Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.096
1.
Sci Total Environ ; 932: 172879, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38697529

Omega-3 polyunsaturated fatty acids (ω3-PUFA) are central to the growth and reproduction of aquatic consumers. Dissolved nutrients in aquatic ecosystems strongly affect algal taxonomic composition and thus the production and transfer of specific ω3-PUFA to consumers at higher trophic levels. However, most studies were conducted in nutrient-poor, oligotrophic lakes, leading to an insufficient understanding of how water nutrients affect algal ω3-PUFA and their trophic transfer in consumers in highly eutrophic lakes. We conducted a field investigation in a highly eutrophic lake and collected basal food sources (phytoplankton, periphyton and macrophytes) and aquatic consumers (invertebrates, zooplankton and fish), and measured their fatty acid (FA) composition. Our results showed that periphyton and phytoplankton were both important sources of ω3-PUFA supporting the highly eutrophic lake food web. High water nutrient levels led to low ω3-PUFA levels in phytoplankton and periphyton, resulting in decreased nutritional quality. Consequently, ω3-PUFA of invertebrates and zooplankton reflected variations in ω3-PUFA of phytoplankton and periphyton, respectively. The ω3-PUFA levels of fish decreased as phytoplankton and periphyton ω3-PUFA decreased. Among fish, the Redfin Culter (Cultrichthys erythropterus) and Bar Cheek Goby (Rhinogobius giurinus) exhibited significantly higher levels of EPA and DHA compared to the Pond Loach (Misgurnus anguillicaudatus), which may have been caused by their different feeding modes. Decreases in the ω3-PUFA levels of basal food sources may be one of the causes leading to the reduction of trophic links in aquatic food webs. Our study elucidated the sources and fate of ω3-PUFA in highly eutrophic lakes, complemented previous studies in oligo- and mesotrophic lakes, and emphasized the role of high-quality food sources. Our results offer new perspectives for the conservation and management of highly eutrophic lake ecosystems.


Environmental Monitoring , Eutrophication , Fatty Acids, Omega-3 , Food Chain , Lakes , Phytoplankton , Lakes/chemistry , Fatty Acids, Omega-3/analysis , Animals , Zooplankton , Water Pollutants, Chemical/analysis , Fishes/metabolism , Invertebrates
2.
Nat Commun ; 15(1): 4048, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744821

Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is well-studied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.


Bacteria , Carbon Cycle , Glucans , Glucans/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Phytoplankton/metabolism , Biomass , Diatoms/metabolism , Eutrophication , Carbon/metabolism , Zooplankton/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/chemistry , Bacterial Proteins/metabolism
3.
PLoS One ; 19(5): e0303263, 2024.
Article En | MEDLINE | ID: mdl-38748719

Environmental DNA (eDNA) is an increasingly useful method for detecting pelagic animals in the ocean but typically requires large water volumes to sample diverse assemblages. Ship-based pelagic sampling programs that could implement eDNA methods generally have restrictive water budgets. Studies that quantify how eDNA methods perform on low water volumes in the ocean are limited, especially in deep-sea habitats with low animal biomass and poorly described species assemblages. Using 12S rRNA and COI gene primers, we quantified assemblages comprised of micronekton, coastal forage fishes, and zooplankton from low volume eDNA seawater samples (n = 436, 380-1800 mL) collected at depths of 0-2200 m in the southern California Current. We compared diversity in eDNA samples to concurrently collected pelagic trawl samples (n = 27), detecting a higher diversity of vertebrate and invertebrate groups in the eDNA samples. Differences in assemblage composition could be explained by variability in size-selectivity among methods and DNA primer suitability across taxonomic groups. The number of reads and amplicon sequences variants (ASVs) did not vary substantially among shallow (<200 m) and deep samples (>600 m), but the proportion of invertebrate ASVs that could be assigned a species-level identification decreased with sampling depth. Using hierarchical clustering, we resolved horizontal and vertical variability in marine animal assemblages from samples characterized by a relatively low diversity of ecologically important species. Low volume eDNA samples will quantify greater taxonomic diversity as reference libraries, especially for deep-dwelling invertebrate species, continue to expand.


Aquatic Organisms , Biodiversity , DNA, Environmental , Animals , DNA, Environmental/genetics , DNA, Environmental/analysis , Aquatic Organisms/genetics , Aquatic Organisms/classification , Seawater , Fishes/genetics , Fishes/classification , Zooplankton/genetics , Zooplankton/classification , Ecosystem , Invertebrates/genetics , Invertebrates/classification
4.
Math Biosci ; 372: 109202, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692481

Phytoplankton bloom received considerable attention for many decades. Different approaches have been used to explain the bloom phenomena. In this paper, we study a Nutrient-Phytoplankton-Zooplankton (NPZ) model consisting of a periodic driving force in the growth rate of phytoplankton due to solar radiation and analyse the dynamics of the corresponding autonomous and non-autonomous systems in different parametric regions. Then we introduce a novel aspect to extend the model by incorporating another periodic driving force into the growth term of the phytoplankton due to sea surface temperature (SST), a key point of innovation. Temperature dependency of the maximum growth rate (µmax) of the phytoplankton is modelled by the well-known Q10 formulation: [Formula: see text] , where µ0 is maximum growth at 0oC. Stability conditions for all three equilibrium points are expressed in terms of the new parameter ρ2, which appears due to the incorporation of periodic driving forces. System dynamics is explored through a detailed bifurcation analysis, both mathematically and numerically, with respect to the light and temperature dependent phytoplankton growth response. Bloom phenomenon is explained by the saddle point bloom mechanism even when the co-existing equilibrium point does not exist for some values of ρ2. Solar radiation and SST are modelled using sinusoidal functions constructed from satellite data. Our results of the proposed model describe the initiation of the phytoplankton bloom better than an existing model for the region 25-35° W, 40-45° N of the North Atlantic Ocean. An improvement of 14 days (approximately) is observed in the bloom initiation time. The rate of change method (ROC) is applied to predict the bloom initiation.


Models, Biological , Phytoplankton , Phytoplankton/growth & development , Phytoplankton/physiology , Temperature , Eutrophication , Animals , Zooplankton/physiology , Zooplankton/growth & development , Sunlight
5.
Mar Drugs ; 22(5)2024 May 17.
Article En | MEDLINE | ID: mdl-38786618

Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host-virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host-virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects.


Allelopathy , Diatoms , Oxylipins , Oxylipins/metabolism , Animals , Aquatic Organisms , Zooplankton
6.
J Math Biol ; 89(1): 8, 2024 May 27.
Article En | MEDLINE | ID: mdl-38801565

Decline of the dissolved oxygen in the ocean is a growing concern, as it may eventually lead to global anoxia, an elevated mortality of marine fauna and even a mass extinction. Deoxygenation of the ocean often results in the formation of oxygen minimum zones (OMZ): large domains where the abundance of oxygen is much lower than that in the surrounding ocean environment. Factors and processes resulting in the OMZ formation remain controversial. We consider a conceptual model of coupled plankton-oxygen dynamics that, apart from the plankton growth and the oxygen production by phytoplankton, also accounts for the difference in the timescales for phyto- and zooplankton (making it a "slow-fast system") and for the implicit effect of upper trophic levels resulting in density dependent (nonlinear) zooplankton mortality. The model is investigated using a combination of analytical techniques and numerical simulations. The slow-fast system is decomposed into its slow and fast subsystems. The critical manifold of the slow-fast system and its stability is then studied by analyzing the bifurcation structure of the fast subsystem. We obtain the canard cycles of the slow-fast system for a range of parameter values. However, the system does not allow for persistent relaxation oscillations; instead, the blowup of the canard cycle results in plankton extinction and oxygen depletion. For the spatially explicit model, the earlier works in this direction did not take into account the density dependent mortality rate of the zooplankton, and thus could exhibit Turing pattern. However, the inclusion of the density dependent mortality into the system can lead to stationary Turing patterns. The dynamics of the system is then studied near the Turing bifurcation threshold. We further consider the effect of the self-movement of the zooplankton along with the turbulent mixing. We show that an initial non-uniform perturbation can lead to the formation of an OMZ, which then grows in size and spreads over space. For a sufficiently large timescale separation, the spread of the OMZ can result in global anoxia.


Computer Simulation , Models, Biological , Oxygen , Phytoplankton , Zooplankton , Animals , Oxygen/metabolism , Zooplankton/metabolism , Zooplankton/growth & development , Zooplankton/physiology , Phytoplankton/metabolism , Phytoplankton/growth & development , Phytoplankton/physiology , Oceans and Seas , Plankton/metabolism , Plankton/growth & development , Mathematical Concepts , Ecosystem , Seawater/chemistry , Food Chain , Anaerobiosis
7.
Environ Sci Pollut Res Int ; 31(24): 35779-35788, 2024 May.
Article En | MEDLINE | ID: mdl-38744760

Studies on functional traits of aquatic communities are useful for understanding the ecosystem dynamics as well as the diversity of ecological niches. Here, we characterize zooplankton functional groups and which limnological factors are responsible to changes in traits. Water samples were collected to evaluate limnological parameters and vertical hauls with plankton net (68 µm) were performed to characterize the community in seven reservoirs (Itupararanga, Atibainha, Salto Grande, Rio Grande, Igaratá, Barra Bonita, and Broa, São Paulo state, Brazil). Each species identified was classified according to a trophic group, reproduction mode, body length, habitat, and feeding habitats. Our results showed a predominance of pelagic suspensory herbivores with cilia (31%) followed by pelagic herbivore suspension filter feeders (17%) and raptorial omnivores (15.38%). The other individuals were categorized as pelagic herbivore suspension with oral device (12.3%), littoral herbivores suspensive with cilia (12.3%), pelagic-sucking herbivores (9.2%), and littoral grazing herbivores (3%). The dominance of herbivores may be influenced by the availability of nutrients, influencing their food sources. The abundance of omnivores engaged in predatory behavior can be attributed to disponible prey, thereby exerting significant repercussions on the organization of biological communities.


Ecosystem , Zooplankton , Animals , Brazil , Biodiversity , Food Chain
8.
Environ Sci Technol ; 58(18): 7998-8008, 2024 May 07.
Article En | MEDLINE | ID: mdl-38629179

Understanding microplastic exposure and effects is critical to understanding risk. Here, we used large, in-lake closed-bottom mesocosms to investigate exposure and effects on pelagic freshwater ecosystems. This article provides details about the experimental design and results on the transport of microplastics and exposure to pelagic organisms. Our experiment included three polymers of microplastics (PE, PS, and PET) ranging in density and size. Nominal concentrations ranged from 0 to 29,240 microplastics per liter on a log scale. Mesocosms enclosed natural microbial, phytoplankton, and zooplankton communities and yellow perch (Perca flavescens). We quantified and characterized microplastics in the water column and in components of the food web (biofilm on the walls, zooplankton, and fish). The microplastics in the water stratified vertically according to size and density. After 10 weeks, about 1% of the microplastics added were in the water column, 0.4% attached to biofilm on the walls, 0.01% within zooplankton, and 0.0001% in fish. Visual observations suggest the remaining >98% were in a surface slick and on the bottom. Our study suggests organisms that feed at the surface and in the benthos are likely most at risk, and demonstrates the value of measuring exposure and transport to inform experimental designs and achieve target concentrations in different matrices within toxicity tests.


Microplastics , Water Pollutants, Chemical , Zooplankton , Animals , Lakes , Ecosystem , Food Chain , Environmental Monitoring , Phytoplankton , Perches/metabolism
9.
Bioresour Technol ; 400: 130694, 2024 May.
Article En | MEDLINE | ID: mdl-38614149

Recycling waste into commercial products is a profitable strategy but the lifetime of immobilized cells for long-term waste treatment remains a problem. This study presents alternative cell immobilization methods for valorizing food waste (FW) and oily food waste (OFW) to microbial carotenoids and proteins. Carriers (pumice or smectite), magnetite nanoparticles, and isolated photosynthetic bacteria were integrated to obtain magnetically recoverable bacteria-pumice and bacteria-smectite nanocomposites. After recycling five batches (50 d), chemical oxygen demand removal from FW reached 76% and 78% with the bacteria-pumice and bacteria-smectite nanocomposite treatments, respectively, and oil degradation in OFW reached 71% and 62%, respectively. Destructive changes did not occur, suggesting the durability of nanocomposites. The used nanocomposites had no impact on the lifespan of Moina macrocopa or water quality as assessed by toxicity analysis. Bacteria-pumice and bacteria-smectite nanocomposites are efficient for food waste recycling and do not require secondary treatment before being discharged into the environment.


Bacteria , Cells, Immobilized , Nanocomposites , Silicates , Zooplankton , Nanocomposites/chemistry , Silicates/chemistry , Silicates/pharmacology , Animals , Cells, Immobilized/metabolism , Food , Recycling , Biological Oxygen Demand Analysis , Waste Products , Biodegradation, Environmental , Oils/chemistry , Food Loss and Waste
10.
Sci Total Environ ; 928: 172489, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38621539

There is a growing interest in the impact of acoustic pollution on aquatic ecosystems. Currently, research has primarily focused on hearing species, particularly fishes and mammals. However, species from lower trophic levels, including many invertebrates, are less studied despite their ecological significance. Among these taxa, studies examining the effects of sound on holozooplankton are extremely rare. This literature review examines the effects of sound on both marine and freshwater zooplankton. It highlights two differences: the few used organisms and the types of sound source. Marine studies focus on the effects of very intense acute sound on copepods, while freshwater studies focus on less intense chronic sound on cladocerans. But, in both, various negative effects are reported. The effects of sound remain largely unknown, although previous studies have shown that zooplankton can detect vibrations using mechanoreceptors. The perception of their environment can be affected by sounds, potentially causing stress. Limited research suggests that sound may affect the physiology, behaviour, and fitness of zooplankton. Following this review, I highlight the potential to use methods from ecology, ecotoxicology, and parasitology to study the effects of sound at the individual level, including changes in physiology, development, survival, and behaviour. Responses to sound, which could alter species interactions and population dynamics, are expected to have larger-scale implications with bottom-up effects, such as changes in food web dynamics and ecosystem functioning. To improve the study of the effect of sound, to better use zooplankton as biological models and as bioindicators, researchers need to better understand how they perceive their acoustic environment. Consequently, an important challenge is the measurement of particle motion to establish useable dose-response relationships and particle motion soundscapes.


Ecosystem , Zooplankton , Zooplankton/physiology , Animals , Sound , Environmental Monitoring/methods , Copepoda/physiology
11.
Bull Environ Contam Toxicol ; 112(4): 61, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38602522

Total mercury (Hg) concentrations and carbon (δ13C) and nitrogen (δ15N) stable isotopes were quantified among aquatic invertebrate and sediment samples collected from Keuka Lake in New York's Finger Lakes region to evaluate temporal and spatial variability in Hg bioaccumulation and trophic ecology among these lower trophic levels. Hg concentrations ranged from 6.3 to 158.8 ng/g (dry wt) across dreissenid mussel, zooplankton, and juvenile (< 10 mm) and adult (≥ 10 mm) mysid shrimp (Mysis diluviana) samples. Hg concentrations were higher in samples collected from the western basin in 2015 relative to those for samples collected from this basin in 2022 (p < 0.001). While no specific mechanisms could be identified to explain this difference, higher δ15N values for zooplankton collected in 2015 support conclusions regarding the role of zooplankton trophic status on Hg concentrations in these populations. Spatial patterns in Hg concentrations were of generally low variability among samples collected from the lake's east, west and south basins in 2022. Trophic positions as inferred by δ15N were represented by adult mysids > juvenile mysids > large zooplankton (≥ 500 µm) > dreissenid mussels ≥ small zooplankton (64-500 µm). Differences were evident among the regression slopes describing the relationships between sample Hg concentrations and δ15N values across the lake's three basins (p = 0.028). However, this was primarily attributed to high δ15N values measured in dreissenid mussels collected from the south basin in 2022. Biota sediment accumulation factors ranged from 0.2 to 2.3 and were highest for adult M. diluviana but mysid δ13C values generally supported a pelagic pathway of Hg exposure relative to benthic sediments. Overall, these results provide additional support regarding the contributions of lower trophic levels to Hg biomagnification in aquatic food-webs.


Food Chain , Mercury , Animals , Bioaccumulation , Lakes , Ecology , Zooplankton
12.
Sci Total Environ ; 929: 172351, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38615783

Whole-lake microalgal biomass surveys were carried out in Lake Balaton to investigate the seasonal, spatial, and temporal changes of benthic algae, as well as to identify the drivers of the phytobenthos. Phytobenthos was controlled mainly by light: the highest benthic algal biomass was in the shallow littoral region characterized by large grain size (sand) with good light availability but lower nutrient content in the sediment. During the investigated period, phytoplankton biomass showed a significant decrease in almost the entire lake. At the same time, the biomass of benthic algae increased significantly in the eastern areas, increasing the contribution of total lake microalgae biomass (from 20 % to 27 %). Benthic algal biomass increase can be explained by the better light supply, owing to the artificially maintained high water level which greatly mitigates water mixing. The decrease in planktonic algal biomass could be attributed to increased zooplankton grazing, which is otherwise negatively affected by mixing. As a result of the high water level, the trophic structure of the lake has been rearranged in recent decades with a shift from the planktonic life form to the benthic one while the nutrient supply has largely remained unchanged.


Biomass , Environmental Monitoring , Lakes , Microalgae , Microalgae/physiology , Lakes/chemistry , Phytoplankton , Plankton , Zooplankton , Eutrophication
13.
Mar Pollut Bull ; 202: 116363, 2024 May.
Article En | MEDLINE | ID: mdl-38621354

Planktonic organisms, which have direct contact with water, serve as the entry point for mercury (Hg), into the marine food web, impacting its levels in higher organisms, including fish, mammals, and humans who consume seafood. This study provides insights into the distribution and behavior of Hg within the Baltic Sea, specifically the Gulf of Gdansk, focusing on pelagic primary producers and consumers. Phytoplankton Hg levels were primarily influenced by its concentrations in water, while Hg concentrations in zooplankton resulted from dietary exposure through suspended particulate matter and phytoplankton consumption. Hg uptake by planktonic organisms, particularly phytoplankton, was highly efficient, with Hg concentrations four orders of magnitude higher than those in the surrounding water. However, unlike biomagnification of Hg between SPM and zooplankton, biomagnification between zooplankton and phytoplankton was not apparent, likely due to the low trophic position and small size of primary consumers, high Hg elimination rates, and limited absorption.


Environmental Monitoring , Food Chain , Mercury , Phytoplankton , Water Pollutants, Chemical , Zooplankton , Mercury/analysis , Mercury/metabolism , Water Pollutants, Chemical/analysis , Animals , Oceans and Seas
14.
Sci Total Environ ; 929: 172414, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38631624

The integration of recombinase polymerase amplification (RPA) with CRISPR/Cas technology has revolutionized molecular diagnostics and pathogen detection due to its unparalleled sensitivity and trans-cleavage ability. However, its potential in the ecological and environmental monitoring scenarios for aquatic ecosystems remains largely unexplored, particularly in accurate qualitative/quantitative detection, and its actual performance in handling complex real environmental samples. Using zooplankton as a model, we have successfully optimized the RPA-CRISPR/Cas12a fluorescence detection platform (RPA-Cas-FQ), providing several crucial "technical tips". Our findings indicate the sensitivity of CRISPR/Cas12a alone is 5 × 109 copies/reaction, which can be dramatically increased to 5 copies/reaction when combined with RPA. The optimized RPA-Cas-FQ enables reliable qualitative and semi-quantitative detection within 50 min, and exhibits a good linear relationship between fluorescence intensity and DNA concentration (R2 = 0.956-0.974***). Additionally, we developed a rapid and straightforward identification procedure for single zooplankton by incorporating heat-lysis and DNA-barcode techniques. We evaluated the platform's effectiveness using real environmental DNA (eDNA) samples from the Three Gorges Reservoir, confirming its practicality. The eDNA-RPA-Cas-FQ demonstrated strong consistency (Kappa = 0.43***) with eDNA-Metabarcoding in detecting species presence/absence in the reservoir. Furthermore, the two semi-quantitative eDNA technologies showed a strong positive correlation (R2 = 0.58-0.87***). This platform also has the potential to monitor environmental pollutants by selecting appropriate indicator species. The novel insights and methodologies presented in this study represent a significant advancement in meeting the complex needs of aquatic ecosystem protection and monitoring.


Environmental Monitoring , Zooplankton , Environmental Monitoring/methods , Animals , CRISPR-Cas Systems , DNA, Environmental/analysis , Nucleic Acid Amplification Techniques/methods , Recombinases/metabolism
15.
Environ Pollut ; 349: 123918, 2024 May 15.
Article En | MEDLINE | ID: mdl-38574946

The emergence of microplastics as a global contaminant of concern has coincided with climate change induced temperature warming in aquatic ecosystems. Warmer temperatures have been previously demonstrated to increase the toxicity of certain contaminants, but it is currently unclear if microplastics are similarly affected by temperature. As aquatic organisms simultaneously face microplastic pollution and both increasing and variable temperatures, understanding how temperature affects microplastic toxicity is pertinent in this era of human-induced global change. In this study, we investigate the effects of environmentally relevant microplastic exposure to Daphnia pulex survival, reproduction, and growth at three different temperatures. To simulate an environmentally relevant exposure scenario, we created microplastics with physicochemical characteristics often detected in nature, and exposed organisms to concentrations close to values reported in inland waters and 1-2 orders of magnitude higher. The three temperatures tested in this experiment included 12 °C, 20 °C, and 24 °C, to simulate cool/springtime, current, and warming scenarios. We found the highest concentration of microplastics significantly impacted survival and total offspring compared to the control at 20 °C and 24 °C, but not at 12 °C. The adverse effect of high microplastic concentrations on total offspring at warmer temperatures was driven by the high mortality of the juveniles. We observed no effect of microplastics on time to first reproduction or average growth rate at any temperature. Warmer temperatures exacerbated microplastic toxicity, although only for concentrations of microplastics not currently observed in nature, but these concentrations are possible in pollution hotspots, through pulses pollution events or future worsening environmental contamination. The results of our study illustrate the continued need to further investigate climate change related co-stressors such as warming temperatures in microplastic and pollution ecology, through environmentally realistic exposure scenarios.


Climate Change , Daphnia , Microplastics , Water Pollutants, Chemical , Zooplankton , Microplastics/toxicity , Animals , Water Pollutants, Chemical/toxicity , Zooplankton/drug effects , Daphnia/drug effects , Temperature , Reproduction/drug effects
16.
Sci Total Environ ; 930: 172837, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38688360

Microplastics could be ingested by many organisms, including zooplankton, involving bioaccumulation and biomagnification mechanisms a cross food webs. The information about microplastic ingestion by zooplankton keeps increasing worldwide. However, it is still limited for particle sizes under 300 µm (small microplastics, SMPs) and in areas such as Southeast Asia, which is considered one of the hotspots for plastic debris. This study aimed to characterize the size, shape, and polymer types of the SMPs ingested by the copepod Centropages furcatus in Si Chang Island (upper Gulf of Thailand). The study spans offshore and coastal waters, with data collected across wet, intermediate, and dry seasons. Using a semi-automated technique for micro-FTIR (Fourier-transform infrared) scanning spectroscopy for particle analysis, we found ingested SMPs in all samples. A total of 750 individuals of the calanoid Centropages furcatus were analyzed, finding 309 plastic particles and an average ingestion value of 0.41 ± 0.13 particles ind-1, one of the highest recorded values. All the particles were fragments, with a predominant size under 50 µm, and polymer types as Polypropylene (PP, 71 %), followed by Ethylene-Propylene-Diene-Monomer (EPDM, 16 %) and Polyethylene (PE, 7 %). Up to 470.2 particles m-3 were estimated to be retained by this calanoid species and potentially available for trophic transfer. The effect of rainfall on SMPs ingestion was inconclusive, with a non-significant observed tendency to higher ingestion values near the coastal area than offshore area, suggesting a decrease in particle exposure due to the runoff effect. Nevertheless, future studies should increase the frequency of surveys to arrive at better conclusions.


Copepoda , Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Thailand , Animals , Microplastics/analysis , Water Pollutants, Chemical/analysis , Food Chain , Particle Size , Eating , Plastics/analysis , Zooplankton
17.
Sci Rep ; 14(1): 9815, 2024 04 29.
Article En | MEDLINE | ID: mdl-38684814

Kelp forest trophic cascades have been extensively researched, yet indirect effects to the zooplankton prey base and gray whales have not been explored. We investigate the correlative patterns of a trophic cascade between bull kelp and purple sea urchins on gray whales and zooplankton in Oregon, USA. Using generalized additive models (GAMs), we assess (1) temporal dynamics of the four species across 8 years, and (2) possible trophic paths from urchins to kelp, kelp as habitat to zooplankton, and kelp and zooplankton to gray whales. Temporal GAMs revealed an increase in urchin coverage, with simultaneous decline in kelp condition, zooplankton abundance and gray whale foraging time. Trophic path GAMs, which tested for correlations between species, demonstrated that urchins and kelp were negatively correlated, while kelp and zooplankton were positively correlated. Gray whales showed nuanced and site-specific correlations with zooplankton in one site, and positive correlations with kelp condition in both sites. The negative correlation between the kelp-urchin trophic cascade and zooplankton resulted in a reduced prey base for gray whales. This research provides a new perspective on the vital role kelp forests may play across multiple trophic levels and interspecies linkages.


Food Chain , Kelp , Sea Urchins , Whales , Zooplankton , Animals , Zooplankton/physiology , Kelp/physiology , Whales/physiology , Sea Urchins/physiology , Ecosystem , Oregon
18.
Sci Rep ; 14(1): 8192, 2024 04 08.
Article En | MEDLINE | ID: mdl-38589522

In Fram Strait, we combined underway-sampling using the remote-controlled Automated Filtration System for Marine Microbes (AUTOFIM) with CTD-sampling for eDNA analyses, and with high-resolution optical measurements in an unprecedented approach to determine variability in plankton composition in response to physical forcing in a sub-mesoscale filament. We determined plankton composition and biomass near the surface with a horizontal resolution of ~ 2 km, and addressed vertical variability at five selected sites. Inside and near the filament, plankton composition was tightly linked to the hydrological dynamics related to the presence of sea ice. The comprehensive data set indicates that sea-ice melt related stratification near the surface inside the sub-mesoscale filament resulted in increased sequence abundances of sea ice-associated diatoms and zooplankton near the surface. In analogy to the physical data set, the underway eDNA data, complemented with highly sampled phytoplankton pigment data suggest a corridor of 7 km along the filament with enhanced photosynthetic biomass and sequence abundances of sea-ice associated plankton. Thus, based on our data we extrapolated an area of 350 km2 in Fram Strait with enhanced plankton abundances, possibly leading to enhanced POC export in an area that is around a magnitude larger than the visible streak of sea-ice.


Plankton , Zooplankton , Animals , Biomass , Plankton/genetics , Zooplankton/genetics , Photosynthesis , Phytoplankton/genetics , Arctic Regions , Ecosystem , Ice Cover
19.
Mar Environ Res ; 197: 106481, 2024 May.
Article En | MEDLINE | ID: mdl-38593647

Marine distribution of dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) is greatly affected by the community structures of bacteria, phytoplankton, and zooplankton. Spatial distributions of dissolved and particulate DMSP (DMSPd,p), and DMS were measured and their relationships with DMSP lyase activity (DLA), abundance of DMSP-consuming bacteria (DCB), and the community structures of phytoplankton, zooplankton, and bacteria were determined during summer in the South China Sea (SCS). The depth distributions of DMSPd,p exhibited a similar trend with Chl a, reaching their maxima in the mixing layer. The DMS concentration was positively correlated with DCB abundance and DLA, indicating that DCB and DMSP lyase had a significant effect on DMS production. High DMS concentrations in the horizontal distribution coincided with high DCB abundance and DLA and may be due to the rapid growth of phytoplankton resulting from the high dissolved inorganic nitrogen concentration brought by the cold vortices. Moreover, the highest copepod abundance at station G3 coincided with the highest DMS concentrations there among stations B4, F2, and G3. These results suggest that copepod may play an important role in DMS production. The bacterial SAR11 clade was positively correlated with DLA, indicating its significant contribution to DMSP degradation in the SCS. These findings contribute to the understanding of the effect of the community assemblage on DMSP/DMS distributions in the SCS dominated by mesoscale vortices.


Seawater , Sulfonium Compounds , Animals , Seawater/chemistry , Sulfur/metabolism , Sulfonium Compounds/chemistry , Sulfonium Compounds/metabolism , Sulfides/metabolism , Bacteria/metabolism , Phytoplankton , China , Zooplankton/metabolism
20.
Sci Data ; 11(1): 361, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600091

Species assemblage composition of marine microfossils offers the possibility to investigate ecological and climatological change on time scales inaccessible using conventional observations. Planktonic foraminifera - calcareous zooplankton - have an excellent fossil record and are used extensively in palaeoecology and palaeoceanography. During the Last Glacial Maximum (LGM; 19,000 - 23,000 years ago), the climate was in a radically different state. This period is therefore a key target to investigate climate and biodiversity under different conditions than today. Studying LGM climate and ecosystems indeed has a long history, yet the most recent global synthesis of planktonic foraminifera assemblage composition is now nearly two decades old. Here we present the ForCenS-LGM dataset with 2,365 species assemblage samples collected using standardised methods and with harmonised taxonomy. The data originate from marine sediments from 664 sites and present a more than 50% increase in coverage compared to previous work. The taxonomy is compatible with the most recent global core top dataset, enabling direct investigation of temporal changes in foraminifera biogeography and facilitating seawater temperature reconstructions.


Foraminifera , Fossils , Zooplankton , Animals , Biodiversity , Ecosystem
...