intensifying floral and seeded fruit odors, and achieving the highest overall acceptability. This study highlights the potential significance of simultaneous inoculation in kiwifruit wine production.


Asunto(s)
Actinidia , Fermentación , Frutas , Odorantes , Gusto , Compuestos Orgánicos Volátiles , Vino , Actinidia/microbiología , Vino/microbiología , Vino/análisis , Frutas/microbiología , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Odorantes/análisis , Humanos , Polifenoles/metabolismo , Polifenoles/análisis , Lactobacillales/metabolismo , Levaduras/metabolismo , Zygosaccharomyces/metabolismo , Zygosaccharomyces/crecimiento & desarrollo
14.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3493-3504, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39041121

RESUMEN

Based on the processing and compatibility, this study explored the effects of components in Corni Fructus(CF) and Astragali Radix(AR) on plasma metabolomics in diabetic nephropathy rats. SD rats were randomly divided into four groups and diabetic nephropathy rat model was induced by high-fat diet combined with 30 mg·kg~(-1) streptozotocin(STZ). Histopathological observations of kidney tissue sections of rats in each group were conducted using HE, PAS, and Masson staining. Ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) metabolomics method was employed to investigate the effects of CF before and after wine-processing combined with AR-related components on plasma metabolites in diabetic nephropathy rats. After drug treatment, kidney tissue damage and interstitial collagen fiber deposition area in diabetic nephropathy rats were improved to varying degrees(P<0.001). The detection results of plasma metabolomics showed that 71 biomarkers related to the pathogenesis of diabetic nephropathy were identified in diseased rats, mainly involving linoleic acid metabolism, caffeine metabolism, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, phenylalanine metabolism, retinol metabolism, and ether lipid metabolism. After drug intervention, 26 of them were significantly downregulated, with better efficacy observed in precision processed herb-pair group(P-CG_5). This study elucidated from the perspective of plasma metabolomics that P-CG_5 could improve metabolic disorders in diabetic nephropathy through pathways such as phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and caffeine metabolism, providing theoretical support and experimental basis for the clinical application of CF and AR compatibility in traditional Chinese medicine.


Asunto(s)
Cornus , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Metabolómica , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Ratas , Masculino , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Cornus/química , Astragalus propinquus/química , Vino/análisis , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo
15.
Biosens Bioelectron ; 262: 116529, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950518

RESUMEN

In the food industry, sulfides are commonly used as preservatives and flavor regulators. However, long-term excessive intake of sulfides can lead to serious health problems. Therefore, developing efficient sulfide detection methods is particularly important. Here, we have effectively synthesized a novel bifunctional copper hydroxide nitrate (Cu2(OH)3NO3) nanozyme with outstanding peroxidase-like and laccase-like behaviors in basic deep eutectic solvents (DES). Because the various types of sulfides have diverse regulatory effects on the two catalytic behaviors of Cu2(OH)3NO3, a two channel nanozyme sensor array based on the peroxidase-like and laccase-like behaviors of Cu2(OH)3NO3 was constructed and successfully used for the identification of six kinds of sulfides (Na2S, Na2S2O3, Na2SO3, Na2SO4, NaHSO3, and Na2S2O8). Remarkably, the sensor array has achieved successful discrimination among six sulfides present in wine, egg, and milk samples. Finally, the sensor array has successfully distinguished and differentiated three actual samples (wine, egg, and milk). This study is of great significance in promoting the efficient construction of array units and improving the effective identification of sulfides in complex food samples.


Asunto(s)
Técnicas Biosensibles , Cobre , Análisis de los Alimentos , Sulfuros , Sulfuros/química , Cobre/química , Técnicas Biosensibles/métodos , Análisis de los Alimentos/instrumentación , Nitratos/análisis , Nitratos/química , Leche/química , Vino/análisis , Animales , Hidróxidos/química , Nanoestructuras/química
16.
Food Chem ; 457: 140428, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024661

RESUMEN

Black rice wine (BRW) is a traditional Chinese rice wine with unique flavors; however, the formation pathways of flavor compounds driven by microbiota remain unclear. This study employed HPLC and GC-MS to reveal that during BRW fermentation, free amino acids increased sevenfold, volatile compounds doubled, and 28 key characteristic flavor compounds were identified. Metatranscriptomic analysis indicated that during fermentation, driven by physicochemical factors and microbial interactions, Saccharomyces gradually became the dominant active microorganism (relative abundance 87.01%-97.70%). Other dominant microorganisms (relative abundance >0.1%), including Saccharomycopsis, Pediococcus, Wickerhamomyces, and Weissella, significantly decreased. Meanwhile, the microflora's signature functions underwent succession: transcription early, carbohydrate metabolism mid-stage, and autophagy late. These microbial and functional successions facilitated the accumulation of flavor compounds. Metabolic network reconstruction revealed that Saccharomyces was pivotal in substrate degradation and flavor formation, while other dominant microorganisms actively promoted these processes. This study provides insights into regulating BRW's flavor through microorganisms.


Asunto(s)
Bacterias , Fermentación , Aromatizantes , Microbiota , Oryza , Vino , Vino/análisis , Vino/microbiología , Oryza/microbiología , Oryza/metabolismo , Oryza/química , Aromatizantes/metabolismo , Aromatizantes/química , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Gusto
17.
Sci Rep ; 14(1): 17044, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048642

RESUMEN

American white (Quercus alba L.) oak casks have been used for liquid storage for centuries. Their use in aged spirits is critical to imparting flavor and mouthfeel to the final product. The reason that barrels retain liquid has been hypothesized to be the result of abundant physiological structures called tyloses in parenchyma tissues and medullary rays in white oak. Using non-destructive X-ray computed tomography (XRCT) imaging, we reveal an unprecedented view of tylose structure and quantify the pore-filling capacity of tyloses in white oak that underscores the liquid retention we observe in casks. We show that pores of white oaks are filled with sevenfold higher tylose volume compared to northern red oak (Q. rubra), consistent with prior literature that casks made from white oak retain liquid while red oak fails to do so. We propose that XRCT represents a methodological standard for observing these complex structures and should be employed to understand the many questions related to liquid losses from casks, cultural treatment of casks, and the influence of climate change on oak tyloses in the future.


Asunto(s)
Quercus , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Vino/análisis , Imagenología Tridimensional/métodos
18.
Artif Cells Nanomed Biotechnol ; 52(1): 399-410, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39069752

RESUMEN

Gold nanoparticles (AuNPs) were synthesized using three red wine extracts (RW-Es); by varying temperature, pH, concentrations of RW-Es and gold salt. The RW-AuNPs were characterized by UV-vis, transmission electron microscopy (TEM), dynamic light scattering (DLS), and the Fourier Transform Infra-red Spectroscopy (FT-IR). Their stability was evaluated in water, foetal bovine serum (FBS), phosphate-buffered saline (PBS), and Dulbecco's Modified Eagle Medium (DMEM) by UV-Vis. The effect of the RW-Es and RW-AuNPs on KMST-6 cell cell viability was evaluated by MTT assay; and their wound healing effects were monitored by scratch assay. RW-AuNPs synthesis was observed by colour change, and confirmed by UV-Vis spectrum, with an absorption peak around 550 nm. The hydrodynamic sizes of the RW-AuNPs ranged between 10 and 100 nm. Polyphenols, carboxylic acids, and amino acids are some of functional groups in the RW-Es that were involved in the reduction of RW-AuNPs. The RW-AuNPs were stable in test solutions and showed no cytotoxicity to the KMST-6 cells up to 72 h. AuNPs synthesized from Pinotage and Cabernet Sauvignon enhanced proliferation of KMST-6 cells and showed potential as wound healing agents. Further studies are required to investigate the molecular mechanisms involved in the potential wound-healing effect of the RW-AuNPs.


Asunto(s)
Oro , Nanopartículas del Metal , Vino , Cicatrización de Heridas , Oro/química , Oro/farmacología , Nanopartículas del Metal/química , Vino/análisis , Cicatrización de Heridas/efectos de los fármacos , Humanos , Supervivencia Celular/efectos de los fármacos
19.
Food Res Int ; 191: 114644, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059899

RESUMEN

With the increasing threat of global warming, the cultivation of wine grapes in high-altitude with cool-temperature climates has become a viable option. However, the precise mechanism of environmental factors regulating grape quality remains unclear. Therefore, principal component analysis (PCA) was utilized to evaluate the quality of wine grape (Cabernet Sauvignon) in six high-altitude wine regions (1987, 2076, 2181, 2300, 2430, 2540 m). Structural equation modeling (SEM) was applied for the first time to identify the environmental contribution to grape quality. The wine grape quality existed spatial variation in basic physical attributes (BP), basic chemical compositions (BC), phenolic compounds (PC) and individual phenols. The PCA models (variance > 85 %) well separate wine grapes from the six altitudes into three groups according to scores. The score of grapes at 2300 m was significantly high (3.83), and the grapes of 2540 m showed a significantly low score (1.46). Subsequently, the malic acid, total tannin, total phenol, titratable acid, total anthocyanin, and skin thickness were the main differing indexes. SEM model characterized the relational network of differing indexes and microclimatic factors, which showed that temperature and extreme air temperature had a greater direct effect on differing indexes than light, with great contributions from soil temperature (0.98**), day-night temperature difference (0.825*), and day air temperature (0.789**). Our findings provided a theoretical basis for grape cultivation management in high-altitude regions and demonstrated that the SEM model is a useful tool for exploring the relationship between climate and fruit quality.


Asunto(s)
Altitud , Microclima , Análisis de Componente Principal , Vitis , Vino , Vitis/química , Vino/análisis , Fenoles/análisis , Temperatura , Frutas/química , Antocianinas/análisis , Taninos/análisis , Malatos/análisis
20.
Food Res Int ; 191: 114726, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059919

RESUMEN

Vitis amurensis grape, an East Asian Vitis species, has excellent cold and disease resistance and exhibits high winemaking potential. In this study, the aroma compounds in grapes from five V. amurensis cultivars ('Beiguohong', 'Beiguolan', 'Shuangfeng', 'Shuanghong', 'Shuangyou') and three interspecific hybrids ('Beibinghong', 'Xuelanhong', 'Zuoyouhong') from two regions (Zuojia and Ji'an, Jilin, China) were identified via HS-SPME-GC/MS. The results showed that V. amurensis grapes had a greater concentration of aroma compounds than the interspecific hybrid berries. 'Beibinghong' was relatively rich in terpenes, although their concentrations were all lower than the threshold. 'Shuangfeng' contained more concentrations of free C6/C9 compounds, alcohols, aromatics and aldehydes/ketones than the other cultivars. The aroma characteristics of 'Beiguolan' and 'Shuanghong' were relatively similar. The grapes from the lower temperature and more fertile soil of Zuojia contained more C6/C9 compounds, norisoprenoids and alcohols, while aromatics were more abundant in the grapes from Ji'an, which was warmer than the Zuojia region. Herbaceous, floral, fruity and sweet were the main aroma series of V. amurensis grapes. Our study could provide a reference for the development and utilization of V. amurensis grapes and lay a foundation for the development of wild grape cultivars and the production of wines with characteristic styles.


Asunto(s)
Frutas , Cromatografía de Gases y Espectrometría de Masas , Genotipo , Odorantes , Vitis , Compuestos Orgánicos Volátiles , Vino , Vitis/química , Vitis/genética , Vitis/clasificación , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , Frutas/química , Vino/análisis , China , Hibridación Genética , Microextracción en Fase Sólida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA