Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
Autophagy ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963025

ABSTRACT

Individual Atg8 (autophagy related 8) paralogs, comprising MAP1LC3A/LC3A, LC3B, LC3C, GABARAP, GABARAPL1 and GABARAPL2/GATE16, play a crucial role in canonical macroautophagy/autophagy. However, their functions remain unclear owing to functional redundancy. In a previous study, we reported that intracellular Streptococcus pneumoniae triggers hierarchical autophagy in response to bacterial infection. This process commences with the induction of conjugation of Atg8 paralogs (Atg8s) to single membranes (CASM), followed by CASM shedding and subsequent induction of xenophagy. In our recent study, we performed functional analysis of Atg8s during pneumococci-induced hierarchical autophagy. Our findings suggest that LC3A and GABARAPL1 are crucial for CASM induction, whereas GABARAPL2 and GABARAP play sequential roles in CASM shedding and subsequent induction of xenophagy, respectively.

2.
Int J Med Microbiol ; 315: 151625, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824713

ABSTRACT

OBJECTIVES: We report a case of bacteremia with pyelonephritis in an adult male with an underlying disease caused by α-hemolytic streptococci. α-Hemolytic streptococci were isolated from blood, but it was challenging to identify its species. This study aimed to characterize the causative bacterium SP4011 and to elucidate its species. METHODS: The whole-genome sequence and biochemical characteristics of SP4011 were determined. Based on the genome sequence, phylogenetic analysis was performed with standard strains of each species of α-hemolytic streptococci. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values were calculated. RESULTS: SP4011 showed optochin susceptibility and bile solubility, but did not react with pneumococcal omni antiserum. Phylogenetic analysis of the whole-genome sequence showed that SP4011 clustered with S. pneumoniae and S. pseodopneumoniae and was most closely related to S. pseodopneumoniae. Genomic analysis revealed that ANI and dDDH values between SP4011 and S. pseodopneumoniae were 94.0 % and 56.0 %, respectively, and between SP4011 and S. pneumoniae were 93.3 % and 52.2 %, respectively. Biochemical characteristics also showed differences between SP4011 and S. pseodopneumoniae and between SP4011 and S. pneumoniae. These results indicate that SP4011 is a novel species. CONCLUSION: Our findings indicate that SP4011 is a novel species of the genus Streptococcus. SP4011 has biochemical characteristics similar to S. pneumoniae, making it challenging to differentiate and requiring careful clinical diagnosis. This isolate was proposed to be a novel species, Streptococcus parapneumoniae sp. nov. The strain type is SP4011T (= JCM 36068T = KCTC 21228T).


Subject(s)
Bacteremia , Phylogeny , Pyelonephritis , Streptococcal Infections , Streptococcus , Humans , Male , Streptococcal Infections/microbiology , Bacteremia/microbiology , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/classification , Pyelonephritis/microbiology , Genome, Bacterial , DNA, Bacterial/genetics , Whole Genome Sequencing , Anti-Bacterial Agents/pharmacology , Nucleic Acid Hybridization , Bacterial Typing Techniques , Microbial Sensitivity Tests , Middle Aged
3.
Am J Trop Med Hyg ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917787

ABSTRACT

Leptospirosis is a zoonotic disease caused by the pathogenic spirochaetes of the genus Leptospira. It is a public health concern in the Pacific Islands and is considered endemic in Palau. However, information on the genotypes and serotypes of causative Leptospira spp. in the country is limited. In this study, we isolated leptospires and detected antileptospiral antibodies in dogs and pigs. The isolates were characterized using a serological method and whole-genome sequencing. Leptospira interrogans was isolated from five of the 20 symptomatic dogs and one of the 58 healthy pigs. Their serogroups were identified as Icterohaemorrhagiae and Pyrogenes; however, the serogroup of one isolate could not be determined. Anti-Leptospira antibodies were detected in 14.4% (26/181) of the dogs and 20% (10/50) of the pigs. The reactive serogroups in dogs and pigs were almost identical, except for the Panama serogroup. Core genome multilocus sequence typing revealed that five of the six core genome sequence types (cgSTs) were newly identified in this study. The cgSTs from the serogroup Icterohaemorrhagiae isolates belonged to the same group as the Copenhageni and Icterohaemorrhagiae serovars isolated in other countries, whereas no similar cgSTs were identified in the Pyrogenes or unidentified serogroup strains. We demonstrated a high incidence of canine and porcine leptospirosis and identified new L. interrogans genotypes (cgSTs) circulating in Palau. Further investigations are needed to determine whether dogs and pigs serve as maintenance hosts for newly identified L. interrogans genotypes and whether they pose a risk of leptospirosis transmission to humans.

4.
Appl Environ Microbiol ; 90(6): e0228323, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38757978

ABSTRACT

Resistance to potassium tellurite (PT) is an important indicator in isolating Shiga toxin-producing Escherichia coli (STEC) O157:H7 and other major STEC serogroups. Common resistance determinant genes are encoded in the ter gene cluster. We found an O157:H7 isolate that does not harbor ter but is resistant to PT. One nonsynonymous mutation was found in another PT resistance gene, tehA, through whole-genome sequence analyses. To elucidate the contribution of this mutation to PT resistance, complementation of tehA and the related gene tehB in isogenic strains and quantitative RT‒PCR were performed. The results indicated that the point mutation not only changed an amino acid of tehA, but also was positioned on a putative internal promoter of tehB and increased PT resistance by elevating tehB mRNA expression. Meanwhile, the amino acid change in tehA had negligible impact on the PT resistance. Comprehensive screening revealed that 2.3% of O157:H7 isolates in Japan did not harbor the ter gene cluster, but the same mutation in tehA was not found. These results suggested that PT resistance in E. coli can be enhanced through one mutational event even in ter-negative strains. IMPORTANCE: Selective agents are important for isolating Shiga toxin-producing Escherichia coli (STEC) because the undesirable growth of microflora should be inhibited. Potassium tellurite (PT) is a common selective agent for major STEC serotypes. In this study, we found a novel variant of PT resistance genes, tehAB, in STEC O157:H7. Molecular experiments clearly showed that one point mutation in a predicted internal promoter region of tehB upregulated the expression of the gene and consequently led to increased resistance to PT. Because tehAB genes are ubiquitous across E. coli, these results provide universal insight into PT resistance in this species.


Subject(s)
Escherichia coli O157 , Escherichia coli Proteins , Promoter Regions, Genetic , Tellurium , Tellurium/pharmacology , Escherichia coli O157/genetics , Escherichia coli O157/drug effects , Escherichia coli Proteins/genetics , Drug Resistance, Bacterial/genetics , Mutation , Anti-Bacterial Agents/pharmacology , Japan
5.
Commun Biol ; 7(1): 535, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710842

ABSTRACT

Escherichia coli O157 can cause foodborne outbreaks, with infection leading to severe disease such as hemolytic-uremic syndrome. Although phage-based detection methods for E. coli O157 are being explored, research on their specificity with clinical isolates is lacking. Here, we describe an in vitro assembly-based synthesis of vB_Eco4M-7, an O157 antigen-specific phage with a 68-kb genome, and its use as a proof of concept for E. coli O157 detection. Linking the detection tag to the C-terminus of the tail fiber protein, gp27 produces the greatest detection sensitivity of the 20 insertions sites tested. The constructed phage detects all 53 diverse clinical isolates of E. coli O157, clearly distinguishing them from 35 clinical isolates of non-O157 Shiga toxin-producing E. coli. Our efficient phage synthesis methods can be applied to other pathogenic bacteria for a variety of applications, including phage-based detection and phage therapy.


Subject(s)
Escherichia coli O157 , Escherichia coli O157/virology , Escherichia coli O157/genetics , Escherichia coli O157/isolation & purification , Humans , Escherichia coli Infections/microbiology , Escherichia coli Infections/diagnosis , Bacteriophages/genetics , Bacteriophages/isolation & purification , Coliphages/genetics , Coliphages/isolation & purification , Sensitivity and Specificity , Genome, Viral
6.
Cell Rep ; 43(5): 114131, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38656870

ABSTRACT

Atg8 paralogs, consisting of LC3A/B/C and GBRP/GBRPL1/GATE16, function in canonical autophagy; however, their function is controversial because of functional redundancy. In innate immunity, xenophagy and non-canonical single membranous autophagy called "conjugation of Atg8s to single membranes" (CASM) eliminate bacteria in various cells. Previously, we reported that intracellular Streptococcus pneumoniae can induce unique hierarchical autophagy comprised of CASM induction, shedding, and subsequent xenophagy. However, the molecular mechanisms underlying these processes and the biological significance of transient CASM induction remain unknown. Herein, we profile the relationship between Atg8s, autophagy receptors, poly-ubiquitin, and Atg4 paralogs during pneumococcal infection to understand the driving principles of hierarchical autophagy and find that GATE16 and GBRP sequentially play a pivotal role in CASM shedding and subsequent xenophagy induction, respectively, and LC3A and GBRPL1 are involved in CASM/xenophagy induction. Moreover, we reveal ingenious bacterial tactics to gain intracellular survival niches by manipulating CASM-xenophagy progression by generating intracellular pneumococci-derived H2O2.


Subject(s)
Autophagy-Related Protein 8 Family , Streptococcus pneumoniae , Animals , Mice , Autophagy , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/metabolism , Macroautophagy , Microtubule-Associated Proteins/metabolism , Pneumococcal Infections/microbiology , Pneumococcal Infections/metabolism , Pneumococcal Infections/immunology , Streptococcus pneumoniae/metabolism
7.
J Microbiol Methods ; 221: 106929, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599390

ABSTRACT

Utility of a recently developed long-read pipeline, Emu, was assessed using an expectation-maximization algorithm for accurate read classification. We compared it to conventional short- and long-read pipelines, using well-characterized mock bacterial samples. Our findings highlight the necessity of appropriate data-processing for taxonomic descriptions, expanding our understanding of the precise microbiome.


Subject(s)
Bacteria , High-Throughput Nucleotide Sequencing , Microbiota , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Microbiota/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Algorithms , Nanopores , DNA, Bacterial/genetics
8.
Int J Infect Dis ; 143: 107024, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582146

ABSTRACT

OBJECTIVE: We aimed to investigate the impact of preceding seasonal influenza on the clinical characteristics of adult patients with invasive pneumococcal disease (IPD) in Japan. METHODS: Data for 1722 adult patients with IPD were analyzed before (2017-2019) and during the COVID-19 pandemic (2020-2022). RESULTS: The seasonal influenza epidemic disappeared soon after the emergence of the pandemic. Compared with that before the pandemic (66.7%), we observed a lower bacteremic pneumonia proportion in patients with IPD during the pandemic (55.6%). The clinical presentations of IPD cases significantly differed between those with and without preceding influenza. The proportion of bacteremic pneumonia was higher in IPD patients with preceding influenza than in those without in both younger (44.9% vs 84.2%) and older adults (65.5% vs 87.0%) before the pandemic. The case fatality rate was significantly higher in IPD patients with preceding influenza (28.3%) than in those without (15.3%) in older adults before the pandemic (P = 0.020). Male and aging are high risk factors for death in older patients with IPD who had preceding influenza. CONCLUSION: Our study reveals that preceding seasonal influenza plays a role in the development of bacteremic pneumococcal pneumonia, increasing the risk of death in older adults.


Subject(s)
Bacteremia , COVID-19 , Influenza, Human , Pneumonia, Pneumococcal , Humans , Japan/epidemiology , Male , Influenza, Human/epidemiology , Influenza, Human/complications , Influenza, Human/mortality , Female , Aged , COVID-19/epidemiology , COVID-19/complications , COVID-19/mortality , Middle Aged , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/mortality , Pneumonia, Pneumococcal/complications , Bacteremia/epidemiology , Bacteremia/mortality , Bacteremia/complications , Aged, 80 and over , Adult , Risk Factors , Seasons , SARS-CoV-2 , Streptococcus pneumoniae , Pandemics , Age Factors
9.
Hum Vaccin Immunother ; 20(1): 2337987, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38658133

ABSTRACT

There is a growing interest in development of novel vaccines against respiratory tract infections, due to COVID-19 pandemic. Here, we examined mucosal adjuvanticity and the mucosal booster effect of membrane vesicles (MVs) of a novel probiotic E. coli derivative lacking both flagella and potentially carcinogenic colibactin (ΔflhDΔclbP). ΔflhDΔclbP-derived MVs showed rather strong mucosal adjuvanticity as compared to those of a single flagellar mutant strain (ΔflhD-MVs). In addition, glycoengineered ΔflhDΔclbP-MVs displaying serotype-14 pneumococcal capsular polysaccharide (CPS14+MVs) were well-characterized based on biological and physicochemical parameters. Subcutaneous (SC) and intranasal (IN) booster effects of CPS14+MVs on systemic and mucosal immunity were evaluated in mice that have already been subcutaneously prime-immunized with the same MVs. With a two-dose regimen, an IN boost (SC-IN) elicited stronger IgA responses than homologous prime-boost immunization (SC-SC). With a three-dose regimen, serum IgG levels were comparable among all tested regimens. Homologous immunization (SC-SC-SC) elicited the highest IgM responses among all regimens tested, whereas SC-SC-SC failed to elicit IgA responses in blood and saliva. Furthermore, serum IgA and salivary SIgA levels were increased with an increased number of IN doses administrated. Notably, SC-IN-IN induced not only robust IgG response, but also the highest IgA response in both serum and saliva among the groups. The present findings suggest the potential of a heterologous three-dose administration for building both systemic and mucosal immunity, e.g. an SC-IN-IN vaccine regimen could be beneficial. Another important observation was abundant packaging of colibactin in MVs, suggesting increased applicability of ΔflhDΔclbP-MVs in the context of vaccine safety.


Subject(s)
Adjuvants, Immunologic , Escherichia coli , Immunity, Mucosal , Immunization, Secondary , Mice, Inbred BALB C , Polyketides , Probiotics , Animals , Mice , Probiotics/administration & dosage , Escherichia coli/immunology , Immunization, Secondary/methods , Female , Adjuvants, Immunologic/administration & dosage , Immunoglobulin A , Peptides/immunology , Administration, Intranasal , Immunoglobulin G/blood , Immunoglobulin M , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage
10.
Cell Rep ; 43(3): 113962, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38483905

ABSTRACT

Pneumolysin (Ply) is an indispensable cholesterol-dependent cytolysin for pneumococcal infection. Although Ply-induced disruption of pneumococci-containing endosomal vesicles is a prerequisite for the evasion of endolysosomal bacterial clearance, its potent activity can be a double-edged sword, having a detrimental effect on bacterial survivability by inducing severe endosomal disruption, bactericidal autophagy, and scaffold epithelial cell death. Thus, Ply activity must be maintained at optimal levels. We develop a highly sensitive assay to monitor endosomal disruption using NanoBiT-Nanobody, which shows that the pneumococcal sialidase NanA can fine-tune Ply activity by trimming sialic acid from cell-membrane-bound glycans. In addition, oseltamivir, an influenza A virus sialidase inhibitor, promotes Ply-induced endosomal disruption and cytotoxicity by inhibiting NanA activity in vitro and greater tissue damage and bacterial clearance in vivo. Our findings provide a foundation for innovative therapeutic strategies for severe pneumococcal infections by exploiting the duality of Ply activity.


Subject(s)
Neuraminidase , Pneumococcal Infections , Humans , Neuraminidase/metabolism , Streptococcus pneumoniae/metabolism , Streptolysins/metabolism , Bacterial Proteins/metabolism
11.
Sci Rep ; 14(1): 6994, 2024 03 24.
Article in English | MEDLINE | ID: mdl-38523156

ABSTRACT

Methods for identifying bacterial pathogens are broadly categorised into conventional culture-based microbiology, nucleic acid-based tests, and mass spectrometry. The conventional method requires several days to isolate and identify bacteria. Nucleic acid-based tests and mass spectrometry are relatively rapid and reliable, but they require trained technicians. Moreover, mass spectrometry requires expensive equipment. The development of a novel, inexpensive, and simple technique for identifying bacterial pathogens is needed. Through combining micropore technology and assembly machine learning, we developed a novel classifier whose receiver operating characteristic (ROC) curve showed an area under the ROC curve of 0.94, which rapidly differentiated between Staphylococcus aureus and Staphylococcus epidermidis in this proof-of-concept study. Morphologically similar bacteria belonging to an identical genus can be distinguished using our method, which requires no specific training, and may facilitate the diagnosis and treatment of patients with bacterial infections in remote areas and in developing countries.


Subject(s)
Nucleic Acids , Staphylococcal Infections , Humans , Staphylococcus aureus , Staphylococcus epidermidis , Artificial Intelligence , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology
12.
Proc Natl Acad Sci U S A ; 121(9): e2313964121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38394242

ABSTRACT

Invariant natural killer T (iNKT) cells are innate-like T lymphocytes that express an invariant T cell receptor α chain and contribute to bridging innate and acquired immunity with rapid production of large amounts of cytokines after stimulation. Among effecter subsets of iNKT cells, follicular helper NKT (NKTFH) cells are specialized to help B cells. However, the mechanisms of NKTFH cell differentiation remain to be elucidated. In this report, we studied the mechanism of NKTFH cell differentiation induced by pneumococcal surface protein A and α-galactosylceramide (P/A) vaccination. We found that Gr-1+ cells helped iNKT cell proliferation and NKTFH cell differentiation in the spleen by producing interleukin-27 (IL-27) in the early phase after vaccination. The neutralization of IL-27 impaired NKTFH cell differentiation, which resulted in compromised antibody production and diminished protection against Streptococcus pneumoniae infection by the P/A vaccine. Our data indicated that Gr-1+ cell-derived IL-27 stimulated mitochondrial metabolism, meeting the energic demand required for iNKT cells to differentiate into NKTFH cells. Interestingly, Gr-1+ cell-derived IL-27 was induced by iNKT cells via interferon-γ production. Collectively, our findings suggest that optimizing the metabolism of iNKT cells was essential for acquiring specific effector functions, and they provide beneficial knowledge on iNKT cell-mediated vaccination-mediated therapeutic strategies.


Subject(s)
Interleukin-27 , Natural Killer T-Cells , Animals , Mice , Interleukin-27/metabolism , T-Lymphocytes, Helper-Inducer , Cytokines/metabolism , Cell Differentiation , Mice, Inbred C57BL
13.
Int J Infect Dis ; 142: 106954, 2024 May.
Article in English | MEDLINE | ID: mdl-38382822

ABSTRACT

OBJECTIVES: Streptococcal toxic shock syndrome (STSS) is caused by group A Streptococcus (GAS; Streptococcus pyogenes) strains. In Japan, the number of STSS cases has decreased; however, the underlying reason remains unclear. Moreover, information on distribution and prevalence of specific emm types in STSS cases is scarce. Hence, we investigated the reason for the decreased number of STSS cases in Japan. METHODS: We genotyped emm of 526 GAS isolates obtained from 526 patients with STSS between 2019 and 2022. The distributions of emm types in each year were compared. RESULTS: The emm1 type was predominant, with the highest proportion in 2019, which decreased after 2020 following the onset of the coronavirus disease 2019 (COVID-19) pandemic. Strains isolated during the pandemic correlated with strains associated with skin infection, whereas those isolated during the prepandemic period correlated with strains associated with both throat and skin infections. The decrease in the annual number of STSS cases during the COVID-19 pandemic could be due to a decreased proportion of strains associated with pharyngeal infections. CONCLUSIONS: Potential associations between pandemic and STSS numbers with respect to public health measures, such as wearing masks and changes in healthcare-seeking behavior, may have affected the number of GAS-induced infections.


Subject(s)
COVID-19 , Shock, Septic , Streptococcal Infections , Humans , Streptococcus pyogenes/genetics , Shock, Septic/epidemiology , Japan/epidemiology , Pandemics , COVID-19/epidemiology , Streptococcal Infections/epidemiology
14.
Front Cell Infect Microbiol ; 14: 1289134, 2024.
Article in English | MEDLINE | ID: mdl-38384304

ABSTRACT

Colistin is widely used for the prophylaxis and treatment of infectious disease in humans and livestock. However, the global food chain may actively promote the dissemination of colistin-resistant bacteria in the world. Mobile colistin-resistant (mcr) genes have spread globally, in both communities and hospitals. This study sought to genomically characterize mcr-mediated colistin resistance in 16 Escherichia coli strains isolated from retail meat samples using whole genome sequencing with short-read and long-read platforms. To assess colistin resistance and the transferability of mcr genes, antimicrobial susceptibility testing and conjugation experiments were conducted. Among the 16 isolates, 11 contained mcr-1, whereas three carried mcr-3 and two contained mcr-1 and mcr-3. All isolates had minimum inhibitory concentration (MIC) for colistin in the range 1-64 µg/mL. Notably, 15 out of the 16 isolates demonstrated successful transfer of mcr genes via conjugation, indicative of their presence on plasmids. In contrast, the KK3 strain did not exhibit such transferability. Replicon types of mcr-1-containing plasmids included IncI2 and IncX4, while IncFIB, IncFII, and IncP1 contained mcr-3. Another single strain carried mcr-1.1 on IncX4 and mcr-3.5 on IncP1. Notably, one isolate contained mcr-1.1 located on a chromosome and carrying mcr-3.1 on the IncFIB plasmid. The chromosomal location of the mcr gene may ensure a steady spread of resistance in the absence of selective pressure. Retail meat products may act as critical reservoirs of plasmid-mediated colistin resistance that has been transmitted to humans.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Humans , Animals , Colistin/pharmacology , Escherichia coli Proteins/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Plasmids/genetics , Food Supply , Microbial Sensitivity Tests
15.
Microbiol Immunol ; 68(3): 115-121, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244192

ABSTRACT

This study aimed to reveal the prevalence of heat-labile enterotoxin (LT) gene-positive Escherichia fergusonii in retail chicken meat and genetically characterize these strains. E. fergusonii harboring LT gene was isolated from 6 out of 60 (10%) retail chicken samples in Okinawa, Japan. Whole-genome sequencing analysis revealed that LT gene-positive E. fergusonii from chicken meat and feces contain an IncFII plasmid harboring elt1AB, and suggested to spread clonally to retail chicken through fecal contamination. Additionally, it was found that these strains harbor multidrug-resistant genes on their plasmids. Their pathogenicity and continuous monitoring are required for confirmation.


Subject(s)
Enterotoxins , Escherichia coli , Escherichia , Animals , Escherichia coli/genetics , Enterotoxins/genetics , Chickens , Japan , Hot Temperature , Plasmids/genetics , Meat , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial
16.
Microbiol Spectr ; 12(1): e0235523, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38092668

ABSTRACT

IMPORTANCE: Hemolytic uremic syndrome (HUS) is a life-threatening disease caused by Shiga toxin-producing Escherichia coli (STEC) infection. The treatment approaches for STEC-mediated typical HUS and atypical HUS differ, underscoring the importance of rapid and accurate diagnosis. However, specific detection methods for STECs other than major serogroups, such as O157, O26, and O111, are limited. This study focuses on the utility of PCR-based O-serotyping, serum agglutination tests utilizing antibodies against the identified Og type, and isolation techniques employing antibody-conjugated immunomagnetic beads for STEC isolation. By employing these methods, we successfully isolated a STEC strain of a minor serotype, O76:H7, from a HUS patient.


Subject(s)
Escherichia coli Infections , Hemolytic-Uremic Syndrome , Shiga-Toxigenic Escherichia coli , Humans , Shiga Toxin/genetics , O Antigens/genetics , Serotyping/methods , Hemolytic-Uremic Syndrome/diagnosis , Escherichia coli Infections/diagnosis , Genomics , Serologic Tests
18.
Microbiol Resour Announc ; 13(1): e0059123, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38117079

ABSTRACT

Major serotypes of Shiga toxin-producing Escherichia coli (STEC) carry a locus of enterocyte effacement (LEE), which is required for attaching and effacing lesion formation. Genome information of LEE-negative STEC is scarce despite their virulence potential. We present the complete genome sequences of eight LEE-negative STEC isolates from hemolytic-uremic syndrome patients.

19.
Inflamm Regen ; 43(1): 55, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37964391

ABSTRACT

BACKGROUND: Although vaccination is recommended for protection against invasive pneumococcal disease, the frequency of pneumococcal pneumonia is still high worldwide. In fact, no vaccines are effective for all pneumococcal serotypes. Fusion pneumococcal surface protein A (PspA) has been shown to induce a broad range of cross-reactivity with clinical isolates and afford cross-protection against pneumococcal challenge in mice. Furthermore, we developed prime-boost-type mucosal vaccines that induce both antigen-specific IgG in serum and antigen-specific IgA in targeted mucosal organs in previous studies. We investigated whether our prime-boost-type immunization with a fusion PspA was effective against pneumococcal infection in mice and cynomolgus macaques. METHODS: C57BL/6 mice were intramuscularly injected with fusion PspA combined with CpG oligodeoxynucleotides and/or curdlan. Six weeks later, PspA was administered intranasally. Blood and bronchoalveolar lavage fluid were collected and antigen-specific IgG and IgA titers were measured. Some mice were given intranasal Streptococcus pneumoniae and the severity of infection was analyzed. Macaques were intramuscularly injected with fusion PspA combined with CpG oligodeoxynucleotides and/or curdlan at week 0 and week 4. Then, 13 or 41 weeks later, PspA was administered intratracheally. Blood and bronchoalveolar lavage fluid were collected and antigen-specific IgG and IgA titers were measured. Some macaques were intranasally administered S. pneumoniae and analyzed for the severity of pneumonia. RESULTS: Serum samples from mice and macaques injected with antigens in combination with CpG oligodeoxynucleotides and/or curdlan contained antigen-specific IgG. Bronchial samples contained antigen-specific IgA after the fusion PspA boosting. This immunization regimen effectively prevented S. pneumoniae infection. CONCLUSIONS: Prime-boost-type immunization with a fusion PspA prevented S. pneumoniae infection in mice and macaques.

20.
PeerJ ; 11: e16401, 2023.
Article in English | MEDLINE | ID: mdl-37953793

ABSTRACT

Background: Escherichia coli is the most common cause of urinary tract infections and has fluoroquinolone (FQ)-resistant strains, which are a worldwide concern. Objectives: To characterize FQ-resistant determinants among 103 carbapenem-resistant E. coli (CREc) urinary isolates using WGS. Methods: Antimicrobial susceptibility, biofilm formation, and short-read sequencing were applied to these isolates. Complete genome sequencing of five CREcs was conducted using short- and long-read platforms. Results: ST410 (50.49%) was the predominant ST, followed by ST405 (12.62%) and ST361 (11.65%). Clermont phylogroup C (54.37%) was the most frequent. The genes NDM-5 (74.76%) and CTX-M-15 (71.84%) were the most identified. Most CREcs were resistant to ciprofloxacin (97.09%) and levofloxacin (94.17%), whereas their resistance rate to nitrofurantoin was 33.98%. Frequently, the gene aac(6')-Ib (57.28%) was found and the coexistence of aac(6')-Ib and blaCTX-M-15 was the most widely predominant. All isolates carried the gyrA mutants of S83L and D87N. In 12.62% of the isolates, the coexistence was detected of gyrA, gyrB, parC, and parE mutations. Furthermore, the five urinary CREc-complete genomes revealed that blaNDM-5 or blaNDM-3 were located on two plasmid Inc types, comprising IncFI (60%, 3/5) and IncFI/IncQ (40%, 2/5). In addition, both plasmid types carried other resistance genes, such as blaOXA-1, blaCTX-M-15, blaTEM-1B, and aac(6')-Ib. Notably, the IncFI plasmid in one isolate carried three copies of the blaNDM-5 gene. Conclusions: This study showed FQ-resistant determinants in urinary CREc isolates that could be a warning sign to adopt efficient strategies or new control policies to prevent further spread and to help in monitoring this microorganism.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Escherichia coli Infections , Humans , Escherichia coli/genetics , Fluoroquinolones/pharmacology , Escherichia coli Infections/drug therapy , Thailand/epidemiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...