Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.074
Filtrar
1.
Int J Biol Macromol ; 273(Pt 1): 133032, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38862053

RESUMEN

Collagen's unique properties promise hemostatic potential, but its sponge form's stability and mechanics need improvement. In this study, we developed a series of homeostatic sponges by co-assembling collagen and curdlan at different ratios into hydrogels, followed by freeze-drying treatment. The incorporation of curdlan into collagen sponges has been found to significantly enhance the sponge's properties, including increased porosity, elevated water uptake, improved elasticity, and enhanced resistance to degradation. In vitro cytotoxicity and hemolysis assays have demonstrated the biocompatibility and nontoxicity of composite sponges. In mouse liver perforation and incision models, the composite sponges achieved rapid coagulation within 67 s and 75 s, respectively, outperforming gauze and gelatin sponge in reducing blood loss. Furthermore, composite sponges demonstrated superior wound healing potential in mice full-thickness skin defects model, with accelerated healing rates observed at days 3, 7, and 14 compared to the control group. Overall, collagen/curdlan composite sponge show promise for hemostasis and wound healing applications.


Asunto(s)
Colágeno , Hemostasis , Cicatrización de Heridas , beta-Glucanos , Animales , Cicatrización de Heridas/efectos de los fármacos , Colágeno/química , Colágeno/farmacología , beta-Glucanos/farmacología , beta-Glucanos/química , Ratones , Hemostasis/efectos de los fármacos , Piel/efectos de los fármacos , Piel/lesiones , Hidrogeles/química , Hidrogeles/farmacología , Hemólisis/efectos de los fármacos , Hemostáticos/farmacología , Hemostáticos/química , Porosidad , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Humanos , Masculino
2.
Animal ; 18(6): 101185, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843664

RESUMEN

Although anticoccidials effectively control coccidiosis, a needed reduction in the reliance on antimicrobials in animal production leads to the exploration of alternative compounds. The present study aimed to test five different dietary treatments to counteract the negative impact of coccidiosis on broiler chickens' health and performance. 1-day-old male Ross 308 broilers (n = 960) were randomly assigned to one of eight treatments, with six cages per treatment (20 birds/cage). To the diet of the broiler chickens of treatments (Trt) 1-5, a synbiotic was added from d0-10. From d10-28, birds of Trt1 and Trt2 were fed synbiotics, whereas birds of Trt3 were fed diets with glutamine, and birds of Trt4 and Trt5 were fed diets with a combination of ß-glucans and betaine. From d28-35 onwards, birds of Trt1 were fed a diet with a synbiotic, whereas birds of Trt2-4 received diets with glutamine, and birds of Trt5 were fed a non-supplemented diet. Birds of the positive control group (PC; Trt6) were fed a standard diet supplemented with an anticoccidial (Decoquinate). The challenged negative control (NCchall; Trt7) and non-challenged negative control (NC) Trt8 were fed a standard diet without anticoccidial or other dietary treatment. At 7 days (d) of age, all birds were inoculated with 1 023, 115, and 512 sporulated oocysts of E. acervulina, E. maxima, and E. tenella, respectively, except for Trt8. Body weight gain (BWG), feed intake, and feed conversion ratio were assessed for each feeding phase (d0-10, d10-28 and d28-35) and overall experimental period (d0-35). Oocyst shedding, Eimeria lesion scores, cecal length, and relative weight were assessed at d13, d22, d28 and d35. Additionally, oocyst shedding was determined at d9 and d17. Litter quality was evaluated at d27 and d34, and footpad lesions at d34. During the starter (d0-10) and finisher (d28-35) periods, performance did not differ between the treatments. During the grower period (d10-28), Trt6 (PC) and Trt8 (NC) chickens had the highest BWG of all treatments (P < 0.001). Dietary treatment had no effect on litter quality and severity of footpad lesions. In the PC group (Trt6), low oocyst excretion and lesion scores were found. When comparing Trt1-5 with NCchall (Trt7), none of the treatments significantly reduced oocyst output or lesion scores. In conclusion, in this experiment, none of the dietary treatments performed similar or better compared to the PC group (Trt6) regarding performance or reducing Eimeria oocyst shedding or lesion scores.


Asunto(s)
Alimentación Animal , Pollos , Coccidiosis , Dieta , Eimeria , Oocistos , Enfermedades de las Aves de Corral , Animales , Coccidiosis/veterinaria , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/tratamiento farmacológico , Masculino , Alimentación Animal/análisis , Eimeria/fisiología , Dieta/veterinaria , Suplementos Dietéticos/análisis , Simbióticos/administración & dosificación , Distribución Aleatoria , Betaína/administración & dosificación , Betaína/farmacología , Glutamina/farmacología , Glutamina/administración & dosificación , beta-Glucanos/farmacología , beta-Glucanos/administración & dosificación , beta-Glucanos/uso terapéutico
3.
PLoS One ; 19(6): e0304112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38900829

RESUMEN

The development and application of functional feed ingredients represents a great opportunity to advance fish growth and health, boost the immune system, and induce physiological benefits beyond those provided by traditional feeds. In the present study, we looked at the feasibility of in vitro methods for screening the qualities of functional feed ingredients using the fish cell line RTgill-W1, which has never been used in fish nutrition, and the culture of Paramoeba perurans. Five functional feed ingredients (arginine, ß-glucan, vitamin C, and two phytogenic feed additives) were selected to investigate their effects on cell viability and reactive oxygen species production. Three of the selected ingredients (arginine and two phytogenic feed additives) were additionally tested to assess their potential amoebicidal activity. As these functional ingredients are the core of a commercially available feed (Protec Gill, Skretting AS), their beneficial effects were further assessed in a field trial in fish affected by complex gill disease. Here, the analyzed parameters included the evaluation of macroscopic and histopathological gill conditions, pathogen detections, and analyses of plasma parameters. RTgill-W1 cell line assays were a good tool for screening functional ingredients and provided information about the optimal ingredient concentration ranges, which can be helpful for adjusting the concentrations in future feed diets. Through the culture of P. perurans, the tested ingredients showed a clear amoebicidal activity, suggesting that their inclusions in dietary supplements could be a viable way to prevent microbial infections. A three-week period of feeding Protec Gill slowed the disease progression, by reducing the pathogen load and significantly improving gill tissue conditions, as revealed by histological evaluation. The use of diets containing selected functional ingredients may be a feasible strategy for preventing or mitigating the increasingly common gill diseases, particularly in cases of complex gill disease, as documented in this study.


Asunto(s)
Alimentación Animal , Enfermedades de los Peces , Branquias , Salmo salar , Animales , Alimentación Animal/análisis , Enfermedades de los Peces/prevención & control , Branquias/patología , Branquias/parasitología , Branquias/efectos de los fármacos , Línea Celular , beta-Glucanos/farmacología , Arginina/farmacología , Ácido Ascórbico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Suplementos Dietéticos , Amebiasis/parasitología , Supervivencia Celular/efectos de los fármacos
4.
Int J Biol Macromol ; 272(Pt 1): 132736, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38830494

RESUMEN

Fatal massive hemorrhage and diabetic wound healing are world widely challenging in surgical managements, and uncontrolled bleeding, chronic inflammation and damaged remodeling heavily hinder the whole healing processes. Considering hemostasis, inflammation and wound microenvironment cooperatively affect the healing progression, we design all-in-one beta-glucan (BG) hybrid hydrogels reinforced with laponite nanoclay that demonstrate tunable tissue adhesion, resistant vascular burst pressure and cooperative wound microenvironment regulation for arterial hemostasis and diabetic wound prohealing. Those hydrogels had honeycomb-like porous microstructure with average pore size of 7-19 µm, tissue adhesion strength of 18-46 kPa, and vascular burst pressure of 58-174 mmHg to achieve superior hemostasis in rat liver and femoral artery models. They could effectively scavenge reactive oxygen species, transform macrophages from proinflammatory M1 into prohealing M2, and shorten the inflammation duration via synergistic actions of BG and nitric oxide (NO). Single treatment of NO-releasing BG hybrid hydrogels attained complete closure of diabetic wounds within 14 days, orchestrated to accelerate the epithelization and dermis growth, and restored normal vascularization, achieving high performance healing with optimal collagen deposition and hair follicle regeneration. Consequently, this work opens up a new avenue to design all-in-one polysaccharide hydrogels for applications in massive bleeding hemostats and diabetic wound dressings.


Asunto(s)
Hemorragia , Hidrogeles , Cicatrización de Heridas , Animales , Hidrogeles/química , Hidrogeles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Ratas , Hemorragia/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Masculino , Óxido Nítrico/metabolismo , beta-Glucanos/química , beta-Glucanos/farmacología , Ratones , Ratas Sprague-Dawley , Polisacáridos/farmacología , Polisacáridos/química
5.
Physiol Rep ; 12(12): e16115, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923221

RESUMEN

Pro-inflammatory fungal ß-d-glucan (BDG) polysaccharides cause respiratory pathology. However, specific immunological effects of unique BDG structures on pulmonary inflammation are understudied. We characterized the effect of four unique fungal BDGs with unique branching patterns, solubility, and molecular weights in murine airways. Scleroglucan (1 → 3)(1 → 6)-highly branched BDG, laminarin (1 → 3)(1 → 6)-branched BDG, curdlan (1 → 3)-linear BDG, and pustulan (1 → 6)-linear BDG were assessed by nuclear magnetic resonance spectroscopy. Each BDG was tested by inhalation model with C3HeB/FeJ mice and compared to saline-exposed control mice and unexposed sentinels (n = 3-19). Studies were performed ±heat-inactivation (1 h autoclave) to increase BDG solubility. Outcomes included bronchoalveolar lavage (BAL) differential cell counts (macrophages, neutrophils, lymphocytes, eosinophils), cytokines, serum IgE, and IgG2a (multiplex and ELISA). Ex vivo primary cells removed from lungs and plated at monolayer were stimulated (BDG, lipopolysaccharide (LPS), anti-CD3), and cytokines compared to unstimulated cells. Right lung histology was performed. Inhalation of BDGs with distinct branching patterns exhibited varying inflammatory potency and immunogenicity. Lichen-derived (1 → 6)-linear pustulan was the most pro-inflammatory BDG, increasing inflammatory infiltrate (BAL), serum IgE and IgG2a, and cytokine production. Primed lung cells responded to secondary LPS stimulation with a T-cell-specific response to pustulan. Glucan source and solubility should be considered in exposure and toxicological studies.


Asunto(s)
Pulmón , beta-Glucanos , Animales , Masculino , Ratones , beta-Glucanos/farmacología , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Neumonía/inmunología , Neumonía/patología , Neumonía/metabolismo , Neumonía/inducido químicamente , Citocinas/metabolismo , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/química , Ratones Endogámicos C3H , Glucanos/farmacología
6.
Immun Inflamm Dis ; 12(6): e1333, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38934407

RESUMEN

BACKGROUND: Particulate ß-glucans (WGP) are natural compounds with regulatory roles in various biological processes, including tumorigenesis and inflammatory diseases such as allergic asthma. However, their impact on mast cells (MCs), contributors to airway hyperresponsiveness (AHR) and inflammation in asthma mice, remains unknown. METHODS: C57BL/6 mice underwent repeated OVA sensitization without alum, followed by Ovalbumin (OVA) challenge. Mice received daily oral administration of WGP (OAW) at doses of 50 or 150 mg/kg before sensitization and challenge. We assessed airway function, lung histopathology, and pulmonary inflammatory cell composition in the airways, as well as proinflammatory cytokines and chemokines in the bronchoalveolar lavage fluid (BALF). RESULTS: The 150 mg/kg OAW treatment mitigated OVA-induced AHR and airway inflammation, evidenced by reduced airway reactivity to aerosolized methacholine (Mch), diminished inflammatory cell infiltration, and goblet cell hyperplasia in lung tissues. Additionally, OAW hindered the recruitment of inflammatory cells, including MCs and eosinophils, in lung tissues and BALF. OAW treatment attenuated proinflammatory tumor necrosis factor (TNF)-α and IL-6 levels in BALF. Notably, OAW significantly downregulated the expression of chemokines CCL3, CCL5, CCL20, CCL22, CXCL9, and CXCL10 in BALF. CONCLUSION: These results highlight OAW's robust anti-inflammatory properties, suggesting potential benefits in treating MC-dependent AHR and allergic inflammation by influencing inflammatory cell infiltration and regulating proinflammatory cytokines and chemokines in the airways.


Asunto(s)
Asma , Modelos Animales de Enfermedad , Mastocitos , Ratones Endogámicos C57BL , beta-Glucanos , Animales , Asma/inmunología , Asma/tratamiento farmacológico , Asma/patología , Mastocitos/inmunología , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Ratones , Administración Oral , beta-Glucanos/farmacología , beta-Glucanos/administración & dosificación , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Ovalbúmina/inmunología , Hipersensibilidad Respiratoria/tratamiento farmacológico , Hipersensibilidad Respiratoria/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/efectos de los fármacos
7.
Molecules ; 29(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930852

RESUMEN

Nutraceutical immune support offers potential for designing blends with complementary mechanisms of action for robust support of innate immune alertness. We documented enhanced immune activation when bovine colostrum peptides (BC-Pep) were added to an immune blend (IB) containing ß-glucans from yeast, shiitake, maitake, and botanical non-ß-glucan polysaccharides. Human peripheral blood mononuclear cells (PBMCs) were cultured with IB, BC-Pep, and IB + BC-Pep for 20 h, whereafter expression of the activation marker CD69 was evaluated on NK cells, NKT cells, and T cells. Cytokine levels were tested in culture supernatants. PBMCs were co-cultured with K562 target cells to evaluate T cell-mediated cytotoxicity. IB + BC-Pep triggered highly significant increases in IL-1ß, IL-6, and TNF-α, above that of cultures treated with matching doses of either IB or BC-Pep. NK cell and T cell activation was increased by IB + BC-Pep, reaching levels of CD69 expression several fold higher than either BC-Pep or IB alone. IB + BC-Pep significantly increased T cell-mediated cytotoxic killing of K562 target cells. This synergistic effect suggests unique amplification of signal transduction of NK cells and T cells due to modulation of IB-induced signaling pathways by BC-Pep and is of interest for further pre-clinical and clinical testing of immune defense activity against virally infected and transformed cells.


Asunto(s)
Calostro , Inmunidad Innata , Péptidos , beta-Glucanos , Animales , Bovinos , Humanos , Calostro/química , Calostro/inmunología , Inmunidad Innata/efectos de los fármacos , beta-Glucanos/farmacología , beta-Glucanos/química , Péptidos/farmacología , Péptidos/química , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Citocinas/metabolismo , Activación de Linfocitos/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Agaricales/química , Antígenos de Diferenciación de Linfocitos T/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Células K562 , Antígenos CD/metabolismo , Lectinas Tipo C
8.
Cell Mol Immunol ; 21(7): 770-786, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839914

RESUMEN

The hallmarks of spondyloarthritis (SpA) are type 3 immunity-driven inflammation and new bone formation (NBF). Macrophage migration inhibitory factor (MIF) was found to be a key driver of the pathogenesis of SpA by amplifying type 3 immunity, yet MIF-interacting molecules and networks remain elusive. Herein, we identified hypoxia-inducible factor-1 alpha (HIF1A) as an interacting partner molecule of MIF that drives SpA pathologies, including inflammation and NBF. HIF1A expression was increased in the joint tissues and synovial fluid of SpA patients and curdlan-injected SKG (curdlan-SKG) mice compared to the respective controls. Under hypoxic conditions in which HIF1A was stabilized, human and mouse neutrophils exhibited substantially increased expression of MIF and IL-23, an upstream type 3 immunity-related cytokine. Similar to MIF, systemic overexpression of IL-23 induced SpA pathology in SKG mice, while the injection of a HIF1A-selective inhibitor (PX-478) into curdlan-SKG mice prevented or attenuated SpA pathology, as indicated by a marked reduction in the expression of MIF and IL-23. Furthermore, genetic deletion of MIF or HIF1A inhibition with PX-478 in IL-23-overexpressing SKG mice did not induce evident arthritis or NBF, despite the presence of psoriasis-like dermatitis and blepharitis. We also found that MIF- and IL-23-expressing neutrophils infiltrated areas of the NBF in curdlan-SKG mice. These neutrophils potentially increased chondrogenesis and cell proliferation via the upregulation of STAT3 in periosteal cells and ligamental cells during endochondral ossification. Together, these results provide supporting evidence for an MIF/HIF1A regulatory network, and inhibition of HIF1A may be a novel therapeutic approach for SpA by suppressing type 3 immunity-mediated inflammation and NBF.


Asunto(s)
Condrogénesis , Modelos Animales de Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia , Factores Inhibidores de la Migración de Macrófagos , Neutrófilos , Animales , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Humanos , Ratones , Espondiloartritis/inmunología , Espondiloartritis/patología , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/genética , Interleucina-23/metabolismo , beta-Glucanos/farmacología , Ratones Endogámicos C57BL , Masculino , Femenino , Inmunidad
9.
Cell Rep ; 43(6): 114324, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38850536

RESUMEN

Trained immunity is classically characterized by long-term functional reprogramming of innate immune cells to combat infectious diseases. Infection-induced organ injury is a common clinical severity phenotype of sepsis. However, whether the induction of trained immunity plays a role in protecting septic organ injury remains largely unknown. Here, through establishing an in vivo ß-glucan training and lipopolysaccharide (LPS) challenge model in zebrafish larvae, we observe that induction of trained immunity could inhibit pyroptosis of hepatocytes to alleviate septic liver injury, with an elevated trimethyl-histone H3 lysine 4 (H3K4me3) modification that targets mitophagy-related genes. Moreover, we identify a C-type lectin domain receptor in zebrafish, named DrDectin-1, which is revealed as the orchestrator in gating H3K4me3 rewiring-mediated mitophagy activation and alleviating pyroptosis-engaged septic liver injury in vivo. Taken together, our results uncover tissue-resident trained immunity in maintaining liver homeostasis at the whole-animal level and offer an in vivo model to efficiently integrate trained immunity for immunotherapies.


Asunto(s)
Hepatocitos , Piroptosis , Sepsis , Proteínas de Pez Cebra , Pez Cebra , Animales , Hepatocitos/metabolismo , Hepatocitos/inmunología , Sepsis/inmunología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Lipopolisacáridos , Hígado/patología , Hígado/metabolismo , Hígado/inmunología , Mitofagia , Lectinas Tipo C/metabolismo , Inmunidad Innata , Histonas/metabolismo , beta-Glucanos/farmacología , Inmunidad Entrenada
10.
J Immunol Res ; 2024: 2765001, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774603

RESUMEN

ß-Glucan is the main component of the cell wall of pathogen-associated molecular patterns (PAMPs) including various yeast, fungi, or certain bacteria. Previous reports demonstrated that ß-glucan was widely investigated as a potent immunomodulators to stimulate innate and adaptive immune responses, which indicated that it could be recommended as an effective adjuvant in immunotherapy. However, the detailed effects of ß-glucan on neonatal immunity are still largely unknown. Here, we found that ß-glucan did not affect the frequencies and numbers of myeloid cells in the spleen and bone marrow from neonates. Functional assay revealed that ß-glucan from neonates compromised the immunosuppressive function of immature myeloid cells, which were myeloid-derived suppressor cells (MDSCs). Flow cytometry or gene expression analysis revealed that ß-glucan-derived polymorphonuclear (PMN)-MDSCs produced lower level of reactive oxygen species (ROS) and arginase-1 (Arg1) in neonatal mice. Furthermore, ß-glucan administration significantly decreased the frequency and ROS level of PMN-MDSCs in vitro. These observations suggest that ß-glucan facilitates the maturation of myeloid cells in early life, which may contribute to its beneficial effects against immune disorders later in life.


Asunto(s)
Animales Recién Nacidos , Arginasa , Células Supresoras de Origen Mieloide , Especies Reactivas de Oxígeno , beta-Glucanos , Animales , Ratones , Arginasa/metabolismo , beta-Glucanos/farmacología , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Células Mieloides/inmunología , Células Mieloides/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Bazo/inmunología , Bazo/metabolismo , Bazo/citología
11.
Int J Med Mushrooms ; 26(6): 13-23, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38801085

RESUMEN

Brazil-grown outdoor-cultivated Agaricus brasiliensis KA21 fruiting body (KA21) significantly increases the production of serum anti-beta-glucan antibody. Therefore, KA21 ingestion may be useful for the prevention and alleviation of fungal infections. This study aimed to determine the effects of KA21 in fungal infections in animals. KA21 was administered to nine dogs infected with Malassezia. Notably, the anti-beta-glucan antibody titer remained unchanged or tended to decrease in the oral steroid arm, whereas in the non-steroid arm, antibody titer increased in almost all animals after KA21 ingestion. Dogs showing improved clinical symptoms exhibited increased anti-beta-glucan antibody titers. The results of this study suggest that KA21 ingestion may alleviate the symptoms of Malassezia and other fungal infections and that continuous ingestion may help prolong recurrence-free intervals. Additionally, the ingestion of KA21 during oral steroid dosage reduction or discontinuation may enable smoother steroid withdrawal.


Asunto(s)
Agaricus , Enfermedades de los Perros , Cuerpos Fructíferos de los Hongos , Malassezia , Animales , Perros , Agaricus/química , Cuerpos Fructíferos de los Hongos/química , Malassezia/efectos de los fármacos , Enfermedades de los Perros/microbiología , Enfermedades de los Perros/tratamiento farmacológico , Dermatomicosis/veterinaria , Dermatomicosis/prevención & control , Dermatomicosis/tratamiento farmacológico , Dermatomicosis/microbiología , beta-Glucanos/administración & dosificación , beta-Glucanos/farmacología , Masculino , Brasil , Dermatitis/tratamiento farmacológico , Dermatitis/veterinaria , Dermatitis/microbiología , Dermatitis/prevención & control , Femenino , Anticuerpos Antifúngicos/sangre
12.
Open Biol ; 14(5): 230315, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38806144

RESUMEN

Candida glabrata is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of Candida eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting Candida pathogenicity. To date, how C. glabrata induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between C. glabrata and DCs and its effect on Treg induction. We found that C. glabrata ß-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of C. glabrata ß-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of C. glabrata ß-glucan to CR3. Our data suggest that C. glabrata ß-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by C. glabrata that may lead to a better design of novel immunotherapeutic strategies for invasive C. glabrata infection.


Asunto(s)
Candida glabrata , Células Dendríticas , Antígeno de Macrófago-1 , Linfocitos T Reguladores , beta-Glucanos , Candida glabrata/metabolismo , Candida glabrata/patogenicidad , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , beta-Glucanos/metabolismo , beta-Glucanos/farmacología , Animales , Antígeno de Macrófago-1/metabolismo , Ratones , Lectinas Tipo C/metabolismo , Candidiasis/inmunología , Candidiasis/microbiología , Candidiasis/metabolismo , Ratones Endogámicos C57BL
13.
Biomacromolecules ; 25(6): 3360-3372, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38771665

RESUMEN

The simultaneous delivery of CpG oligonucleotide along with short interfering RNA (siRNA) has the potential to significantly boost the anticancer impact of siRNA medications. Our previous research demonstrated that Curdlan nanoparticles functionalized with adenosine are capable of selectively delivering therapeutic siRNA to cancerous cells through endocytosis mediated by adenosine receptors. Herein, we synthesized a dual-ligand-functionalized Curdlan polymer (denoted by CuMAN) to simultaneously target tumor cells and tumor-associated macrophages (TAMs). CuMAN nanoparticles containing CpG and siRNA demonstrated enhanced uptake by B16F10 tumor cells and bone marrow-derived macrophages, which are facilitated by AR on tumor cells and mannose receptor on macrophages. This led to increased release of pro-inflammatory cytokines in both in vitro and in vivo settings. The synergistic effect of CpG on TAMs and RNAi on tumor cells mediated by the CuMAN nanoparticle not only suppressed the tumor growth but also strongly inhibited the lung metastasis. Our findings indicate that the CuMAN nanoparticle has potential as an effective dual-targeting delivery system for nucleic acid therapeutics.


Asunto(s)
Nanopartículas , ARN Interferente Pequeño , beta-Glucanos , Animales , beta-Glucanos/química , beta-Glucanos/farmacología , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/química , Nanopartículas/química , Ratones , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/farmacología , Melanoma Experimental/patología , Melanoma Experimental/tratamiento farmacológico , Línea Celular Tumoral , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ligandos , Sistemas de Liberación de Medicamentos/métodos , Macrófagos Asociados a Tumores/efectos de los fármacos
14.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731604

RESUMEN

Edible grey oyster mushroom, Pleurotus sajor-caju, ß (1,3), (1,6) glucan possesses a wide range of biological activities, including anti-inflammation, anti-microorganism and antioxidant. However, its biological activity is limited by low water solubility resulting from its high molecular weight. Our previous study demonstrated that enzymatic hydrolysis of grey oyster mushroom ß-glucan using Hevea ß-1,3-glucanase isozymes obtains a lower molecular weight and higher water solubility, Pleurotus sajor-caju glucanoligosaccharide (Ps-GOS). Additionally, Ps-GOS potentially reduces osteoporosis by enhancing osteoblast-bone formation, whereas its effect on osteoclast-bone resorption remains unknown. Therefore, our study investigated the modulatory activities and underlying mechanism of Ps-GOS on Receptor activator of nuclear factor kappa-Β ligand (RANKL) -induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells. Cell cytotoxicity of Ps-GOS on RAW 264.7 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and its effect on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining. Additionally, its effect on osteoclast bone-resorptive ability was detected by pit formation assay. The osteoclastogenic-related factors were assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot and immunofluorescence. The results revealed that Ps-GOS was non-toxic and significantly suppressed the formation of mature osteoclast multinucleated cells and their resorption activity by reducing the number of TRAP-positive cells and pit formation areas in a dose-dependent manner. Additionally, Ps-GOS attenuated the nuclear factor kappa light chain-enhancer of activated B cells' P65 (NFκB-P65) expression and their subsequent master osteoclast modulators, including nuclear factor of activated T cell c1 (NFATc1) and Fos proto-oncogene (cFOS) via the NF-κB pathway. Furthermore, Ps-GOS markedly inhibited RANK expression, which serves as an initial transmitter of many osteoclastogenesis-related cascades and inhibited proteolytic enzymes, including TRAP, matrix metallopeptidase 9 (MMP-9) and cathepsin K (CTK). These findings indicate that Ps-GOS could potentially be beneficial as an effective natural agent for bone metabolic disease.


Asunto(s)
Diferenciación Celular , Oligosacáridos , Osteoclastos , Pleurotus , Transducción de Señal , Animales , Ratones , beta-Glucanos/farmacología , beta-Glucanos/química , Diferenciación Celular/efectos de los fármacos , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Oligosacáridos/farmacología , Oligosacáridos/química , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/citología , Osteogénesis/efectos de los fármacos , Pleurotus/química , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ligando RANK/metabolismo , Células RAW 264.7 , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Int J Biol Macromol ; 270(Pt 1): 131949, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749890

RESUMEN

Granular ß-1,3-glucan extracted from the wall of Ganoderma lucidum spores, named GPG, is a bioregulator. In this study, we investigated the structural, thermal, and other physical properties of GPG. We determined whether GPG ameliorated immunosuppression caused by Gemcitabine (GEM) chemotherapy. Triple-negative breast cancer mice with GPG combined with GEM treatment had reduced tumor burdens. In addition, GEM treatment alone altered the tumor microenvironment(TME), including a reduction in antitumor T cells and a rise in myeloid-derived suppressor cells (MDSC) and regulatory T cells (Tregs). However, combined GPG treatment reversed the tumor immunosuppressive microenvironment induced by GEM. GPG inhibited bone marrow (BM)-derived MDSC differentiation and reversed MDSC expansion induced by conditioned medium (CM) in GEM-treated E0771 cells through a Dectin-1 pathway. In addition, GPG downgraded PD-L1 and IDO1 expression on MDSC while boosting MHC-II, CD86, TNF-α, and IL-6 expression. In conclusion, this study demonstrated that GPG could alleviate the adverse effects induced by GEM chemotherapy by regulating TME.


Asunto(s)
Células Supresoras de Origen Mieloide , Reishi , Esporas Fúngicas , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , beta-Glucanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Ratones , beta-Glucanos/farmacología , beta-Glucanos/química , Reishi/química , Femenino , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Lectinas Tipo C
16.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731488

RESUMEN

This study synthesized a novel oat ß-glucan (OBG)-Cr(III) complex (OBG-Cr(III)) and explored its structure, inhibitory effects on α-amylase and α-glucosidase, and hypoglycemic activities and mechanism in vitro using an insulin-resistant HepG2 (IR-HepG2) cell model. The Cr(III) content in the complex was found to be 10.87%. The molecular weight of OBG-Cr(III) was determined to be 7.736 × 104 Da with chromium ions binding to the hydroxyl groups of OBG. This binding resulted in the increased asymmetry and altered spatial conformation of the complex along with significant changes in morphology and crystallinity. Our findings demonstrated that OBG-Cr(III) exhibited inhibitory effects on α-amylase and α-glucosidase. Furthermore, OBG-Cr(III) enhanced the insulin sensitivity of IR-HepG2 cells, promoting glucose uptake and metabolism more efficiently than OBG alone. The underlying mechanism of its hypoglycemic effect involved the modulation of the c-Cbl/PI3K/AKT/GLUT4 signaling pathway, as revealed by Western blot analysis. This research not only broadened the applications of OBG but also positioned OBG-Cr(III) as a promising Cr(III) supplement with enhanced hypoglycemic benefits.


Asunto(s)
Cromo , Hipoglucemiantes , alfa-Glucosidasas , beta-Glucanos , Humanos , Cromo/química , Cromo/farmacología , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química , beta-Glucanos/química , beta-Glucanos/farmacología , Células Hep G2 , alfa-Glucosidasas/metabolismo , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Resistencia a la Insulina , Glucosa/metabolismo , Transducción de Señal/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Avena/química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química
17.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731838

RESUMEN

The effect of dietary supplementation with sodium butyrate, ß-glucan and vitamins (A, D3, E, K, C) on breeding indicators and immune parameters of juvenile African catfish was examined. The fish were fed with unenriched (group C) and enriched feed with a variable proportion of sodium butyrate/ß-glucan, and constant content of vitamins (W1-W3). After the experiment, blood and the middle gut were collected. The microbiome of the gut was determined using Next Generation Sequencing (NGS). Liver tissue was collected for determination of expression of immune-related genes (HSP70, IL-1ß, TNFα). W2 and W3 were characterized by the most favorable values of breeding indicators (p < 0.05). The highest blood cortisol concentration was in group C (71.25 ± 10.45 ng/mL), and significantly the lowest in W1 (46.03 ± 7.01 ng/ mL) (p < 0.05). The dominance of Cetobacterium was observed in all study groups, with the largest share in W3 (65.25%) and W1 (61.44%). Gene expression showed an increased number of HSP70 genes in W1. IL-1ß and TNFα genes peaked at W3. The W3 variant turns out to be the most beneficial supplementation, due to the improvement of breeding and immunological parameters. The data obtained can be used to create a preparation for commercial use in the breeding of this species.


Asunto(s)
Ácido Butírico , Bagres , Suplementos Dietéticos , Microbioma Gastrointestinal , Hidrocortisona , Vitaminas , beta-Glucanos , Animales , beta-Glucanos/farmacología , beta-Glucanos/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Ácido Butírico/farmacología , Bagres/inmunología , Bagres/genética , Bagres/microbiología , Hidrocortisona/sangre , Vitaminas/farmacología , Vitaminas/administración & dosificación , Alimentación Animal , Proteínas HSP70 de Choque Térmico/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo
18.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731854

RESUMEN

Factors that reduce the risk of developing colorectal cancer include biologically active substances. In our previous research, we demonstrated the anti-inflammatory, immunomodulatory, and antioxidant effects of oat beta-glucans in gastrointestinal disease models. The aim of this study was to investigate the effect of an 8-week consumption of a diet supplemented with low-molar-mass oat beta-glucan in two doses on the antioxidant potential, inflammatory parameters, and colonic metabolomic profile in azoxymethane(AOM)-induced early-stage colorectal cancer in the large intestine wall of rats. The results showed a statistically significant effect of AOM leading to the development of neoplastic changes in the colon. Consumption of beta-glucans induced changes in colonic antioxidant potential parameters, including an increase in total antioxidant status, a decrease in the superoxide dismutase (SOD) activity, and a reduction in thiobarbituric acid reactive substance (TBARS) concentration. In addition, beta-glucans decreased the levels of pro-inflammatory interleukins (IL-1α, IL-1ß, IL-12) and C-reactive protein (CRP) while increasing the concentration of IL-10. Metabolomic studies confirmed the efficacy of oat beta-glucans in the AOM-induced early-stage colon cancer model by increasing the levels of metabolites involved in metabolic pathways, such as amino acids, purine, biotin, and folate. In conclusion, these results suggest a wide range of mechanisms involved in altering colonic metabolism during the early stage of carcinogenesis and a strong influence of low-molar-mass oat beta-glucan, administered as dietary supplement, in modulating these mechanisms.


Asunto(s)
Antioxidantes , Azoximetano , Neoplasias Colorrectales , beta-Glucanos , Animales , beta-Glucanos/farmacología , Azoximetano/toxicidad , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/patología , Ratas , Masculino , Antioxidantes/farmacología , Antioxidantes/metabolismo , Modelos Animales de Enfermedad , Avena/química , Superóxido Dismutasa/metabolismo , Colon/metabolismo , Colon/patología , Colon/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Proteína C-Reactiva/metabolismo
19.
Nutrients ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732570

RESUMEN

Black trumpet (Craterellus cornucopioides) is a mushroom present in many countries but underestimated. The aim of this publication is to present the latest state of knowledge about the chemical composition and bioactivity of C. cornucopioides and the possibility of its application in food. According to researchers, black trumpet is very rich in nutritional compounds, including unsaturated fatty acids (mainly oleic and linoleic acids), ß-glucans, minerals, and vitamins as well as polyphenols and tannins. It also contains compounds influencing the sensory properties, like free amino acids and nucleotides as well as sugars and polyols, mainly mannitol. Many of the described components show high nutritional and bioactive properties. Therefore, C. cornucopioides shows antioxidant activity and immunostimulating, anti-inflammatory, and anticancer effects as well as antibacterial, antifungal, antiviral, and antihyperglycemic effects. This makes black trumpet, also called horn of plenty, a mushroom with great potential for use both in medicine and directly in food. So far, black trumpet is not widely used in food, especially processed food. There are only a few studies on the use of dried black trumpet in sausages, but there is great potential for its use in food.


Asunto(s)
Valor Nutritivo , Humanos , Antioxidantes/farmacología , Agaricales/química , Promoción de la Salud/métodos , Polifenoles/análisis , Polifenoles/farmacología , beta-Glucanos/farmacología , Alimentos Funcionales
20.
PLoS One ; 19(5): e0304833, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820480

RESUMEN

Considering the differences in molecular structure and function, the effects of ß-1,3-glucans from Euglena gracilis and ß-1,3/1,6-glucans from Saccharomyces cerevisiae on immune and inflammatory activities in dogs were compared. Four diets were compared: control without ß-glucans (CON), 0.15 mg/kg BW/day of ß-1,3/1,6-glucans (Β-Y15), 0.15 mg/kg BW/day of ß-1,3-glucans (Β-S15), and 0.30 mg/kg BW/day of ß-1,3-glucans (Β-S30). Thirty-two healthy dogs (eight per diet) were organized in a block design. All animals were fed CON for a 42-day washout period and then sorted into one of four diets for 42 days. Blood and faeces were collected at the beginning and end of the food intake period and analysed for serum and faecal cytokines, ex vivo production of hydrogen peroxide (H2O2) and nitric oxide (NO), phagocytic activity of neutrophils and monocytes, C-reactive protein (CRP), ex vivo production of IgG, and faecal concentrations of IgA and calprotectin. Data were evaluated using analysis of covariance and compared using Tukey's test (P<0.05). Dogs fed Β-Y15 showed higher serum IL-2 than dogs fed Β-S30 (P<0.05). A higher phagocytic index of monocytes was observed in dogs fed the B-S15 diet than in those fed the other diets, and a higher neutrophil phagocytic index was observed for B-S15 and B-Y15 than in dogs fed the CON diet (P<0.05). Monocytes from dogs fed B-S15 and B-S30 produced more NO and less H2O2 than those from the CON and B-Y15 groups (P<0.05). Despite in the reference value, CRP levels were higher in dogs fed B-S15 and B-S30 diets (P<0.05). ß-1,3/1,6-glucan showed cell-mediated activation of the immune system, with increased serum IL-2 and neutrophil phagocytic index, whereas ß-1,3-glucan acted on the immune system by increasing the ex vivo production of NO by monocytes, neutrophil phagocytic index, and serum CRP. Calprotectin and CRP levels did not support inflammation or other health issues related to ß-glucan intake. In conclusion, both ß-glucan sources modulated some immune and inflammatory parameters in dogs, however, different pathways have been suggested for the recognition and action of these molecules, reinforcing the necessity for further mechanistic studies, especially for E. gracilis ß-1,3-glucan.


Asunto(s)
Euglena gracilis , Heces , Saccharomyces cerevisiae , beta-Glucanos , Animales , Perros , beta-Glucanos/farmacología , Heces/química , Inflamación , Masculino , Óxido Nítrico/metabolismo , Citocinas/metabolismo , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Peróxido de Hidrógeno/metabolismo , Fagocitosis/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Femenino , Inmunoglobulina G/sangre , Glucanos/farmacología , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...