Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.634
Filtrar
1.
Biosensors (Basel) ; 14(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39056623

RESUMEN

This study aimed to develop a novel fluorescent aptasensor for the quantitative detection of zearalenone (ZEN), addressing the limitations of conventional detection techniques in terms of speed, sensitivity, and ease of use. Nitrogen-doped carbon dots (N-CDs) were synthesized via the hydrothermal method, resulting in spherical particles with a diameter of 3.25 nm. These N-CDs demonstrated high water solubility and emitted a bright blue light at 440 nm when excited at 355 nm. The fluorescence of N-CDs was quenched by dispersed gold nanoparticles (AuNPs) through the inner filter effect, while aggregated AuNPs induced by NaCl did not affect the fluorescence of N-CDs. The aptamer could protect AuNPs from NaCl-induced aggregation, but the presence of ZEN weakened this protective effect. Based on this principle, optimal conditions for ZEN detection included 57 mM NaCl, 12.5 nM aptamer concentration, incubation of AuNPs with NaCl for 15 min in Tris-EDTA(TE) buffer, and incubation of aptamer with ZEN and NaCl for 30 min. Under these optimized conditions, the "signal-on" fluorescent aptasensor for ZEN detection showed a linear range of 0.25 to 200 ng/mL with a low detection limit of 0.0875 ng/mL. Furthermore, the developed aptasensor exhibited excellent specificity and could rapidly detect ZEN in corn flour samples or corn oil, achieving satisfactory recovery rates ranging from 84.7% to 108.6%. Therefore, this study presents an economical, convenient, sensitive, and rapid method for accurately quantifying ZEN in cereal products.


Asunto(s)
Técnicas Biosensibles , Carbono , Grano Comestible , Oro , Nanopartículas del Metal , Nitrógeno , Zearalenona , Carbono/química , Grano Comestible/química , Nitrógeno/química , Nanopartículas del Metal/química , Oro/química , Zearalenona/análisis , Aptámeros de Nucleótidos/química , Límite de Detección , Puntos Cuánticos/química , Fluorescencia
2.
Biosensors (Basel) ; 14(7)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39056631

RESUMEN

Mycotoxins are secondary products produced primarily by fungi and are pathogens of animals and cereals, not only affecting agriculture and the food industry but also causing great economic losses. The development of rapid and sensitive methods for the detection of mycotoxins in food is of great significance for livelihood issues. This study employed an amino-functionalized zirconium luminescent metal-organic framework (LOF) (i.e., UiO-66-NH2). Click chemistry was utilized to assemble UiO-66-NH2 in a controlled manner, generating LOF assemblies to serve as probes for fluorescence-linked immunoassays. The proposed fluoroimmunoassay method for Zearalenone (ZEN) and Fumonisin B1 (FB1) detection based on the UiO-66-NH2 assembled probe (CLICK-FLISA) afforded a linear response range of 1-20 µmol/L for ZEN, 20 µmol/L for FB1, and a very low detection limit (0.048-0.065 µmol/L for ZEN; 0.048-0.065 µmol/L for FB1). These satisfying results demonstrate promising applications for on-site quick testing in practical sample analysis. Moreover, the amino functionalization may also serve as a modification strategy to design luminescent sensors for other food contaminants.


Asunto(s)
Fumonisinas , Estructuras Metalorgánicas , Zea mays , Zearalenona , Fumonisinas/análisis , Zearalenona/análisis , Estructuras Metalorgánicas/química , Zea mays/química , Química Clic , Fluoroinmunoensayo/métodos , Técnicas Biosensibles , Contaminación de Alimentos/análisis , Límite de Detección , Micotoxinas/análisis
3.
Toxins (Basel) ; 16(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39057942

RESUMEN

Crops contamination with aflatoxins (AFs) and zearalenone (ZEA) threaten human and animal health; these mycotoxins are produced by several species of Aspergillus and Fusarium. The objective was to evaluate under field conditions the influence of the wet season on the dissemination of AF- and ZEA-producing fungi via houseflies collected from dairy farms. Ten dairy farms distributed in the semi-arid Central Mexican Plateau were selected. Flies were collected in wet and dry seasons at seven points on each farm using entomological traps. Fungi were isolated from fly carcasses via direct seeding with serial dilutions and wet chamber methods. The production of AFs and ZEA from pure isolates was quantified using indirect competitive ELISA. A total of 693 Aspergillus spp. and 1274 Fusarium spp. isolates were obtained, of which 58.6% produced AFs and 50.0% produced ZEA (491 ± 122; 2521 ± 1295 µg/kg). Houseflies and both fungal genera were invariably present, but compared to the dry season, there was a higher abundance of flies as well as AF- and ZEA-producing fungi in the wet season (p < 0.001; 45.3/231 flies/trap; 8.6/29.6% contaminated flies). These results suggest that rainy-weather conditions on dairy farms increase the spread of AF- and ZEA-producing Aspergillus spp. and Fusarium spp. through houseflies and the incorporation of their mycotoxins into the food chain.


Asunto(s)
Aflatoxinas , Aspergillus , Industria Lechera , Fusarium , Moscas Domésticas , Estaciones del Año , Zearalenona , Animales , Fusarium/metabolismo , México , Aspergillus/metabolismo , Aspergillus/aislamiento & purificación , Aflatoxinas/biosíntesis , Moscas Domésticas/microbiología , Contaminación de Alimentos/análisis , Granjas
4.
J Agric Food Chem ; 72(32): 18146-18154, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39075026

RESUMEN

Zearalenone (ZEN) is an estrogenic mycotoxin causing reproductive toxicity in livestock. Currently, lactone hydrolases are used in the enzymatic degradation of ZEN. However, most lactone hydrolases suffer from low degradation efficiency and poor thermal stability. ZHD518, as a documented neutral enzyme for ZEN degradation, exhibits high enzymatic activity under neutral conditions. In this study, a multifunctional peptide S1v1-(AEAEAHAH)2 was fused to the N-terminus of ZHD518. Compared with the wild-type enzyme, the peptide fusion significantly enhanced protein expression by 1.28 times, enzyme activity by 9.27 times, thermal stability by 37.08 times after incubation at 45 °C for 10 min and enzyme stability during long-term storage. Moreover, ZEN concentrations in corn bran, corn germ meal, and corn gluten powder decreased from 5.29 ± 0.04, 5.31 ± 0.03, and 5.30 ± 0.01 µg/g to 0.48 ± 0.05, 0.48 ± 0.06, and 0.21 ± 0.04 µg/g, respectively, following a 60 min treatment with S1v1-GS-ZHD518, resulting in degradation rates of 90.98, 91.00, and 95.32%, respectively. In conclusion, the properties of S1v1-GS-ZHD518, such as its efficient degradability, high temperature resistance and storage resistance, offer the possibility of its application in food or feed.


Asunto(s)
Estabilidad de Enzimas , Péptidos , Zea mays , Zearalenona , Zearalenona/química , Zearalenona/metabolismo , Zea mays/química , Zea mays/metabolismo , Zea mays/genética , Péptidos/química , Péptidos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Hidrolasas/química , Lactonas/química , Lactonas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética
5.
Ecotoxicol Environ Saf ; 282: 116757, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047363

RESUMEN

Zearalenone (ZEN) has been shown to cause reproductive damage by inducing oxidative stress. Astaxanthin and L-carnitine are widely used to alleviate oxidative stress and promote sperm maturation. However, it remains uncertain whether they are effective in mitigating spermatogenesis disorders induced by ZEN. This study aimed to investigate the therapeutic efficacy and potential mechanisms of Vigor King (Vig), a compound preparation primarily consisting of astaxanthin and L-carnitine, in alleviating ZEN-induced spermatogenesis disorders. In the experiment, mice received continuous oral gavage of ZEN (80 µg/kg) for 35 days, accompanied by a rescue strategy with Vig (200 mg/kg). The results showed that Vig effectively reduced the negative impact on semen quality and improved the structural and functional abnormalities of the seminiferous epithelium caused by ZEN. Additionally, the accumulation of reactive oxygen species (ROS), DNA double-strand breaks, apoptosis, and autophagy abnormalities were all significantly ameliorated. Intriguingly, the GSK3ß-dependent BTRC-NRF2 signaling pathway was found to play an important role in this process. Furthermore, testing of offspring indicated that Vig could extend its protective effects to the next generation, effectively combating the transgenerational toxic effects of ZEN. In summary, our research suggests that Vig supplementation holds considerable promise in alleviating spermatogenesis disorders induced by zearalenone.


Asunto(s)
Espermatogénesis , Zearalenona , Animales , Zearalenona/toxicidad , Masculino , Espermatogénesis/efectos de los fármacos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Carnitina/farmacología , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Estrógenos no Esteroides/toxicidad , Femenino , Xantófilas
6.
Int Immunopharmacol ; 139: 112710, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39029229

RESUMEN

PANoptosis is manifested with simultaneous activation of biomarkers for both pyroptotic, apoptotic and necroptotic signaling via the molecular platform PANoptosome and it is involved in pathologies of various inflammatory diseases including hemophagocytic lymphohistiocytosis (HLH). Scutellarin is a flavonoid isolated from herbal Erigeron breviscapus (Vant.) Hand.-Mazz. and has been shown to possess multiple pharmacological effects, but it is unknown whether scutellarin has any effects on PANoptosis and related inflammatory diseases. In this study, we found that scutellarin inhibited cell death in bone marrow-derived macrophages (BMDMs) and J774A.1 cells treated with TGF-ß-activated kinase 1 (TAK1) inhibitor 5Z-7-oxozeaenol (OXO) plus lipopolysaccharide (LPS), which has been commonly used to induce PANoptosis. Western blotting showed that scutellarin dose-dependently inhibited the activation biomarkers for pyroptotic (Caspase-1p10 and GSDMD-NT), apoptotic (cleaved Casp3/8/9 and GSDME-NT), and necroptotic (phosphorylated MLKL) signaling. The inhibitory effect of scutellarin was unaffected by NLRP3 or Caspase-1 deletion. Interestingly, scutellarin blocked the assembly of PANoptosome that encompasses ASC, RIPK3, Caspase-8 and ZBP1, suggesting its action on upstream signaling. Consistent with this, scutellarin inhibited mitochondrial damage and mitochondrial reactive oxygen species (mtROS) generation in cells treated with OXO+LPS. Further, mito-TEMPO that can scavenge mtROS significantly inhibited OXO+LPS-induced PANoptotic cell death. In line with the in vitro results, scutellarin markedly alleviated systemic inflammation, multiple organ injury, and activation of PANoptotic biomarkers in mice with HLH. Collectively, our data suggest that scutellarin can inhibit PANoptosis by suppressing mitochondrial damage and mtROS generation and thereby mitigating multiple organ injury in mice with inflammatory disorders.


Asunto(s)
Apigenina , Glucuronatos , Lipopolisacáridos , Ratones Endogámicos C57BL , Mitocondrias , Especies Reactivas de Oxígeno , Apigenina/farmacología , Apigenina/uso terapéutico , Glucuronatos/farmacología , Glucuronatos/uso terapéutico , Animales , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones , Línea Celular , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Necroptosis/efectos de los fármacos , Masculino , Quinasas Quinasa Quinasa PAM/metabolismo , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Zearalenona/administración & dosificación , Lactonas , Resorcinoles
7.
Anal Chem ; 96(28): 11326-11333, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38953527

RESUMEN

Herein, the aptamer-antibody sandwich module was first introduced to accurately recognize a low molecular weight compound (mycotoxin). Impressively, compared with the large steric hindrance of a traditional dual-antibody module, the aptamer-antibody sandwich with low Gibbs free energy and a low dissociation constant has high recognition efficiency; thus, it could reduce false positives and false negatives caused by a dual-antibody module. As a proof of concept, a sensitive electrochemiluminescence (ECL) biosensor was constructed for detecting mycotoxin zearalenone (ZEN) based on an aptamer-antibody sandwich as a biological recognition element and porous ZnO nanosheets (Zn NSs) supported Cu nanoclusters (Cu NCs) as the signal transduction element, in which the antibody was modified on the vertex of a tetrahedral DNA nanostructure (TDN) with a rigid structure to increase the kinetics of target recognition for promoting the detection sensitivity. Moreover, the Cu NCs/Zn NSs exhibited an excellent ECL response that was attributed to the aggregation-induced ECL enhancement through electrostatic interactions. The sensing platform achieved trace detection of ZEN with a low detection limit of 0.31 fg/mL, far beyond that of the enzyme-linked immunosorbent assay (ELISA, the current rapid detection method) and high-performance liquid chromatography (HPLC, the national standard detection method). The strategy has great application potential in food analysis, environmental monitoring, and clinical diagnosis.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Zearalenona , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Zearalenona/análisis , Zearalenona/inmunología , Técnicas Electroquímicas/métodos , Cobre/química , Límite de Detección , Anticuerpos/química , Anticuerpos/inmunología , Mediciones Luminiscentes/métodos , Óxido de Zinc/química , Peso Molecular
8.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891908

RESUMEN

Chronic inflammation causes muscle wasting. Because most inflammatory cytokine signals are mediated via TGF-ß-activated kinase-1 (TAK1) activation, inflammatory cytokine-induced muscle wasting may be ameliorated by the inhibition of TAK1 activity. The present study was undertaken to clarify whether TAK1 inhibition can ameliorate inflammation-induced muscle wasting. SKG/Jcl mice as an autoimmune arthritis animal model were treated with a small amount of mannan as an adjuvant to enhance the production of TNF-α and IL-1ß. The increase in these inflammatory cytokines caused a reduction in muscle mass and strength along with an induction of arthritis in SKG/Jcl mice. Those changes in muscle fibers were mediated via the phosphorylation of TAK1, which activated the downstream signaling cascade via NF-κB, p38 MAPK, and ERK pathways, resulting in an increase in myostatin expression. Myostatin then reduced the expression of muscle proteins not only via a reduction in MyoD1 expression but also via an enhancement of Atrogin-1 and Murf1 expression. TAK1 inhibitor, LL-Z1640-2, prevented all the cytokine-induced changes in muscle wasting. Thus, TAK1 inhibition can be a new therapeutic target of not only joint destruction but also muscle wasting induced by inflammatory cytokines.


Asunto(s)
Citocinas , Quinasas Quinasa Quinasa PAM , Atrofia Muscular , Animales , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/etiología , Atrofia Muscular/tratamiento farmacológico , Ratones , Citocinas/metabolismo , Debilidad Muscular/metabolismo , Debilidad Muscular/tratamiento farmacológico , Miostatina/metabolismo , Miostatina/antagonistas & inhibidores , Proteínas Musculares/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/metabolismo , Inflamación/metabolismo , Inflamación/patología , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Fosforilación/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Zearalenona/farmacología , Zearalenona/análogos & derivados
9.
Mikrochim Acta ; 191(7): 367, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832980

RESUMEN

An electrochemical aptasensor was used for the fast and sensitive detection of zearalenone (ZEN) based on the combination of Co3O4/MoS2/Au nanocomposites and the hybrid chain reaction (HCR). The glassy carbon electrode was coated with Co3O4/MoS2/Au nanomaterials to immobilize the ZEN-cDNA that had been bound with ZEN-Apt by the principle of base complementary pairing. In the absence of ZEN, the HCR could not be triggered because the ZEN-cDNA could not be exposed. After ZEN was added to the surface of the electrode, a complex structure was produced on the modified electrode by the combination of ZEN and ZEN-Apt. Therefore, the ZEN-cDNA can raise the HCR to produce the long-strand dsDNA structure. Due to the formation of dsDNA, the methylene blue (MB) could be inserted into the superstructure of branched DNA and the peak currents of the MB redox signal dramatically increased. So the concentration of ZEN could be detected by the change of signal intensity. Under optimized conditions, the developed electrochemical biosensing strategy showed an outstanding linear detection range of 1.0×10-10 mol/L to 1.0×10-6 mol/L, a low detection limit (LOD) of 8.5×10-11 mol/L with desirable selectivity and stability. Therefore, the fabricated platform possessed a great application potential in fields of food safety, medical detection, and drug analysis.


Asunto(s)
Técnicas Electroquímicas , Análisis de los Alimentos , Análisis de Peligros y Puntos de Control Críticos , Nanocompuestos , Zearalenona , Zearalenona/análisis , Análisis de Peligros y Puntos de Control Críticos/métodos , Análisis de los Alimentos/instrumentación , Análisis de los Alimentos/métodos , Nanocompuestos/química , Nanocompuestos/normas , Electrodos , Oro/química , Sensibilidad y Especificidad , Reproducibilidad de los Resultados
10.
Artículo en Inglés | MEDLINE | ID: mdl-38857317

RESUMEN

Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, causes enormous economic losses in the food and feed industries. Simple, rapid, low-cost, and quantitative analysis of ZEN is particularly urgent in the fields of food safety and animal husbandry. Using the bioluminescent bacterium Photobacterium phosphoreum T3, we propose a bioluminescence inhibition assay to evaluate ZEN levels quickly. The limit of detection (LOD), limit of quantification (LOQ), and quantitative working range of this bioluminescence inhibition assay were 0.1 µg/mL, 5 µg/mL, and 5-100 µg/mL, respectively. The concentration-response curve of the bioluminescence inhibition rate and ZEN concentration was plotted within the range 5 to 100 µg/mL, as follows: y = 0.0069x2 - 0.0190x + 7.9907 (R2 = 0.9943, y is luminescence inhibition rate, x is ZEN concentration). First, we used the bioluminescence inhibition assay to detect the remaining ZEN in samples treated with purified lactonohydrolase ZHD101. The bioluminescence inhibition assay results showed a strong correlation with the HPLC analysis. Furthermore, we successfully evaluated the overall toxicity of samples treated with purified peroxidase Prx and H2O2 using the P. phosphoreum T3 bioluminescence inhibition assay. The results indicate that the degradation products of ZEN created by purified peroxidase Prx and H2O2 showed little toxicity to P. phosphoreum T3. In this study, a simple, rapid, and low-cost assay method of zearalenone by bioluminescent P. phosphoreum T3 was developed. The bioluminescence inhibition assay could be used to estimate the efficiency of enzymatic degradation of ZEN.


Asunto(s)
Photobacterium , Zearalenona , Zearalenona/análisis , Zearalenona/metabolismo , Photobacterium/efectos de los fármacos , Mediciones Luminiscentes , Luminiscencia , Contaminación de Alimentos/análisis
11.
Food Chem ; 456: 140088, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38878543

RESUMEN

Based on rational design, zearalenone degrading enzyme was evolved to improve the hydrolysis efficiency under acidic conditions. At pH 4.2 and 37 °C, the activity of the zearalenone degrading enzyme evolved with 8 mutation sites increased from 7.69 U/mg to 38.67 U/mg. Km of the evolved zearalenone degrading enzyme decreased from 283.61 µM to 75.33 µM. The evolved zearalenone degrading enzyme was found to effectively degrade zearalenone in pig stomach chyme. Molecular docking revealed an increase in the number of hydrogen bonds and π-sigma interactions between the evolved zearalenone degrading enzyme and zearalenone. The evolved zearalenone degrading enzyme was valuable for hydrolyzing zearalenone under acidic conditions.


Asunto(s)
Simulación del Acoplamiento Molecular , Zearalenona , Zearalenona/química , Zearalenona/metabolismo , Hidrólisis , Animales , Concentración de Iones de Hidrógeno , Porcinos , Cinética , Evolución Molecular Dirigida
12.
Biosens Bioelectron ; 260: 116455, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38824702

RESUMEN

In this work, a potential-controlled electrochromic visual biosensor was developed for detecting zearalenone (ZEN) using a distance readout strategy. The sensor chip includes a square detection area and a folded signal output area created with laser etching technology. The detection area is modified with graphene oxide and ZEN aptamer, while Prussian blue (PB) is electrodeposited onto the signal output channel. When an appropriate voltage is applied, PB in the signal output area is reduced to colorless Prussian white (PW). The target ZEN molecules have the capability to release aptamers from graphene oxide (GO) surface in the detection area, resulting in a subsequent change in the potential of the visual signal output channel. This change determines the length of the channel that changes from blue to colorless, with the color change distance being proportional to the ZEN concentration. Using this distance readout strategy, ZEN detection within the range of 1 ng/mL to 300 ng/mL was achieved, with a detection limit of 0.29 ng/mL.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Límite de Detección , Zearalenona , Zearalenona/análisis , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Grafito/química , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Diseño de Equipo , Ferrocianuros/química , Colorimetría/instrumentación , Colorimetría/métodos
13.
FASEB J ; 38(13): e23701, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38941193

RESUMEN

Zearalenone (ZEN) is a mycotoxin known for its estrogen-like effects, which can disrupt the normal physiological function of endometrial cells and potentially lead to abortion in female animals. However, the precise mechanism by which ZEN regulates endometrial function remains unclear. In this study, we found that the binding receptor estrogen receptors for ZEN is extensively expressed across various segments of the uterus and within endometrial cells, and a certain concentration of ZEN treatment reduced the proliferation capacity of goat endometrial epithelial cells (EECs) and endometrial stromal cells (ESCs). Meanwhile, cell cycle analysis revealed that ZEN treatment leaded to cell cycle arrest in goat EECs and ESCs. To explore the underlying mechanism, we investigated the mitochondrial quality control systems and observed that ZEN triggered excessive mitochondrial fission and disturbed the balance of mitochondrial fusion-fission dynamics, impaired mitochondrial biogenesis, increased mitochondrial unfolded protein response and mitophagy in goat EECs and ESCs. Additionally, ZEN treatment reduced the activities of mitochondrial respiratory chain complexes, heightened the production of hydrogen peroxide and reactive oxygen species, and caused cellular oxidative stress and mitochondrial dysfunction. These results suggest that ZEN has adverse effects on goat endometrium cells by disrupting the mitochondrial quality control system and affecting cell cycle and proliferation. Understanding the underlying molecular pathways involved in ZEN-induced mitochondrial dysfunction and its consequences on cell function will provide critical insights into the reproductive toxicity of ZEN and contribute to safeguarding the health and wellbeing of animals and humans exposed to this mycotoxin.


Asunto(s)
Proliferación Celular , Endometrio , Cabras , Mitocondrias , Zearalenona , Animales , Femenino , Endometrio/citología , Endometrio/metabolismo , Endometrio/efectos de los fármacos , Zearalenona/toxicidad , Zearalenona/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Cultivadas , Dinámicas Mitocondriales/efectos de los fármacos , Mitofagia/efectos de los fármacos , Células del Estroma/metabolismo , Células del Estroma/efectos de los fármacos , Células del Estroma/citología
14.
Toxins (Basel) ; 16(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38922147

RESUMEN

Zearalenone (ZEN) is a prevalent mycotoxin found in grains and grain-derived products, inducing adverse health effects in both animals and humans. The in-field application of microorganisms to degrade and detoxify ZEN is a promising strategy to enhance the safety of food and feed. In this study, we investigated the potential of three actinobacterial strains to degrade and detoxify ZEN in vitro and in planta on wheat ears. The residual ZEN concentration and toxicity in the samples were analysed with UHPLC-MS/MS and a bioluminescence BLYES assay, respectively. Streptomyces rimosus subsp. rimosus LMG19352 could completely degrade and detoxify 5 mg/L ZEN in LB broth within 24 h, along with significant reductions in ZEN concentration both in a minimal medium (MM) and on wheat ears. Additionally, it was the only strain that showed a significant colonisation of these ears. Rhodococcus sp. R25614 exhibited partial but significant degradation in LB broth and MM, whereas Streptomyces sp. LMG16995 degraded and detoxified ZEN in LB broth after 72 h by 39% and 33%, respectively. Although all three actinobacterial strains demonstrated the metabolic capability to degrade and detoxify ZEN in vitro, only S. rimosus subsp. rimosus LMG19352 showed promising potential to mitigate ZEN in planta. This distinction underscores the importance of incorporating in planta screening assays for assessing the potential of mycotoxin-biotransforming microorganisms as biocontrol agents.


Asunto(s)
Agentes de Control Biológico , Triticum , Zearalenona , Zearalenona/metabolismo , Zearalenona/toxicidad , Triticum/microbiología , Agentes de Control Biológico/metabolismo , Streptomyces/metabolismo , Actinobacteria/metabolismo , Contaminación de Alimentos/prevención & control , Espectrometría de Masas en Tándem
15.
Sci Rep ; 14(1): 13281, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858492

RESUMEN

Zearalenone (ZEN), an estrogenic mycotoxin, is one of the most common food and feed contaminants. Also, its metabolites α-zearalenol (α-ZEL) and ß-zearalenol (ß-ZEL) are considered to induce oxidative stress, however its effect in prostate cells is not known yet. Our previous observations showed that forehead box transcription factor 3a (FOXO3a) expression is modified in hormone- sensitive cells in the response to mycotoxins, similar to the phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway. Thus, this study evaluated the direct molecular effect of α-ZEL and ß-ZEL in a dose of 30 µM in hormone-dependent human prostate cancer (PCa) cells with the focus of the involvement of FOXO3a and PI3K/Akt signaling pathway in that effect. We observed that both active metabolites of ZEN reduced cell viability, induced oxidative stress, cell cycle arrest and apoptosis in PCa cells. Furthermore, we observed that FOXO3a as well as PI3K/Akt signaling pathway participate in ZELs induced toxicity in PCa cells, indicating that this signaling pathway might be a regulator of mycotoxin-induced toxicity generally.


Asunto(s)
Apoptosis , Proteína Forkhead Box O3 , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Especies Reactivas de Oxígeno , Transducción de Señal , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Apoptosis/efectos de los fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Zeranol/análogos & derivados , Zeranol/metabolismo , Zeranol/farmacología , Línea Celular Tumoral , Zearalenona/farmacología , Zearalenona/toxicidad , Zearalenona/análogos & derivados , Supervivencia Celular/efectos de los fármacos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
16.
Int J Hyg Environ Health ; 260: 114405, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878407

RESUMEN

Zearalenone (ZEN) is a fungal-derived toxin found in global food supplies including cereal grains and processed foods, impacting populations worldwide through diet. Because the chemical structure of ZEN and metabolites closely resembles 17ß-estradiol (E2), they interact with estrogen receptors α/ß earning their designation as 'mycoestrogens'. In animal models, gestational exposure to mycoestrogens disrupts estrogen activity and impairs fetal growth. Here, our objective was to evaluate relationships between mycoestrogen exposure and sex steroid hormone concentrations in maternal circulation and cord blood for the first time in humans. In each trimester, pregnant participants in the UPSIDE study (n = 297) provided urine for mycoestrogen analysis and serum for hormone analysis. At birth, placental mycoestrogens and cord steroids were measured. We fitted longitudinal models examining log-transformed mycoestrogen concentrations in relation to log-transformed hormones, adjusting for covariates. Secondarily, multivariable linear models examined associations at each time point (1st, 2nd, 3rd trimesters, delivery). We additionally considered effect modification by fetal sex. ZEN and its metabolite, α-zearalenol (α-ZOL), were detected in >93% and >75% of urine samples; >80% of placentas had detectable mycoestrogens. Longitudinal models from the full cohort exhibited few significant associations. In sex-stratified analyses, in pregnancies with male fetuses, estrone (E1) and free testosterone (fT) were inversely associated with ZEN (E1 %Δ: -6.68 95%CI: -12.34, -0.65; fT %Δ: -3.22 95%CI: -5.68, -0.70); while α-ZOL was positively associated with E2 (%Δ: 5.61 95%CI: -1.54, 9.85) in pregnancies with female fetuses. In analysis with cord hormones, urinary mycoestrogens were inversely associated with androstenedione (%Δ: 9.15 95%CI: 14.64, -3.30) in both sexes, and placental mycoestrogens were positively associated with cord fT (%Δ: 37.13, 95%CI: 4.86, 79.34) amongst male offspring. Findings support the hypothesis that mycoestrogens act as endocrine disruptors in humans, as in animal models and livestock. Additional work is needed to understand impacts on maternal and child health.


Asunto(s)
Sangre Fetal , Zearalenona , Humanos , Femenino , Sangre Fetal/química , Embarazo , Zearalenona/orina , Zearalenona/sangre , Adulto , Masculino , Hormonas Esteroides Gonadales/sangre , Exposición Materna , Estudios de Cohortes , Zeranol/análogos & derivados , Zeranol/orina , Estradiol/sangre , Adulto Joven , Placenta/química
17.
Front Immunol ; 15: 1386780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756773

RESUMEN

Introduction: Intracerebral hemorrhage (ICH) often triggers oxidative stress through reactive oxygen species (ROS). Transforming growth factor-ß-activated kinase 1 (TAK1) plays a pivotal role in regulating oxidative stress and inflammation across various diseases. 5Z-7-Oxozeaenol (OZ), a specific inhibitor of TAK1, has exhibited therapeutic effects in various conditions. However, the impact of OZ following ICH and its underlying molecular mechanisms remain elusive. This study aimed to explore the possible role of OZ in ICH and its underlying mechanisms by inhibiting oxidative stress-mediated pyroptosis. Methods: Adult male Sprague-Dawley rats were subjected to an ICH model, followed by treatment with OZ. Neurobehavioral function, blood-brain barrier integrity, neuronal pyroptosis, and oxidative stress markers were assessed using various techniques including behavioral tests, immunofluorescence staining, western blotting, transmission electron microscopy, and biochemical assays. Results: Our study revealed that OZ administration significantly inhibited phosphorylated TAK1 expression post-ICH. Furthermore, TAK1 blockade by OZ attenuated blood-brain barrier (BBB) disruption, neuroinflammation, and oxidative damage while enhancing neurobehavioral function. Mechanistically, OZ administration markedly reduced ROS production and oxidative stress by facilitating nuclear factor-erythroid 2-related factor 2 (NRF2) nuclear translocation. This was accompanied by a subsequent suppression of the NOD-like receptor protein 3 (NLRP3) activation-mediated inflammatory cascade and neuronal pyroptosis. Discussion: Our findings highlight that OZ alleviates brain injury and oxidative stress-mediated pyroptosis via the NRF2 pathway. Inhibition of TAK1 emerges as a promising approach for managing ICH.


Asunto(s)
Hemorragia Cerebral , Quinasas Quinasa Quinasa PAM , Factor 2 Relacionado con NF-E2 , Neuronas , Estrés Oxidativo , Piroptosis , Transducción de Señal , Animales , Masculino , Ratas , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Modelos Animales de Enfermedad , Lactonas , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Piroptosis/efectos de los fármacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Resorcinoles , Transducción de Señal/efectos de los fármacos , Zearalenona/administración & dosificación
18.
Anal Chem ; 96(22): 9043-9050, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38774984

RESUMEN

Zearalenone (ZEN) is an extremely hazardous chemical widely existing in cereals, and its high-sensitivity detection possesses significant significance to human health. Here, the cathodic aggregation-induced electrochemiluminescence (AIECL) performance of tetraphenylethylene nanoaggregates (TPE NAs) was modulated by solvent regulation, based on which an electrochemiluminescence (ECL) aptasensor was constructed for sensitive detection of ZEN. The aggregation state and AIECL of TPE NAs were directly and simply controlled by adjusting the type of organic solvent and the fraction of water, which solved the current shortcomings of low strength and weak stability of the cathode ECL signal for TPE. Impressively, in a tetrahydrofuran-water mixed solution (volume ratio, 6:4), the relative ECL efficiency of TPE NAs reached 16.03%, which was 9.2 times that in pure water conditions, and the maximum ECL spectral wavelength was obviously red-shifted to 617 nm. In addition, "H"-shape DNA structure-mediated dual-catalyzed hairpin self-assembly (H-D-CHA) with higher efficiency by the synergistic effect between the two CHA reactions was utilized to construct a sensitive ECL aptasensor for ZEN analysis with a low detection limit of 0.362 fg/mL. In conclusion, solvent regulation was a simple and efficient method for improving the performance of AIECL materials, and the proposed ECL aptasensor had great potential for ZEN monitoring in food safety.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Mediciones Luminiscentes , Solventes , Zearalenona , Zearalenona/análisis , Zearalenona/química , Solventes/química , Estilbenos/química , Límite de Detección , Técnicas Biosensibles , Aptámeros de Nucleótidos/química
19.
Biosens Bioelectron ; 258: 116357, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38729049

RESUMEN

The label probe plays a crucial role in enhancing the sensitivity of lateral flow immunoassays. However, conventional fluorescent microspheres (FMs) have limitations due to their short fluorescence lifetime, susceptibility to background fluorescence interference, and inability to facilitate multi-component detection. In this study, carboxylate-modified Eu(III)-chelate-doped polystyrene nanobeads were employed as label probes to construct a multiple time-resolved fluorescent microsphere-based immunochromatographic test strip (TRFM-ICTS). This novel TRFM-ICTS facilitated rapid on-site quantitative detection of three mycotoxins in grains: Aflatoxin B1 (AFB1), Zearalenone (ZEN), and Deoxynivalenol (DON). The limit of detection (LOD) for AFB1, ZEN, and DON were found to be 0.03 ng/g, 0.11 ng/g, and 0.81 ng/g, respectively. Furthermore, the TRFM-ICTS demonstrated a wide detection range for AFB1 (0.05-8.1 ng/g), ZEN (0.125-25 ng/g), and DON (1.0-234 ng/g), while maintaining excellent selectivity. Notably, the test strip exhibited remarkable stability, retaining its detection capability even after storage at 4 °C for over one year. Importantly, the detection of these mycotoxins relied solely on simple manual operations, and with a portable reader, on-site detection could be accomplished within 20 min. This TRFM-ICTS presents a promising solution for sensitive on-site mycotoxin detection, suitable for practical application in various settings due to its sensitivity, accuracy, simplicity, and portability.


Asunto(s)
Técnicas Biosensibles , Grano Comestible , Contaminación de Alimentos , Límite de Detección , Microesferas , Micotoxinas , Zearalenona , Micotoxinas/análisis , Grano Comestible/química , Grano Comestible/microbiología , Técnicas Biosensibles/métodos , Contaminación de Alimentos/análisis , Zearalenona/análisis , Cromatografía de Afinidad/métodos , Cromatografía de Afinidad/instrumentación , Aflatoxina B1/análisis , Aflatoxina B1/aislamiento & purificación , Tricotecenos/análisis , Tiras Reactivas/análisis , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Colorantes Fluorescentes/química
20.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717261

RESUMEN

The mealworm Tenebrio molitor L. (Coleoptera: Tenebrionidae) feeds on wheat bran and is considered both a pest and an edible insect. Its larvae contain proteins and essential amino acids, fats, and minerals, making them suitable for animal and human consumption. Zearalenone (ZEA) is the mycotoxin most commonly associated with Fusarium spp. It is found in cereals and cereal products, so their consumption is a major risk for mycotoxin contamination. One of the most important effects of ZEA is the induction of oxidative stress, which leads to physiological and behavioral changes. This study deals with the effects of high doses of ZEA (10 and 20 mg/kg) on survival, molting, growth, weight gain, activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione S-transferase (GST), and locomotion of mealworm larvae. Both doses of ZEA were found to (i) have no effect on survival, (ii) increase molting frequency, SOD, and GST activity, and (iii) decrease body weight and locomotion, with more pronounced changes at 20 mg/kg. These results indicated the susceptibility of T. molitor larvae to high doses of ZEA in feed.


Asunto(s)
Glutatión Transferasa , Larva , Locomoción , Tenebrio , Zearalenona , Animales , Tenebrio/efectos de los fármacos , Tenebrio/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Zearalenona/toxicidad , Glutatión Transferasa/metabolismo , Locomoción/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Antioxidantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA