Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Dent Mater ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39317560

ABSTRACT

OBJECTIVES: The goal of this study is to develop a novel drug delivery platform for the pH-responsive delivery of biofilm inhibitors as a potential avenue to prevent and treat dental caries. METHODS: Biofilm and growth inhibition assays were performed in polystyrene microtiter 96-well plates. Docking analysis was performed using the reported GtfB + HA5 co-crystal structure (PDB code: 8fg8) in SeeSAR 13.0.1 software. Polymersome vesicles were assembled from poly(N-vinylpyrrolidone)8-block-poly(dimethylsiloxane)64-block-poly(N-vinylpyrrolidone)8 (PVPON8-PDMS64-PVPON8) triblock copolymer using a nanoprecipitation method. Microbiome analysis of biofilm inhibitors and the in vivo drug release and antivirulence activities of polymersome encapsulated inhibitors have been carried out in a S. mutans induced rat caries model. RESULTS: Biofilm inhibitors for HA5 and HA6 have shown species-specific selectivity towards S. mutans and the ability to preserve the oral microbiome in a S. mutans induced dental caries model. The inhibitors were encapsulated into pH-responsive block copolymer vesicles to generate polymersome-encapsulated biofilm inhibitors, and their biofilm and growth inhibitory activities against S. mutans and representative strains of oral commensal streptococci have been assessed. A 4-week treatment of S. mutans UA159 infected gnotobiotic rats with 100 µM of polymersome-encapsulated biofilm inhibitor, PEHA5 showed significant reductions in buccal, sulcal, and proximal caries scores compared to an untreated control group. SIGNIFICANCE: Taken together, our data suggests that the biofilm-selective therapy using the polymersome-encapsulated biofilm inhibitors is a viable approach for the prevention and treatment of dental caries while preserving the oral microbiome.

2.
Chemistry ; 30(47): e202401265, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-38863386

ABSTRACT

The present work reports synthesis, characterization and theoretical insights on novel hydroxymethyl-bishomocubanone derivatives. Twelve new bishomocubanes (BHCs) were synthesized and fully characterized by various spectroscopic techniques and single crystal X-ray analysis. The densities of the title compounds were in the range of 1.30-1.59 g/cm3. Density-functional theory (DFT) based calculations at B3LYP/6-311++G(d,p) level of theory were performed on ten selected BHC based cage compounds. Propulsive and ballistic properties of newly synthesized hydroxymethyl-bishomocubanone derivatives in solid and liquid propulsion systems were calculated, and the results suggested that these compounds are superior to conventional fuel RP1 and binder HTPB. The detonation parameters revealed that these compounds are not explosive in nature and safe to use as solid propellants. Furthermore, kinetic and thermal stabilities of the title compounds were determined by HOMO-LUMO energy gap, ESP maps, impact sensitivity (h50) and bond dissociation energies (BDEs) followed by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Three compounds, a dinitroazide (Isp,vac=310.98 s), a dinitrate (Isp,vac=309.51 s), and a dinitronitrate (Isp,vac=309.20s) were found to be excellent candidates for volume limited applications.

3.
J Med Chem ; 66(12): 7909-7925, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37285134

ABSTRACT

We designed and synthesized analogues of a previously identified biofilm inhibitor IIIC5 to improve solubility, retain inhibitory activities, and to facilitate encapsulation into pH-responsive hydrogel microparticles. The optimized lead compound HA5 showed improved solubility of 120.09 µg/mL, inhibited Streptococcus mutans biofilm with an IC50 value of 6.42 µM, and did not affect the growth of oral commensal species up to a 15-fold higher concentration. The cocrystal structure of HA5 with GtfB catalytic domain determined at 2.35 Å resolution revealed its active site interactions. The ability of HA5 to inhibit S. mutans Gtfs and to reduce glucan production has been demonstrated. The hydrogel-encapsulated biofilm inhibitor (HEBI), generated by encapsulating HA5 in hydrogel, selectively inhibited S. mutans biofilms like HA5. Treatment of S. mutans-infected rats with HA5 or HEBI resulted in a significant reduction in buccal, sulcal, and proximal dental caries compared to untreated, infected rats.


Subject(s)
Dental Caries , Streptococcus mutans , Rats , Animals , Hydrogels , Dental Caries/drug therapy , Biofilms
4.
Oncotarget ; 12(8): 740-755, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33889298

ABSTRACT

Additional prognostic and therapeutic biomarkers effective across different histological types of sarcoma are needed. Herein we evaluate expression of TAZ and YAP, the p53-MDM2 axis, and RABL6A, a novel oncoprotein with potential ties to both pathways, in sarcomas of different histological types. Immunohistochemical staining of a tissue microarray including 163 sarcomas and correlation with clinical data showed that elevated YAP and TAZ independently predict worse overall and progression-free survival, respectively. In the absence of p53 expression, combined TAZ and YAP expression adversely affect overall, progression free, and metastasis free survival more than TAZ or YAP activation alone. RABL6A independently predicted shorter time to metastasis and was positively correlated with p53, MDM2 and YAP expression, supporting a possible functional relationship between the biomarkers. Network analysis further showed that TAZ is positively correlated with MDM2 expression. The data implicate all five proteins as clinically relevant downstream players in the Hippo pathway. Finally, a novel inhibitor of MDM2 (MA242), effectively suppressed the survival of sarcoma cell lines from different histological types regardless of p53 status. These findings suggest both independent and cooperative roles for all five biomarkers across different histological types of sarcoma in predicting patient outcomes and potentially guiding future therapeutic approaches.

5.
ACS Med Chem Lett ; 12(1): 48-55, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33488963

ABSTRACT

Dental caries is a bacterial infectious disease characterized by demineralization of the tooth enamel. Treatment of this disease with conventional antibiotics is largely ineffective as the cariogenic bacteria form tenacious biofilms that are resistant to such treatments. The main etiological agent for dental caries is the bacterium Streptococcus mutans. S. mutans readily forms biofilms on the tooth surface and rapidly produces lactic acid from dietary sucrose. Glucosyl transferases (Gtfs) secreted by S. mutans are mainly responsible for the production of exopolysaccharides that are crucial for the biofilm architecture. Thus, inhibiting S. mutans' Gtfs is an effective approach to develop selective biofilm inhibitors that do not affect the growth of oral commensals. Herein, we report a library of 90 analogs of the previously identified lead compound, G43, and exploration of its structure activity relationships (SAR). All compounds were evaluated for the inhibition of S. mutans biofilms and bacterial growth. Selected compounds from this library were further evaluated for enzyme inhibition against Gtfs using a zymogram assay and for growth inhibition against oral commensal bacterial species such as Streptococcus gordonii and Streptococcus sanguinis. This study has led to the discovery of several new biofilm inhibitors with enhanced potency and selectivity. One of the leads, III F1 , showed marked reduction in buccal, sulcal, and proximal caries scores in a rat model of dental caries.

6.
ACS Appl Bio Mater ; 4(8): 6244-6255, 2021 08 16.
Article in English | MEDLINE | ID: mdl-35006910

ABSTRACT

Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) have been shown to play an important role in numerous neurological disorders, such as Alzheimer's disease. The identification of biologically active compounds interacting with TrkB serves as a drug discovery strategy to identify drug leads for neurological disorders. Here, we report effective immobilization of functional TrkB on magnetic iron oxide nanoclusters, where TrkB receptors behave as "smart baits" to bind compounds from mixtures and magnetic nanoclusters enable rapid isolation through magnetic separation. The presence of the immobilized TrkB was confirmed by specific antibody labeling. Subsequently, the activity of the TrkB on iron oxide nanoclusters was evaluated with ATP/ADP conversion experiments using a known TrkB agonist. The immobilized TrkB receptors can effectively identify binders from mixtures containing known binders, synthetic small molecule mixtures, and Gotu Kola (Centella asiatica) plant extracts. The identified compounds were analyzed by an ultrahigh-performance liquid chromatography system coupled with a quadrupole time-of-flight mass spectrometer. Importantly, some of the identified TrkB binders from Gotu Kola plant extracts matched with compounds previously linked to neuroprotective effects observed for a Gotu Kola extract approved for use in a clinical trial. Our studies suggest that the possible therapeutic effects of the Gotu Kola plant extract in dementia treatment, at least partially, might be associated with compounds interacting with TrkB. The unique feature of this approach is its ability to fast screen potential drug leads using less explored transmembrane targets. This platform works as a drug-screening funnel at early stages of the drug discovery pipeline. Therefore, our approach will not only greatly benefit drug discovery processes using transmembrane proteins as targets but also allow for evaluation and validation of cellular pathways targeted by drug leads.


Subject(s)
Centella , Drug Evaluation, Preclinical , Magnetic Phenomena , Plant Extracts , Receptor Protein-Tyrosine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL