Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Physiol ; 602(15): 3621-3639, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38980987

ABSTRACT

Growing evidence supports the role of gut microbiota in chronic inflammation, insulin resistance (IR) and sex hormone production in polycystic ovary syndrome (PCOS). Adropin plays a pivotal role in the regulation of glucose and lipid metabolism and is negatively correlated with IR, which affects intestinal microbiota and sex hormones. However, the effect of adropin administration in PCOS has yet to be investigated. The present study aimed to assess the effects of adropin on letrozole (LTZ)-induced PCOS in rats and the potential underlying mechanisms. The experimental groups were normal, adropin, letrozole and LTZ + adropin. At the end of the experiment, adropin significantly ameliorated PCOS, as evidenced by restoring the normal ovarian structure, decreasing the theca cell thickness in antral follicles, as well as serum testosterone and luteinizing hormone levels and luteinizing hormone/follicle-stimulating hormone ratios, at the same time as increasing granulosa cell thickness in antral follicles, oestradiol and follicle-stimulating hormone levels. The ameliorating effect could be attributed to its effect on sex hormone-binding globulin, key steroidogenic genes STAR and CYP11A1, IR, lipid profile, gut microbiota metabolites-brain-ovary axis components (short chain fatty acids, free fatty acid receptor 3 and peptide YY), intestinal permeability marker (zonulin and tight junction protein claudin-1), lipopolysaccharides/Toll-like receptor 4/nuclear factor kappa B inflammatory pathway and oxidative stress makers (malondialdehyde and total antioxidant capacity). In conclusion, adropin has a promising therapeutic effect on PCOS by regulating steroidogenesis, IR, lipid profile, the gut microbiota inflammatory axis and redox homeostasis. KEY POINTS: Adropin treatment reversed endocrine and ovarian morphology disorders in polycystic ovary syndrome (PCOS). Adropin regulated the ovarian steroidogenesis and sex hormone-binding globulin in PCOS. Adropin improved lipid profile and decreased insulin resistance in PCOS. Adropin modulated the components of the gut-brain-ovary axis (short chain fatty acids, free fatty acid receptor 3 and peptide YY) in PCOS. Adropin improved intestinal barrier integrity, suppressed of lipopolysaccharides/Toll-like receptor 4/nuclear factor kappa B signalling pathway and oxidative stress in PCOS.


Subject(s)
Gastrointestinal Microbiome , Letrozole , Polycystic Ovary Syndrome , Animals , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/metabolism , Female , Letrozole/pharmacology , Rats , Gastrointestinal Microbiome/drug effects , Rats, Sprague-Dawley , Inflammation/drug therapy , Inflammation/metabolism , Ovary/drug effects , Ovary/metabolism , Peptides/pharmacology , Insulin Resistance , Blood Proteins
2.
Can J Physiol Pharmacol ; 99(11): 1217-1225, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34197718

ABSTRACT

Chronic glucocorticoids therapy is commonly complicated by steroid diabetes, although the underlying mechanisms are still elusive. Liraglutide, a glucagon-like peptide-1, was initially found to induce glycemic control and recently it was found to have many pleotropic effects; however, its role in pancreas remains unknown. The present study aims to estimate the protective role of liraglutide on dexamethasone-induced pancreatic cytotoxicity and hyperglycemia, highlighting the possible underlying biochemical, molecular, and cellular mechanisms. Twenty-eight male Wistar rats were involved in this study and were randomly divided into four groups. Group III and IV were treated with 1 mg/kg dexamethasone daily for 10 days. Group II and IV were treated with liraglutide in a dose of 0.8 mg/kg per day for 2 weeks. Pancreatic caspase-9, nuclear factor erythroid 2-related factor 2 (Nrf2), phospho-protein kinase-B (pAkt), and sequestrome 1 (p62) levels were assessed by immunoassay. Moreover, phosphoinositide 3-kinase (PI3K) expression by real-time PCR, microtubule-associated protein light chain 3 (LC3B) expression by immunohistochemistry, glycemic status, ß-cell function by homoeostasis model assessment (HOMA) ß index, and pancreatic redox status were assessed. Liraglutide improved blood glucose level, ß-cell function, pancreatic caspase-9 level, redox status, and autophagy. Additionally, it increased pancreatic PI3K, pAkt, and Nrf2 levels. Moreover, preservation of pancreatic histological and the ultrastructural morphological features of ß- and α-cells were observed. In conclusion, liraglutide protected against dexamethasone-induced pancreatic injury and hyperglycemia and decelerated the progression towards steroid diabetes via activating PI3K/Akt/Nrf2 signaling and autophagy flux pathways.


Subject(s)
Autophagy/drug effects , Dexamethasone/adverse effects , Glucocorticoids/adverse effects , Liraglutide/pharmacology , NF-E2-Related Factor 2/metabolism , Pancreas/drug effects , Pancreas/metabolism , Pancreatic Diseases/chemically induced , Pancreatic Diseases/prevention & control , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Animals , Male , Oxidation-Reduction , Pancreas/cytology , Pancreatic Diseases/metabolism , Pancreatic Diseases/pathology , Rats, Wistar
3.
Asian Pac J Cancer Prev ; 21(7): 2155-2162, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32711445

ABSTRACT

BACKGROUND: Cisplatin is an alkylating agent that inhibits DNA replication and interferes with proliferation of cancer cells. However, the major limiting factor for its use is the possible development of adverse effects, including ototoxicity. Up till now, the mechanisms of this ototoxicity remain poorly understood. However, induction of oxidative stress and activation of the inflammatory cascade were suggested as contributing factors. PURPOSE: The aim of this study was to explore the effect of L-arginine on cisplatin-induced ototoxicity in rats. METHODS: Thirty male adult Wistar rats were divided into three equal groups as follows: control group; cisplatin group and cisplatin + L-arginine group. Auditory brainstem response (ABR), tissue oxidative stress parameters, total nitrate/nitrite, nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase-1 (HO-1) content, transforming growth factor beta 1 (TGF-ß1), tumor necrosis factor alpha (TNF-α) and interleukin 15 (IL-15) were assessed. Also, the cochlear tissues were subjected to histopathological and electron microscopic examination. RESULTS: Administration of L-arginine to cisplatin-treated rats induced significant decrease in the average ABR threshold shifts at all frequencies, tissue TGF-ß1, TNF-α and IL-15 associated with significant increase in tissue antioxidant enzymes, total nitrate/nitrite and Nrf2/HO-1 content compared to cisplatin group. Also, pretreatment of cisplatin-injected rats with L-arginine induced significant improvement of the histopathological and electron microscopic picture compared to cisplatin group. CONCLUSION: L-arginine may serve as a promising therapeutic modality for amelioration of cisplatin-induced ototoxicity.
.


Subject(s)
Arginine/pharmacology , Cisplatin/toxicity , Heme Oxygenase (Decyclizing)/metabolism , NF-E2-Related Factor 2/metabolism , Nitric Oxide/metabolism , Ototoxicity/prevention & control , Transforming Growth Factor beta1/metabolism , Animals , Antineoplastic Agents/toxicity , Antioxidants/metabolism , Male , Ototoxicity/etiology , Ototoxicity/metabolism , Ototoxicity/pathology , Oxidative Stress , Rats , Rats, Wistar , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL