Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
Nat Commun ; 15(1): 2030, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38448444

The genetic basis of human facial variation and craniofacial birth defects remains poorly understood. Distant-acting transcriptional enhancers control the fine-tuned spatiotemporal expression of genes during critical stages of craniofacial development. However, a lack of accurate maps of the genomic locations and cell type-resolved activities of craniofacial enhancers prevents their systematic exploration in human genetics studies. Here, we combine histone modification, chromatin accessibility, and gene expression profiling of human craniofacial development with single-cell analyses of the developing mouse face to define the regulatory landscape of facial development at tissue- and single cell-resolution. We provide temporal activity profiles for 14,000 human developmental craniofacial enhancers. We find that 56% of human craniofacial enhancers share chromatin accessibility in the mouse and we provide cell population- and embryonic stage-resolved predictions of their in vivo activity. Taken together, our data provide an expansive resource for genetic and developmental studies of human craniofacial development.


Chromatin , Regulatory Sequences, Nucleic Acid , Humans , Animals , Mice , Chromatin/genetics , Gene Expression Profiling , Genomics , Protein Processing, Post-Translational
2.
bioRxiv ; 2023 Jun 26.
Article En | MEDLINE | ID: mdl-37425964

The genetic basis of craniofacial birth defects and general variation in human facial shape remains poorly understood. Distant-acting transcriptional enhancers are a major category of non-coding genome function and have been shown to control the fine-tuned spatiotemporal expression of genes during critical stages of craniofacial development1-3. However, a lack of accurate maps of the genomic location and cell type-specific in vivo activities of all craniofacial enhancers prevents their systematic exploration in human genetics studies. Here, we combined histone modification and chromatin accessibility profiling from different stages of human craniofacial development with single-cell analyses of the developing mouse face to create a comprehensive catalogue of the regulatory landscape of facial development at tissue- and single cell-resolution. In total, we identified approximately 14,000 enhancers across seven developmental stages from weeks 4 through 8 of human embryonic face development. We used transgenic mouse reporter assays to determine the in vivo activity patterns of human face enhancers predicted from these data. Across 16 in vivo validated human enhancers, we observed a rich diversity of craniofacial subregions in which these enhancers are active in vivo. To annotate the cell type specificities of human-mouse conserved enhancers, we performed single-cell RNA-seq and single-nucleus ATAC-seq of mouse craniofacial tissues from embryonic days e11.5 to e15.5. By integrating these data across species, we find that the majority (56%) of human craniofacial enhancers are functionally conserved in mice, providing cell type- and embryonic stage-resolved predictions of their in vivo activity profiles. Using retrospective analysis of known craniofacial enhancers in combination with single cell-resolved transgenic reporter assays, we demonstrate the utility of these data for predicting the in vivo cell type specificity of enhancers. Taken together, our data provide an expansive resource for genetic and developmental studies of human craniofacial development.

3.
Commun Biol ; 6(1): 435, 2023 04 20.
Article En | MEDLINE | ID: mdl-37081156

Topologically associating domain (TAD) boundaries partition the genome into distinct regulatory territories. Anecdotal evidence suggests that their disruption may interfere with normal gene expression and cause disease phenotypes1-3, but the overall extent to which this occurs remains unknown. Here we demonstrate that targeted deletions of TAD boundaries cause a range of disruptions to normal in vivo genome function and organismal development. We used CRISPR genome editing in mice to individually delete eight TAD boundaries (11-80 kb in size) from the genome. All deletions examined resulted in detectable molecular or organismal phenotypes, which included altered chromatin interactions or gene expression, reduced viability, and anatomical phenotypes. We observed changes in local 3D chromatin architecture in 7 of 8 (88%) cases, including the merging of TADs and altered contact frequencies within TADs adjacent to the deleted boundary. For 5 of 8 (63%) loci examined, boundary deletions were associated with increased embryonic lethality or other developmental phenotypes. For example, a TAD boundary deletion near Smad3/Smad6 caused complete embryonic lethality, while a deletion near Tbx5/Lhx5 resulted in a severe lung malformation. Our findings demonstrate the importance of TAD boundary sequences for in vivo genome function and reinforce the critical need to carefully consider the potential pathogenicity of noncoding deletions affecting TAD boundaries in clinical genetics screening.


Chromatin , Genome , Animals , Mice , Chromatin/genetics , Phenotype
4.
Cell Rep ; 40(12): 111400, 2022 09 20.
Article En | MEDLINE | ID: mdl-36130500

Heart disease is associated with re-expression of key transcription factors normally active only during prenatal development of the heart. However, the impact of this reactivation on the regulatory landscape in heart disease is unclear. Here, we use RNA-seq and ChIP-seq targeting a histone modification associated with active transcriptional enhancers to generate genome-wide enhancer maps from left ventricle tissue from up to 26 healthy controls, 18 individuals with idiopathic dilated cardiomyopathy (DCM), and five fetal hearts. Healthy individuals have a highly reproducible epigenomic landscape, consisting of more than 33,000 predicted heart enhancers. In contrast, we observe reproducible disease-associated changes in activity at 6,850 predicted heart enhancers. Combined analysis of adult and fetal samples reveals that the heart disease epigenome and transcriptome both acquire fetal-like characteristics, with 3,400 individual enhancers sharing fetal regulatory properties. We also provide a comprehensive data resource (http://heart.lbl.gov) for the mechanistic exploration of DCM etiology.


Cardiomyopathy, Dilated , Enhancer Elements, Genetic , Adult , Enhancer Elements, Genetic/genetics , Epigenome , Epigenomics , Humans , Transcription Factors
5.
Methods Mol Biol ; 2403: 147-186, 2022.
Article En | MEDLINE | ID: mdl-34913122

Embryonic morphogenesis is strictly dependent on tight spatiotemporal control of developmental gene expression, which is typically achieved through the concerted activity of multiple enhancers driving cell type-specific expression of a target gene. Mammalian genomes are organized in topologically associated domains, providing a preferred environment and framework for interactions between transcriptional enhancers and gene promoters. While epigenomic profiling and three-dimensional chromatin conformation capture have significantly increased the accuracy of identifying enhancers, assessment of subregional enhancer activities via transgenic reporter assays in mice remains the gold standard for assigning enhancer activity in vivo. Once this activity is defined, the ideal method to explore the functional necessity of a transcriptional enhancer and its contribution to target gene dosage and morphological or physiological processes is deletion of the enhancer sequence from the mouse genome. Here we present detailed protocols for efficient introduction of enhancer-reporter transgenes and CRISPR-mediated genomic deletions into the mouse genome, including a step-by-step guide for pronuclear microinjection of fertilized mouse eggs. We provide instructions for the assembly and genomic integration of enhancer-reporter cassettes that have been used for validation of thousands of putative enhancer sequences accessible through the VISTA enhancer browser, including a recently published method for robust site-directed transgenesis at the H11 safe-harbor locus. Together, these methods enable rapid and large-scale assessment of enhancer activities and sequence variants in mice, which is essential to understand mammalian genome function and genetic diseases.


Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , Animals , Enhancer Elements, Genetic , Gene Transfer Techniques , Genomics , Mice
6.
Nat Genet ; 53(4): 521-528, 2021 04.
Article En | MEDLINE | ID: mdl-33782603

Ultraconserved enhancer sequences show perfect conservation between human and rodent genomes, suggesting that their functions are highly sensitive to mutation. However, current models of enhancer function do not sufficiently explain this extreme evolutionary constraint. We subjected 23 ultraconserved enhancers to different levels of mutagenesis, collectively introducing 1,547 mutations, and examined their activities in transgenic mouse reporter assays. Overall, we find that the regulatory properties of ultraconserved enhancers are robust to mutation. Upon mutagenesis, nearly all (19/23, 83%) still functioned as enhancers at one developmental stage, as did most of those tested again later in development (5/9, 56%). Replacement of endogenous enhancers with mutated alleles in mice corroborated results of transgenic assays, including the functional resilience of ultraconserved enhancers to mutation. Our findings show that the currently known activities of ultraconserved enhancers do not necessarily require the perfect conservation observed in evolution and suggest that additional regulatory or other functions contribute to their sequence constraint.


Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Mutation , Transcription Factors/genetics , Alleles , Animals , Base Sequence , Conserved Sequence , Embryo, Mammalian , Humans , Mice , Mutagenesis, Site-Directed , Rats , Transcription Factors/metabolism
9.
Nat Methods ; 17(8): 807-814, 2020 08.
Article En | MEDLINE | ID: mdl-32737473

Enhancers are important non-coding elements, but they have traditionally been hard to characterize experimentally. The development of massively parallel assays allows the characterization of large numbers of enhancers for the first time. Here, we developed a framework using Drosophila STARR-seq to create shape-matching filters based on meta-profiles of epigenetic features. We integrated these features with supervised machine-learning algorithms to predict enhancers. We further demonstrated that our model could be transferred to predict enhancers in mammals. We comprehensively validated the predictions using a combination of in vivo and in vitro approaches, involving transgenic assays in mice and transduction-based reporter assays in human cell lines (153 enhancers in total). The results confirmed that our model can accurately predict enhancers in different species without re-parameterization. Finally, we examined the transcription factor binding patterns at predicted enhancers versus promoters. We demonstrated that these patterns enable the construction of a secondary model that effectively distinguishes enhancers and promoters.


Epigenesis, Genetic/physiology , Pattern Recognition, Automated/methods , Animals , Cell Line , Drosophila , Histones/genetics , Histones/metabolism , Humans , Mice , Mice, Transgenic , Reproducibility of Results
10.
Nature ; 583(7818): 744-751, 2020 07.
Article En | MEDLINE | ID: mdl-32728240

The Encyclopedia of DNA Elements (ENCODE) project has established a genomic resource for mammalian development, profiling a diverse panel of mouse tissues at 8 developmental stages from 10.5 days after conception until birth, including transcriptomes, methylomes and chromatin states. Here we systematically examined the state and accessibility of chromatin in the developing mouse fetus. In total we performed 1,128 chromatin immunoprecipitation with sequencing (ChIP-seq) assays for histone modifications and 132 assay for transposase-accessible chromatin using sequencing (ATAC-seq) assays for chromatin accessibility across 72 distinct tissue-stages. We used integrative analysis to develop a unified set of chromatin state annotations, infer the identities of dynamic enhancers and key transcriptional regulators, and characterize the relationship between chromatin state and accessibility during developmental gene regulation. We also leveraged these data to link enhancers to putative target genes and demonstrate tissue-specific enrichments of sequence variants associated with disease in humans. The mouse ENCODE data sets provide a compendium of resources for biomedical researchers and achieve, to our knowledge, the most comprehensive view of chromatin dynamics during mammalian fetal development to date.


Chromatin/genetics , Chromatin/metabolism , Datasets as Topic , Fetal Development/genetics , Histones/metabolism , Molecular Sequence Annotation , Regulatory Sequences, Nucleic Acid/genetics , Animals , Chromatin/chemistry , Chromatin Immunoprecipitation Sequencing , Disease/genetics , Enhancer Elements, Genetic/genetics , Female , Gene Expression Regulation, Developmental/genetics , Genetic Variation , Histones/chemistry , Humans , Male , Mice , Mice, Inbred C57BL , Organ Specificity/genetics , Reproducibility of Results , Transposases/metabolism
11.
Nature ; 583(7818): 760-767, 2020 07.
Article En | MEDLINE | ID: mdl-32728245

During mammalian embryogenesis, differential gene expression gradually builds the identity and complexity of each tissue and organ system1. Here we systematically quantified mouse polyA-RNA from day 10.5 of embryonic development to birth, sampling 17 tissues and organs. The resulting developmental transcriptome is globally structured by dynamic cytodifferentiation, body-axis and cell-proliferation gene sets that were further characterized by the transcription factor motif codes of their promoters. We decomposed the tissue-level transcriptome using single-cell RNA-seq (sequencing of RNA reverse transcribed into cDNA) and found that neurogenesis and haematopoiesis dominate at both the gene and cellular levels, jointly accounting for one-third of differential gene expression and more than 40% of identified cell types. By integrating promoter sequence motifs with companion ENCODE epigenomic profiles, we identified a prominent promoter de-repression mechanism in neuronal expression clusters that was attributable to known and novel repressors. Focusing on the developing limb, single-cell RNA data identified 25 candidate cell types that included progenitor and differentiating states with computationally inferred lineage relationships. We extracted cell-type transcription factor networks and complementary sets of candidate enhancer elements by using single-cell RNA-seq to decompose integrative cis-element (IDEAS) models that were derived from whole-tissue epigenome chromatin data. These ENCODE reference data, computed network components and IDEAS chromatin segmentations are companion resources to the matching epigenomic developmental matrix, and are available for researchers to further mine and integrate.


Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Single-Cell Analysis , Transcriptome , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Chromatin/genetics , Embryo, Mammalian/metabolism , Enhancer Elements, Genetic , Epigenomics , Extremities/embryology , Female , Male , Mice , Poly A/genetics , Poly A/metabolism , Promoter Regions, Genetic , RNA-Seq , Transcription Factors/metabolism
12.
Cell ; 180(6): 1262-1271.e15, 2020 03 19.
Article En | MEDLINE | ID: mdl-32169219

Establishing causal links between non-coding variants and human phenotypes is an increasing challenge. Here, we introduce a high-throughput mouse reporter assay for assessing the pathogenic potential of human enhancer variants in vivo and examine nearly a thousand variants in an enhancer repeatedly linked to polydactyly. We show that 71% of all rare non-coding variants previously proposed as causal lead to reporter gene expression in a pattern consistent with their pathogenic role. Variants observed to alter enhancer activity were further confirmed to cause polydactyly in knockin mice. We also used combinatorial and single-nucleotide mutagenesis to evaluate the in vivo impact of mutations affecting all positions of the enhancer and identified additional functional substitutions, including potentially pathogenic variants hitherto not observed in humans. Our results uncover the functional consequences of hundreds of mutations in a phenotype-associated enhancer and establish a widely applicable strategy for systematic in vivo evaluation of human enhancer variants.


Enhancer Elements, Genetic/genetics , High-Throughput Screening Assays/methods , Polydactyly/genetics , Animals , Enhancer Elements, Genetic/physiology , Gene Expression Regulation, Developmental/genetics , Gene Knock-In Techniques/methods , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Mice , Mutation , Phenotype , Polydactyly/metabolism , RNA, Untranslated/genetics
13.
Nature ; 571(7763): 107-111, 2019 07.
Article En | MEDLINE | ID: mdl-31217582

Large-scale genome sequencing is poised to provide a substantial increase in the rate of discovery of disease-associated mutations, but the functional interpretation of such mutations remains challenging. Here we show that deletions of a sequence on human chromosome 16 that we term the intestine-critical region (ICR) cause intractable congenital diarrhoea in infants1,2. Reporter assays in transgenic mice show that the ICR contains a regulatory sequence that activates transcription during the development of the gastrointestinal system. Targeted deletion of the ICR in mice caused symptoms that recapitulated the human condition. Transcriptome analysis revealed that an unannotated open reading frame (Percc1) flanks the regulatory sequence, and the expression of this gene was lost in the developing gut of mice that lacked the ICR. Percc1-knockout mice displayed phenotypes similar to those observed upon ICR deletion in mice and patients, whereas an ICR-driven Percc1 transgene was sufficient to rescue the phenotypes found in mice that lacked the ICR. Together, our results identify a gene that is critical for intestinal function and underscore the need for targeted in vivo studies to interpret the growing number of clinical genetic findings that do not affect known protein-coding genes.


Diarrhea/congenital , Diarrhea/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Developmental , Genes , Intestines/physiology , Sequence Deletion/genetics , Animals , Chromosomes, Human, Pair 16/genetics , Disease Models, Animal , Female , Genes, Reporter , Genetic Loci/genetics , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Pedigree , Phenotype , Transcriptional Activation , Transcriptome/genetics , Transgenes/genetics
14.
Nat Neurosci ; 21(7): 1015, 2018 Jul.
Article En | MEDLINE | ID: mdl-29497140

In the version of this article initially published online, the accession code was given as GSE1000333. The correct code is GSE100033. The error has been corrected in the print, HTML and PDF versions of the article.

15.
Nat Neurosci ; 21(3): 432-439, 2018 03.
Article En | MEDLINE | ID: mdl-29434377

Analysis of chromatin accessibility can reveal transcriptional regulatory sequences, but heterogeneity of primary tissues poses a significant challenge in mapping the precise chromatin landscape in specific cell types. Here we report single-nucleus ATAC-seq, a combinatorial barcoding-assisted single-cell assay for transposase-accessible chromatin that is optimized for use on flash-frozen primary tissue samples. We apply this technique to the mouse forebrain through eight developmental stages. Through analysis of more than 15,000 nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell types. We further define cell-type-specific transcriptional regulatory sequences, infer potential master transcriptional regulators and delineate developmental changes in forebrain cellular composition. Our results provide insight into the molecular and cellular dynamics that underlie forebrain development in the mouse and establish technical and analytical frameworks that are broadly applicable to other heterogeneous tissues.


Chromatin/metabolism , Gene Expression Regulation, Developmental/physiology , Prosencephalon/growth & development , Animals , Cell Line , DNA-Binding Proteins , Female , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Neurons/physiology , Nuclear Proteins/metabolism , Pregnancy , Prosencephalon/cytology , Prosencephalon/metabolism , Single-Cell Analysis
16.
Nature ; 554(7691): 239-243, 2018 02 08.
Article En | MEDLINE | ID: mdl-29420474

Distant-acting tissue-specific enhancers, which regulate gene expression, vastly outnumber protein-coding genes in mammalian genomes, but the functional importance of this regulatory complexity remains unclear. Here we show that the pervasive presence of multiple enhancers with similar activities near the same gene confers phenotypic robustness to loss-of-function mutations in individual enhancers. We used genome editing to create 23 mouse deletion lines and inter-crosses, including both single and combinatorial enhancer deletions at seven distinct loci required for limb development. Unexpectedly, none of the ten deletions of individual enhancers caused noticeable changes in limb morphology. By contrast, the removal of pairs of limb enhancers near the same gene resulted in discernible phenotypes, indicating that enhancers function redundantly in establishing normal morphology. In a genetic background sensitized by reduced baseline expression of the target gene, even single enhancer deletions caused limb abnormalities, suggesting that functional redundancy is conferred by additive effects of enhancers on gene expression levels. A genome-wide analysis integrating epigenomic and transcriptomic data from 29 developmental mouse tissues revealed that mammalian genes are very commonly associated with multiple enhancers that have similar spatiotemporal activity. Systematic exploration of three representative developmental structures (limb, brain and heart) uncovered more than one thousand cases in which five or more enhancers with redundant activity patterns were found near the same gene. Together, our data indicate that enhancer redundancy is a remarkably widespread feature of mammalian genomes that provides an effective regulatory buffer to prevent deleterious phenotypic consequences upon the loss of individual enhancers.


Enhancer Elements, Genetic/genetics , Extremities/embryology , Gene Expression Regulation, Developmental/genetics , Phenotype , Animals , Brain/embryology , Female , Genome , Heart/embryology , Limb Deformities, Congenital/embryology , Limb Deformities, Congenital/genetics , Male , Mice , Sequence Deletion , Spatio-Temporal Analysis
17.
Cell ; 172(3): 491-499.e15, 2018 01 25.
Article En | MEDLINE | ID: mdl-29358049

Non-coding "ultraconserved" regions containing hundreds of consecutive bases of perfect sequence conservation across mammalian genomes can function as distant-acting enhancers. However, initial deletion studies in mice revealed that loss of such extraordinarily constrained sequences had no immediate impact on viability. Here, we show that ultraconserved enhancers are required for normal development. Focusing on some of the longest ultraconserved sites genome wide, located near the essential neuronal transcription factor Arx, we used genome editing to create an expanded series of knockout mice lacking individual or combinations of ultraconserved enhancers. Mice with single or pairwise deletions of ultraconserved enhancers were viable and fertile but in nearly all cases showed neurological or growth abnormalities, including substantial alterations of neuron populations and structural brain defects. Our results demonstrate the functional importance of ultraconserved enhancers and indicate that remarkably strong sequence conservation likely results from fitness deficits that appear subtle in a laboratory setting.


Conserved Sequence , Embryonic Development/genetics , Enhancer Elements, Genetic , Animals , Brain/abnormalities , Brain/embryology , Brain/metabolism , Female , Gene Deletion , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Male , Mice , Transcription Factors/genetics , Transcription Factors/metabolism
18.
PLoS Comput Biol ; 13(8): e1005720, 2017 Aug.
Article En | MEDLINE | ID: mdl-28827824

Epigenomic mapping of enhancer-associated chromatin modifications facilitates the genome-wide discovery of tissue-specific enhancers in vivo. However, reliance on single chromatin marks leads to high rates of false-positive predictions. More sophisticated, integrative methods have been described, but commonly suffer from limited accessibility to the resulting predictions and reduced biological interpretability. Here we present the Limb-Enhancer Genie (LEG), a collection of highly accurate, genome-wide predictions of enhancers in the developing limb, available through a user-friendly online interface. We predict limb enhancers using a combination of >50 published limb-specific datasets and clusters of evolutionarily conserved transcription factor binding sites, taking advantage of the patterns observed at previously in vivo validated elements. By combining different statistical models, our approach outperforms current state-of-the-art methods and provides interpretable measures of feature importance. Our results indicate that including a previously unappreciated score that quantifies tissue-specific nuclease accessibility significantly improves prediction performance. We demonstrate the utility of our approach through in vivo validation of newly predicted elements. Moreover, we describe general features that can guide the type of datasets to include when predicting tissue-specific enhancers genome-wide, while providing an accessible resource to the general biological community and facilitating the functional interpretation of genetic studies of limb malformations.


Enhancer Elements, Genetic/genetics , Extremities/growth & development , Genomics/methods , Growth and Development/genetics , Software , Animals , Genome/genetics , Machine Learning , Mice
19.
Nat Neurosci ; 20(8): 1062-1073, 2017 Aug.
Article En | MEDLINE | ID: mdl-28671691

The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. We examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8+/del5 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8+/del5 mice overlap pathology reported in humans with CHD8 mutations. We applied network analysis to characterize neurodevelopmental gene expression, revealing widespread transcriptional changes in Chd8+/del5 mice across pathways disrupted in neurodevelopmental disorders, including neurogenesis, synaptic processes and neuroimmune signaling. We identified a co-expression module with peak expression in early brain development featuring dysregulation of RNA processing, chromatin remodeling and cell-cycle genes enriched for promoter binding by Chd8, and we validated increased neuronal proliferation and developmental splicing perturbation in Chd8+/del5 mice. This integrative analysis offers an initial picture of the consequences of Chd8 haploinsufficiency for brain development.


DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Haploinsufficiency/genetics , Animals , Brain/metabolism , Cell Cycle Proteins/genetics , Chromatin/metabolism , Mice, Transgenic , Mutation/genetics , Phenotype , Transcription Factors/genetics
20.
Cell ; 167(3): 633-642.e11, 2016 Oct 20.
Article En | MEDLINE | ID: mdl-27768887

The evolution of body shape is thought to be tightly coupled to changes in regulatory sequences, but specific molecular events associated with major morphological transitions in vertebrates have remained elusive. We identified snake-specific sequence changes within an otherwise highly conserved long-range limb enhancer of Sonic hedgehog (Shh). Transgenic mouse reporter assays revealed that the in vivo activity pattern of the enhancer is conserved across a wide range of vertebrates, including fish, but not in snakes. Genomic substitution of the mouse enhancer with its human or fish ortholog results in normal limb development. In contrast, replacement with snake orthologs caused severe limb reduction. Synthetic restoration of a single transcription factor binding site lost in the snake lineage reinstated full in vivo function to the snake enhancer. Our results demonstrate changes in a regulatory sequence associated with a major body plan transition and highlight the role of enhancers in morphological evolution. PAPERCLIP.


Biological Evolution , Enhancer Elements, Genetic , Extremities/growth & development , Hedgehog Proteins/genetics , Snakes/genetics , Animals , Base Sequence , Evolution, Molecular , Gene Knock-In Techniques , Mice , Mice, Transgenic , Mutation , Phylogeny , Snakes/classification
...