Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473701

RESUMEN

This work analyzes the role of the tight junction (TJ) protein ZO-2 on mechanosensation. We found that the lack of ZO-2 reduced apical membrane rigidity measured with atomic force microscopy, inhibited the association of γ-actin and JAM-A to the cell border, and instead facilitated p114RhoGEF and afadin accumulation at the junction, leading to an enhanced mechanical tension at the TJ measured by FRET, with a ZO-1 tension probe, and increased tricellular TJ tension. Simultaneously, adherens junction tension measured with an E-cadherin probe was unaltered. The stability of JAM-A and ZO-2 binding was assessed by a collaborative in silico study. The absence of ZO-2 also impacted the cell response to the substrate, as monolayers plated in 20 kPa hydrogels developed holes not seen in parental cultures and displayed a retarded elongation and formation of cell aggregates. The absence of ZO-2 was sufficient to induce YAP and Snail nuclear accumulation in cells cultured over glass, but when ZO-2 KD cells were plated in nanostructured ridge arrays, they displayed an increased abundance of nuclear Snail and conspicuous internalization of claudin-4. These results indicate that the absence of ZO-2 also impairs the response of cells to substrate stiffness and exacerbates transformation triggered by substrate topography.


Asunto(s)
Actinas , Uniones Estrechas , Actinas/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Fosfoproteínas/metabolismo
2.
Cells ; 11(20)2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36291162

RESUMEN

Tight junctions (TJs) regulate the transit of ions and molecules through the paracellular pathway in epithelial cells. Zonula occludens 2 (ZO-2) is a cytoplasmic TJ protein. Here, we studied the ubiquitination of hZO-2 employing mutants of SUMOylation site K730 present in the GuK domain and the putative ubiquitination residues K759 and K992 located at the GuK domain and proline-rich region, respectively. In immunoprecipitation experiments done with MDCK cells transfected with wild-type (WT) hZO-2 or the ubiquitination-site mutants hZO-2-K759R or -K992R, we observed diminished ubiquitination of the mutants, indicating that residues K759 and K992 in hZO-2 are acceptors for ubiquitination. Moreover, using TUBES, we found that residues K759 and K992 of hZO-2 are targets of K48 polyubiquitination, a signal for proteasomal degradation. Accordingly, compared to WT hZO-2, the half-life of hZO-2 mutants K759R and K992R augmented from 19.9 to 37.3 and 23.3 h, respectively. Instead, the ubiquitination of hZO-2 mutant K730R increased, and its half-life diminished to 6.7 h. The lack of these lysine residues in hZO-2 affects TJ sealing as the peak of TER decreased in monolayers of MDCK cells transfected with any of these mutants. These results highlight the importance of ZO-2 ubiquitination and SUMOylation to maintain a healthy and stable pool of ZO-2 molecules at the TJ.


Asunto(s)
Sumoilación , Uniones Estrechas , Proteína de la Zonula Occludens-2/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo , Lisina/metabolismo , Fosfoproteínas/metabolismo , Línea Celular , Prolina/metabolismo
3.
Exp Parasitol ; 240: 108329, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35868574

RESUMEN

Intestinal epithelial cells (IECs) reside in a highly anaerobic environment that is subject to daily fluctuations in partial oxygen pressure (pO2), depending on intestinal tissue perfusion. This condition, known as physiological hypoxia, has a major impact on the maintenance of gut homeostasis, such as effects on the integrity and function of the intestinal epithelial barrier. Giardia lamblia is a microaerophilic protozoan parasite that infects and colonizes the small intestine of its host, causing watery diarrhea. The disease, known as giardiasis, is associated with enhanced intestinal permeability and disruption or reorganization of tight junction (TJ) proteins between IECs. Given the central role of oxygen in gut homeostasis, in this study, we aimed to evaluate whether pO2 affects intestinal permeability (flux of ions and macromolecules) and TJ protein expression in human IECs during G. lamblia infection. Using human cell lines HuTu-80 and Caco-2 as models of "loose" (low resistance) and "tight" (high resistance) intestines, respectively, we elucidated that low pO2 drives intestinal barrier dysfunction in IECs infected with trophozoites through dephosphorylation of protein kinase C (PKC α/ß II). Additionally, we demonstrated that IECs infected with trophozoites in the presence of a pharmacological PKC activator (phorbol 12-myristate 13-acetate) partially restored the barrier function, which was correlated with increased protein expression levels of zonula occludens (ZO)-2 and occludin. Collectively, these results support the emerging theory that molecular oxygen impacts gut homeostasis during Giardia infection via direct host signaling pathways. These findings further our knowledge regarding Giardia-host interactions and the pathophysiological mechanisms of human giardiasis.


Asunto(s)
Giardia lamblia , Giardiasis , Células CACO-2 , Células Epiteliales/parasitología , Giardia lamblia/metabolismo , Giardiasis/parasitología , Humanos , Mucosa Intestinal/parasitología , Oxígeno/metabolismo , Permeabilidad , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
4.
Reprod Toxicol ; 103: 139-148, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34146661

RESUMEN

Bisphenols are a group of environmental endocrine-disrupting chemicals that produce alterations in the expression of intercellular junction proteins of the Blood-Testis Barrier (BTB) involved in spermatogenesis. The association between bisphenol exposure and BTB protein expression is controversial. Therefore, we performed this systematic review and meta-analysis to clarify bisphenol effects on Sertoli cell BTB protein expression in vitro. The Standardized Mean Difference (SMD) with a 95 % confidence interval (95 % CI) was used to evaluate the association between alterations in the BTB protein expression and bisphenol exposure in vitro. Six articles were included in the meta-analysis. Bisphenol-A (BPA) exposure at 200 µM was associated with significant decrease in BTB protein expression (SMD = -2.70, 95 %CI: -3.59, -1.80, p het = 0.46, p = <0.00001). In the moderate (40-50 µM) and low dose (<25 µM), no significant associations were obtained. We also found a non-monotonic dose-response curve of bisphenol effect in ZO-1 protein expression; low and high doses presented a significant decrease compared to control, while moderate dose presented no change. The current temporary Tolerable Daily Intake (tTDI) of BPA is 4 µg/kg bw/day. The 5-25 µM doses of BPA are equivalent to ∼1-5 mg/kg bw, respectively. Although the low dose group (<25 µM) assessed doses below the previous NOAEL value, these doses are above the current tTDI. Thus, it is necessary to conduct more studies with lower bisphenol concentrations to avoid underestimating the potential adverse effects of bisphenols at doses below tTDI.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Barrera Hematotesticular/efectos de los fármacos , Fenoles/toxicidad , Disruptores Endocrinos/metabolismo , Disruptores Endocrinos/toxicidad , Humanos , Uniones Intercelulares/efectos de los fármacos , Masculino , Ocludina/metabolismo , Proteínas/metabolismo , Células de Sertoli/efectos de los fármacos , Espermatogénesis , Testículo/efectos de los fármacos , Proteína de la Zonula Occludens-1/metabolismo
5.
J Radiat Res ; 62(2): 259-268, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33592097

RESUMEN

To assess the effects of exposure to extremely low-frequency magnetic fields (ELF-MFs) on MDCK cell lines, experiments were performed in a chamber under controlled conditions (temperature, humidity and CO2). Therefore, the measured physicochemical and electrical changes in the cells are due solely to the magnetic field exposure and not to external factors. A developed sinusoidal magnetic field generator produced the ELF-MFs with a uniform magnetic field and adjustable intensity and frequency. Three experimental indicators were used: (i) transepithelial electrical impedance (TEEI); (ii) cell migration and proliferation; and (iii) expression of the proteins of the tight junctions, and changes in the area and shape of the cell nuclei. No significant effects on TEEI values were observed when 10 and 50 G 60 Hz magnetic fields were applied to confluent cell monolayers. There were no significant differences in migration and proliferation of the cell monolayer exposed to 60 Hz magnetic fields10 and 50 G , but a contact inhibition factor was observed. The expression of the CLDN-1 protein decreased by 90% compared with the control, while ZO-1 protein expression increased by 120%. No significant effects were observed in the area and shape of the cell nuclei. Experimentation in a controlled environment, under physiological conditions, ensures that the observed effects were strictly due to exposure to magnetic fields. Different exposure conditions are necessary to determine the impact on TEEI and cell migration-proliferation indicators.


Asunto(s)
Ambiente Controlado , Células Epiteliales/fisiología , Campos Magnéticos , Animales , Núcleo Celular/metabolismo , Claudina-1/metabolismo , Perros , Impedancia Eléctrica , Células Epiteliales/metabolismo , Fluorescencia , Células de Riñón Canino Madin Darby , Proteína de la Zonula Occludens-1/metabolismo
6.
Cell Microbiol ; 23(3): e13283, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33108050

RESUMEN

Toxoplasma gondii shows high dissemination and migration properties across biological barriers infecting immunologically privileged organs. Toxoplasma uses different routes for dissemination; however, the mechanisms are not fully understood. Herein, we studied the effects of proteases present in excretion/secretion products (ESPs) of Toxoplasma on MDCK cell monolayers. Ultrastructural analysis showed that ESPs of Toxoplasma disrupt the intercellular junctions (IJ) of adjacent cells. The tight junction (TJ) proteins ZO-1, occludin, and claudin-1 suffered a progressive decrease in protein levels upon ESPs treatment. In addition, ESPs induced mislocalization of such TJ proteins, along with the adherent junction protein E-cadherin, and this was prevented by pre-treating the ESPs with protease inhibitors. Reorganisation of cytoskeleton proteins was also observed. Endocytosis inhibitors, Dyngo®-4a and Dynasore, impeded the modifications, suggesting that TJ proteins internalisation is triggered by the ESPs proteases hence contributing to the loss of IJ. The observed disruption in TJ proteins went in line with a decrease in the transepithelial electrical resistance of the monolayers, which was significantly blocked by pre-treating ESPs with metalloprotease and serine protease inhibitors. Moreover, exposure of cell monolayers to ESPs facilitated paracellular migration of tachyzoites. Our results demonstrate that Toxoplasma ESPs contain proteases that can disrupt the IJ of epithelial monolayers and this could facilitate the paracellular route for Toxoplasma tissue dissemination and migration.


Asunto(s)
Uniones Intercelulares/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Toxoplasma/fisiología , Animales , Cadherinas/metabolismo , Claudina-1/metabolismo , Proteínas del Citoesqueleto/metabolismo , Perros , Células Epiteliales/metabolismo , Células Epiteliales/parasitología , Hidrazonas/farmacología , Uniones Intercelulares/ultraestructura , Células de Riñón Canino Madin Darby , Metaloproteasas/metabolismo , Movimiento , Naftoles/farmacología , Ocludina/metabolismo , Toxoplasma/enzimología , Toxoplasma/patogenicidad , Proteína de la Zonula Occludens-1/metabolismo
7.
Dig Dis Sci ; 66(11): 3792-3802, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33184794

RESUMEN

INTRODUCTION: Disruption of intestinal barrier is a key component to various diseases. Whether barrier dysfunction is the cause or effect in these situations is still unknown, although it is believed that translocation of luminal content may initiate gastrointestinal or systemic inflammatory disorders. Since trauma- or infection-driven epithelial permeability depends on Toll-like receptor (TLR) activity, inhibition of TLR signaling has been proposed as a strategy to protect intestinal barrier integrity after infection or other pathological conditions. Recently, selective serotonin recapture inhibitors including sertraline and citalopram were shown to inhibit TLR-3 activity, but the direct effects of these antidepressant drugs on the gut mucosa barrier remain largely unexplored. MATERIALS AND METHODS: To investigate this, two approaches were used: first, ex vivo studies were performed to evaluate sertraline and citalopram-driven changes in permeability in isolated intestinal tissue. Second, both compounds were tested for their preventive effects in a rat model of disrupted gut barrier, induced by a low protein (LP) diet. RESULTS: Only sertraline was able to increase transepithelial electrical resistance in the rat colon both when used in an ex vivo (0.8 µg/mL, 180 min) or in vivo (30 mg/kg p.o., 20 days) fashion. However, citalopram (20 mg/kg p.o., 20 days), but not sertraline, prevented the increase in phospho-IRF3 protein, a marker of TLR-3 activation, in LP-rat ileum. Neither antidepressant affected locomotion, anxiety-like behaviours or stress-induced defecation. CONCLUSION: Our data provides evidence to support the investigation of sertraline as therapeutic strategy to protect intestinal barrier function under life-threatening situations or chronic conditions associated with gut epithelial disruption.


Asunto(s)
Citalopram/farmacología , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sertralina/farmacología , Alimentación Animal , Animales , Dieta , Proteínas en la Dieta/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Permeabilidad/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Estrés Fisiológico , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
8.
Int J Mol Sci ; 21(16)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824269

RESUMEN

p-Cymene (p-C) and rosmarinic acid (RA) are secondary metabolites that are present in medicinal herbs and Mediterranean spices that have promising anti-inflammatory properties. This study aimed to evaluate their intestinal anti-inflammatory activity in the trinitrobenzene sulphonic acid (TNBS)-induced colitis model in rats. p-C and RA (25-200 mg/kg) oral administration reduced the macroscopic lesion score, ulcerative area, intestinal weight/length ratio, and diarrheal index in TNBS-treated animals. Both compounds (200 mg/kg) decreased malondialdehyde (MDA) and myeloperoxidase (MPO), restored glutathione (GSH) levels, and enhanced fluorescence intensity of superoxide dismutase (SOD). They also decreased interleukin (IL)-1ß and tumor necrosis factor (TNF)-α, and maintained IL-10 basal levels. Furthermore, they modulated T cell populations (cluster of differentiation (CD)4+, CD8+, or CD3+CD4+CD25+) analyzed from the spleen, mesenteric lymph nodes, and colon samples, and also decreased cyclooxigenase 2 (COX-2), interferon (IFN)-γ, inducible nitric oxide synthase (iNOS), and nuclear transcription factor kappa B subunit p65 (NFκB-p65) mRNA transcription, but only p-C interfered in the suppressor of cytokine signaling 3 (SOCS3) expression in inflamed colons. An increase in gene expression and positive cells immunostained for mucin type 2 (MUC-2) and zonula occludens 1 (ZO-1) was observed. Altogether, these results indicate intestinal anti-inflammatory activity of p-C and RA involving the cytoprotection of the intestinal barrier, maintaining the mucus layer, and preserving communicating junctions, as well as through modulation of the antioxidant and immunomodulatory systems.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Cinamatos/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Cimenos/uso terapéutico , Depsidos/uso terapéutico , Mucina 2/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Cinamatos/farmacología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Cimenos/farmacología , Depsidos/farmacología , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucina 2/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas , Ratas Wistar , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína de la Zonula Occludens-1/genética , Ácido Rosmarínico
9.
J Therm Biol ; 91: 102610, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32716860

RESUMEN

We investigated whether the magnitude of exercise-induced hyperthermia influences intestinal permeability and tight junction gene expression. Twenty-nine male Wistar rats were divided into four groups: rest at 24 °C and exercise at 13 °C, 24 °C or 31 °C. The exercise consisted of a 90-min treadmill run at 15 m/min, and different ambient temperatures were used to produce distinct levels of exercise-induced hyperthermia. Before the experimental trials, the rats were treated by gavage with diethylenetriaminepentaacetic acid labeled with technetium-99 metastable as a radioactive probe. The rats' core body temperature (TCORE) was measured by telemetry. Immediately after the trials, the rats were euthanized, and the intestinal permeability was assessed by measuring the radioactivity of blood samples. The mRNA levels of occludin and zonula occludens-1 (ZO-1) genes were determined in duodenum samples. Exercise at 24 °C increased TCORE to values close to 39 °C, without changing permeability compared with the resting trial at the same environment. Meanwhile, rats' TCORE exceeded 40 °C during exercise at 31 °C, leading to greater permeability relative to those observed after exercise in the other ambient temperatures (e.g., 0.0037%/g at 31 °C vs. 0.0005%/g at 13 °C; data expressed as medians; p < 0.05). Likewise, the rats exercised at 31 °C exhibited higher mRNA levels of ZO-1 and occludin genes than the rats exercised at 24 °C or 13 °C. The changes in permeability and gene expression were positively and significantly associated with the magnitude of hyperthermia. We conclude that marked hyperthermia caused by exercise in the warmer environment increases intestinal permeability and mRNA levels of tight junction genes.


Asunto(s)
Hipertermia/metabolismo , Mucosa Intestinal/metabolismo , Ocludina/genética , Esfuerzo Físico , Proteína de la Zonula Occludens-1/genética , Animales , Hipertermia/etiología , Absorción Intestinal , Masculino , Ocludina/metabolismo , Ratas , Ratas Wistar , Proteína de la Zonula Occludens-1/metabolismo
10.
Tissue Barriers ; 8(3): 1779526, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32552339

RESUMEN

Epithelial cells connect with each other by tight junctions (TJs) in several tissues. In epididymides, TJs proteins form the blood-epididymis barrier (BEB), which is crucial for male fertility. However, little is known about BEB morphological and physiological aspects in wild animals. This study examines the region-specific distribution pattern of TJs proteins in D. rotundus' epididymis, assessing their regulation in rainy and dry season. The expression of zonula occludens-1 (ZO-1), and claudins (Cldn)-1, -3, and -4 were evaluated by confocal immunofluorescence and ELISA analysis. Herein, ZO-1 was strictly expressed in TJs, whereas Cldns were expressed in TJs and basolateral membranes of epithelial cells. Their co-localization and intensity of expression varied in the epididymal regions examined. The effect of season on protein expression was detected mainly in TJ proteins located in the proximal regions. As such, in the initial segment (IS), Cldn-3 and -4 were detected at low levels in basolateral membranes in the rainy season compared to the dry season. Furthermore, in the distal IS, Cldn-1 expression was lower in TJs of epithelial cells during the rainy season than the dry season. ZO-1 expression was higher in the cauda region than the corpus region by ELISA analysis. Additionally, in the corpus region, ZO-1 expression was higher in TJs during dry season compared to the rainy season. Our study sheds light on the understanding of BEB in D. rotundus, improving the knowledge of their reproductive biology.


Asunto(s)
Barrera Hematotesticular/metabolismo , Claudinas/metabolismo , Epidídimo/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Animales , Quirópteros , Claudinas/genética , Masculino , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/genética
11.
Microvasc Res ; 131: 104024, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32502488

RESUMEN

Congenital toxoplasmosis is a parasitic disease that occurs due vertical transmission of the protozoan Toxoplasma gondii (T. gondii) during pregnancy. The parasite crosses the placental barrier and reaches the developing brain, infecting progenitor, glial, neuronal and vascular cell types. Although the role of Radial glia (RG) neural stem cells in the development of the brain vasculature has been recently investigated, the impact of T. gondii infection in these events is not yet understood. Herein, we studied the role of T. gondii infection on RG cell function and its interaction with endothelial cells. By infecting isolated RG cultures with T. gondii tachyzoites, we observed a cytotoxic effect with reduced numbers of RG populations together with decrease neuronal and oligodendrocyte progenitor populations. Conditioned medium (CM) from RG control cultures increased ZO-1 protein levels and organization on endothelial bEnd.3 cells membranes, which was impaired by CM from infected RG, accompanied by decreased trans-endothelial electrical resistance (TEER). ELISA assays revealed reduced levels of anti-inflammatory cytokine TGF-ß1 in CM from T. gondii-infected RG cells. Treatment with recombinant TGF-ß1 concomitantly with CM from infected RG cultures led to restoration of ZO-1 staining in bEnd.3 cells. Congenital infection in Swiss Webster mice led to abnormalities in the cortical microvasculature in comparison to uninfected embryos. Our results suggest that infection of RG cells by T. gondii negatively modulates cytokine secretion, which might contribute to endothelial loss of barrier properties, thus leading to impairment of neurovascular interaction establishment.


Asunto(s)
Diferenciación Celular , Corteza Cerebral/irrigación sanguínea , Células Endoteliales/parasitología , Células Ependimogliales/parasitología , Microvasos/parasitología , Acoplamiento Neurovascular , Toxoplasma/patogenicidad , Toxoplasmosis Cerebral/parasitología , Toxoplasmosis Congénita/parasitología , Animales , Línea Celular , Modelos Animales de Enfermedad , Impedancia Eléctrica , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Ratones Endogámicos C57BL , Microvasos/metabolismo , Microvasos/patología , Uniones Estrechas/metabolismo , Uniones Estrechas/parasitología , Uniones Estrechas/patología , Toxoplasmosis Cerebral/metabolismo , Toxoplasmosis Cerebral/patología , Toxoplasmosis Congénita/metabolismo , Toxoplasmosis Congénita/patología , Factor de Crecimiento Transformador beta1/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
12.
Cells ; 9(5)2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403233

RESUMEN

Embryo implantation into the uterine wall is a highly modulated, complex process. We previously demonstrated that Annexin A1 (AnxA1), which is a protein secreted by epithelial and inflammatory cells in the uterine microenvironment, controls embryo implantation in vivo. Here, we decipher the effects of recombinant AnxA1 in this phenomenon by using human trophoblast cell (BeWo) spheroids and uterine epithelial cells (Ishikawa; IK). AnxA1-treated IK cells demonstrated greater levels of spheroid adherence and upregulation of the tight junction molecules claudin-1 and zona occludens-1, as well as the glycoprotein mucin-1 (Muc-1). The latter effect of AnxA1 was not mediated through IL-6 secreted from IK cells, a known inducer of Muc-1 expression. Rather, these effects of AnxA1 involved activation of the formyl peptide receptors FPR1 and FPR2, as pharmacological blockade of FPR1 or FPR1/FPR2 abrogated such responses. The downstream actions of AnxA1 were mediated through the ERK1/2 phosphorylation pathway and F-actin polymerization in IK cells, as blockade of ERK1/2 phosphorylation reversed AnxA1-induced Muc-1 and claudin-1 expression. Moreover, FPR2 activation by AnxA1 induced vascular endothelial growth factor (VEGF) secretion by IK cells, and the supernatant of AnxA1-treated IK cells evoked angiogenesis in vitro. In conclusion, these data highlight the role of the AnxA1/FPR1/FPR2 pathway in uterine epithelial control of blastocyst implantation.


Asunto(s)
Anexina A1/metabolismo , Blastocisto/metabolismo , Receptores de Formil Péptido/metabolismo , Útero/fisiología , Actinas/metabolismo , Animales , Línea Celular , Claudina-1/metabolismo , Implantación del Embrión , Células Epiteliales/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Mucina-1/metabolismo , Neovascularización Fisiológica , Polimerizacion , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
13.
Biol Res ; 53(1): 12, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209121

RESUMEN

BACKGROUND: Mast cells (MCs) have been found to play a critical role during development of inflammatory bowel disease (IBD) that characterized by dysregulation of inflammation and impaired intestinal barrier function. However, the function of MCs in IBD remains to be fully elucidated. RESULTS: In our study, we used exosomes isolated from human mast cells-1 (HMCs-1) to culture with NCM460, HT-29 or CaCO2 of intestinal epithelial cells (IECs) to investigate the communication between MCs and IECs. We found that MCs-derived exosomes significantly increased intestinal epithelial permeability and destroyed intestinal barrier function, which is attributed to exosome-mediated functional miRNAs were transferred from HMCs-1 into IECs, leading to inhibit tight junction-related proteins expression, including tight junction proteins 1 (TJP1, ZO-1), Occludin (OCLN), Claudin 8 (CLDN8). Microarray and bioinformatic analysis have further revealed that a panel of miRNAs target different tight junction-related proteins. Interestingly, miR-223 is enriched in mast cell-derived exosome, which inhibit CLDN8 expression in IECs, while treatment with miR-223 inhibitor in HT-29 cells significantly reversed the inhibitory effect of HMCs-1-derived exosomes on CLDN 8 expression. Most importantly, enrichment of MCs accumulation in intestinal mucosa of patients with IBD compared with those healthy control. CONCLUSIONS: These results indicated that enrichment of exosomal miR-223 from HMCs-1 inhibited CLDN8 expression, leading to destroy intestinal barrier function. These finding provided a novel insight of MCs as a new target for therapeutic treatment of IBD.


Asunto(s)
Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Mastocitos/metabolismo , MicroARNs/metabolismo , Animales , Células CACO-2/citología , Bovinos , Células Cultivadas , Claudinas/metabolismo , Biología Computacional , Exosomas/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Ocludina/metabolismo , Permeabilidad , Análisis de Matrices Tisulares , Proteína de la Zonula Occludens-1/metabolismo
14.
Biol. Res ; 53: 12, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1100918

RESUMEN

BACKGROUND: Mast cells (MCs) have been found to play a critical role during development of inflammatory bowel disease (IBD) that characterized by dysregulation of inflammation and impaired intestinal barrier function. However, the function of MCs in IBD remains to be fully elucidated. RESULTS: In our study, we used exosomes isolated from human mast cells-1 (HMCs-1) to culture with NCM460, HT-29 or CaCO2 of intestinal epithelial cells (lECs) to investigate the communication between MCs and lECs. We found that MCs-derived exosomes significantly increased intestinal epithelial permeability and destroyed intestinal barrier function, which is attributed to exosome-mediated functional miRNAs were transferred from HMCs-1 into lECs, leading to inhibit tight junction-related proteins expression, including tight junction proteins 1 (TJP1, ZO-1), Occludin (OCLN), Claudin 8 (CLDN8). Microarray and bioinformatic analysis have further revealed that a panel of miRNAs target different tight junction-related proteins. Interestingly, miR-223 is enriched in mast cell-derived exosome, which inhibit CLDN8 expression in IECs, while treatment with miR-223 inhibitor in HT-29 cells significantly reversed the inhibitory effect of HMCs-1-derived exosomes on CLDN 8 expression. Most importantly, enrichment of MCs accumulation in intestinal mucosa of patients with IBD compared with those healthy control. CONCLUSIONS: These results indicated that enrichment of exosomal miR-223 from HMCs-1 inhibited CLDN8 expression, leading to destroy intestinal barrier function. These finding provided a novel insight of MCs as a new target for therapeutic treatment of IBD.


Asunto(s)
Humanos , Animales , Bovinos , MicroARNs/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Mastocitos/metabolismo , Permeabilidad , Enfermedades Inflamatorias del Intestino/metabolismo , Células Cultivadas , Células CACO-2/citología , Biología Computacional , Análisis de Matrices Tisulares , Exosomas/metabolismo , Claudinas/metabolismo , Ocludina/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
15.
Microbiologyopen ; 8(12): e931, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31568664

RESUMEN

Enteropathogenic Escherichia coli (EPEC) infection causes a histopathological lesion including recruitment of F-actin beneath the attached bacteria and formation of actin-rich pedestal-like structures. Another important target of EPEC is the tight junction (TJ), and EspF induces displacement of TJ proteins and increased intestinal permeability. Previously, we determined that an EPEC strain lacking EspF did not cause TJ disruption; meanwhile, pedestals were located on the TJ and smaller than those induced by the wild-type strain. Therefore, EspF could be playing an important role in both phenotypes. Here, using different cell models, we found that EspF was essential for pedestal maturation through ZO-1 disassembly from TJ, leading to (a) ZO-1 recruitment to the pedestal structure; no other main TJ proteins were required. Recruited ZO-1 allowed the afadin recruitment. (b) Afadin recruitment caused an afadin-ZO-1 transient interaction, like during TJ formation. (c) Afadin and ZO-1 were segregated to the tip and the stem of pedestal, respectively, causing pedestal maturation. Initiation of these three discrete phases for pedestal maturation functionally and physically required EspF expression. Pedestal maturation process could help coordinate the epithelial actomyosin function by maintaining the actin-rich column composing the pedestal structure and could be important in the dynamics of the pedestal movement on epithelial cells.


Asunto(s)
Escherichia coli Enteropatógena/fisiología , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/genética , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Actinas/metabolismo , Células Epiteliales/metabolismo , Infecciones por Escherichia coli/patología , Proteínas de Escherichia coli/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Permeabilidad , Fosfoproteínas/metabolismo , Unión Proteica
16.
Food Funct ; 10(11): 7275-7290, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31621721

RESUMEN

Inflammatory bowel disease (IBD) is characterized by severe mucosal damage in the intestine and a deregulated immune response. Natural products derived from plants that are rich in bioactive compounds are used by many patients with IBD. Xique-xique (Pilosocereus gounellei) is a cactus of the Caatinga family that has been used by the local population for food and medicinal purposes. The intestinal anti-inflammatory effect of xique-xique cladode juice was evaluated in the present study. A dose of 5 mL kg-1 had a protective effect on intestinal inflammation, with an improvement in macroscopic damage, and a decrease in pro-inflammatory markers and oxidative stress, in addition to preserving the colonic tissue. Immunohistochemical analysis revealed the downregulation of IL-17, NF-κB, and iNOS, and upregulation of SOCs-1, ZO-1, and MUC-2. These protective effects could be attributed to the phenolic compounds as well as the fibers present in xique-xique juice. Further studies are needed before suggesting the use of xique-xique juice as a new alternative for treating IBD.


Asunto(s)
Cactaceae/química , Colitis/inducido químicamente , Extractos Vegetales/uso terapéutico , Ácido Acético , Animales , Antiinflamatorios , Colitis/tratamiento farmacológico , Citocinas/genética , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Mucina 2/genética , Mucina 2/metabolismo , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Distribución Aleatoria , Ratas , Ratas Wistar , Sulfasalazina/uso terapéutico , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
17.
Invest Ophthalmol Vis Sci ; 60(12): 3842-3853, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31529081

RESUMEN

Purpose: Outer blood retinal barrier breakdown is a neglected feature of diabetic retinopathy (DR). We demonstrated that the agonism of the δ opioid receptor (DOR) by epicatechin preserves the tight junction proteins in ARPE-19 cells under diabetic conditions. Presently, we aimed to evaluate the possible role of the DOR on the maintenance of tight junction of RPE layer and on the early markers of experimental DR. Methods: DR markers and external retinal tight junction proteins were evaluated in CL57B diabetic mice submitted to intravitreous injection of short hairpin RNA (shRNA)-DOR (108 transducing units [TU]/mL) treated or not with DOR agonist (0.05 g/animal/d of epicatechin in drinking water) for 16 weeks. The presence of DOR in human retina from postmortem eyes from diabetic and nondiabetic donors were also performed. Results: DOR is present in RPE layer and in neuro retina. The treatment with DOR agonist prevented the upregulation of the early markers of retinopathy (glial fibrillary acidic protein, VEGF) and the downregulation of pigment epithelium-derived factor, occludin, claudin-1, and zonula occludens-1 tight junction expressions. The silencing of DOR in retina of diabetic mice partially abolished the protective effects of epicatechin. In human retina specimens, DOR is present throughout the retina, similarly in nondiabetic and diabetic donors. Conclusions: This set of experiments strongly indicates that the DOR agonism preserves RPE tight junctions and reduces the early markers of retinopathy in model of diabetes. These novel findings designate DOR as a potential therapeutic tool to treat DR with preservation of the RPE tight junction proteins.


Asunto(s)
Catequina/farmacología , Diabetes Mellitus Experimental/prevención & control , Retinopatía Diabética/prevención & control , Receptores Opioides delta/agonistas , Epitelio Pigmentado de la Retina/metabolismo , Uniones Estrechas/metabolismo , Anciano , Animales , Glucemia/metabolismo , Western Blotting , Claudina-1/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Impedancia Eléctrica , Proteínas del Ojo/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Factores de Crecimiento Nervioso/metabolismo , Ocludina/metabolismo , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Opioides delta/metabolismo , Serpinas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
18.
Mol Biol Cell ; 30(18): 2377-2398, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31318316

RESUMEN

Zonula occludens-2 (ZO-2) is a tight junction (TJ) cytoplasmic protein, whose localization varies according to cell density and Ca2+ in the media. In cells cultured in low calcium (LC), ZO-2 displays a diffuse cytoplasmic distribution, but activation of the Ca2+ sensing receptor (CaSR) with Gd3+ triggers the appearance of ZO-2 at the cell borders. CaSR downstream signaling involves activation of protein kinase C, which phosphorylates and activates with no lysine kinase-4 that phosphorylates ZO-2 inducing its concentration at TJs. In LC, ZO-2 is protected from degradation by association to 14-3-3 proteins. When monolayers are transferred to normal calcium, the complexes ZO-2/14-3-3ζ and ZO-2/14-3-3σ move to the cell borders and dissociate. The 14-3-3 proteins are then degraded in proteosomes, whereas ZO-2 integrates to TJs. From the plasma membrane residual ZO-2 is endocyted and degradaded in lysosomes. The unique region 2 of ZO-2, and S261 located within a nuclear localization signal, are critical for the interaction with 14-3-3 ζ and σ and for the efficient nuclear importation of ZO-2. These results explain the molecular mechanism through which extracellular Ca2+ triggers the appearance of ZO-2 at TJs in epithelial cells and reveal the novel interaction between ZO-2 and 14-3-3 proteins, which is critical for ZO-2 protection and intracellular traffic.


Asunto(s)
Proteínas 14-3-3/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-2/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Membrana Celular/metabolismo , Proliferación Celular , Perros , Células Epiteliales/metabolismo , Células de Riñón Canino Madin Darby , Fosfoproteínas/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Sensibles al Calcio/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Proteína de la Zonula Occludens-1/metabolismo
19.
Cell Tissue Res ; 376(3): 433-442, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30788579

RESUMEN

The intestinal mucosa contributes to frontline gut defenses by forming a barrier (physical and biochemical) and preventing the entry of pathogenic microbes. One innate role of the human colonic epithelium is to secrete cathelicidin, a peptide with broad antimicrobial and immunomodulatory functions. In this study, the effect of cathelicidin in the maintenance of epithelial integrity, Toll-like receptor recognition, bacterial invasion and initiation of inflammatory response against Salmonella typhimurium is investigated in cultured human colonic epithelium. We found exogenous human cathelicidin restores the epithelial integrity in S. typhimurium-infected colonic epithelial (T84) cells by mostly post-translational effects associated with reorganization of zonula occludens (ZO)-1 tight junction proteins. Endogenous cathelicidin prevents S. typhimurium internalization as shown in colonic epithelial cells genetically deficient in the only human cathelicidin, LL-37 (shLL-37). Moreover, supplementation of shLL-37 cells with synthetic LL-37 reduces the grade of S. typhimurium internalization in a dose-dependent manner. Mechanistically, shLL-37 cells have lower gene expression of TLR4 and pro-inflammatory cytokine IL-1ß in response to S. typhimurium. Thus, human cathelicidin aids in the early colonic epithelial defenses against enteric S. typhimurium by preventing bacterial invasion and maintaining epithelial barrier integrity, likely to occur due to the production of sensing TLR4 and pro-inflammatory cytokines.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Colon/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Infecciones por Salmonella/prevención & control , Salmonella typhimurium/efectos de los fármacos , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Colon/inmunología , Colon/microbiología , Células HT29 , Humanos , Interleucina-1beta/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Receptor Toll-Like 4/inmunología , Proteína de la Zonula Occludens-1/metabolismo , Catelicidinas
20.
Life Sci ; 216: 10-21, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30414427

RESUMEN

AIMS: Evidence suggests that administration of a high-fat diet (HFD) results in changes in the intestinal lumen environment. Gut dysbiosis associated with intestinal barrier disruption may be involved in type 2 diabetes mellitus (T2DM) development through increased intestinal permeability, which would trigger an inflammatory response leading to peripheral insulin resistance state and ultimately T2DM. In this study, we investigated the effect of the intestinal luminal content isolated from control or HFD-fed prediabetic mice upon the tight junction (TJ)-mediated epithelial barrier in Caco-2 and MDCK epithelial cell lines. METHODS/KEY FINDINGS: Exposure to small intestine luminal content (SI) isolated from HFD-fed prediabetic mice induced a more significant decrease in transepithelial electrical resistance (TEER), associated with higher paracellular flux in Caco-2 and MDCK cells after 6 h and 4 h respectively, as compared to the SI obtained from control mice. Such changes were accompanied by a significant decrease in TJ content of claudins, occludin, and ZO-1, indicative of disruption of the TJ barrier. Meanwhile, large intestine luminal content from control (Ctrl-LI) and prediabetic (HFD-LI) animals did not change TEER significantly, however, paracellular flux was significantly increased after 24 h, accompanied by a decrease in ZO-1 (after HFD-LI exposure) in Caco-2 and significant changes in the junctional distribution of claudins-1, -2, occludin and ZO-1 proteins in MDCK, particularly after HFD-LI exposure. SIGNIFICANCE: Luminal components of intestinal content, altered by HFD exposure, induce impairment of the TJ structure and function in vitro, corroborating the idea of a role of the intestinal paracellular barrier in the obesity-related T2DM pathogenesis.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Dieta Alta en Grasa/efectos adversos , Contenido Digestivo , Mucosa Intestinal/fisiopatología , Estado Prediabético/fisiopatología , Animales , Células CACO-2 , Claudinas/metabolismo , Modelos Animales de Enfermedad , Perros , Humanos , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos C57BL , Ocludina/metabolismo , Permeabilidad , Uniones Estrechas/patología , Proteína de la Zonula Occludens-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA