Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(6): 104795, 2023 06.
Article in English | MEDLINE | ID: mdl-37150320

ABSTRACT

In recent years, lactate has been recognized as an important circulating energy substrate rather than only a dead-end metabolic waste product generated during glucose oxidation at low levels of oxygen. The term "aerobic glycolysis" has been coined to denote increased glucose uptake and lactate production despite normal oxygen levels and functional mitochondria. Hence, in "aerobic glycolysis," lactate production is a metabolic choice, whereas in "anaerobic glycolysis," it is a metabolic necessity based on inadequate levels of oxygen. Interestingly, lactate can be taken up by cells and oxidized to pyruvate and thus constitutes a source of pyruvate that is independent of insulin. Here, we show that the transcription factor Foxp1 regulates glucose uptake and lactate production in adipocytes and myocytes. Overexpression of Foxp1 leads to increased glucose uptake and lactate production. In addition, protein levels of several enzymes in the glycolytic pathway are upregulated, such as hexokinase 2, phosphofructokinase, aldolase, and lactate dehydrogenase. Using chromatin immunoprecipitation and real-time quantitative PCR assays, we demonstrate that Foxp1 directly interacts with promoter consensus cis-elements that regulate expression of several of these target genes. Conversely, knockdown of Foxp1 suppresses these enzyme levels and lowers glucose uptake and lactate production. Moreover, mice with a targeted deletion of Foxp1 in muscle display systemic glucose intolerance with decreased muscle glucose uptake. In primary human adipocytes with induced expression of Foxp1, we find increased glycolysis and glycolytic capacity. Our results indicate Foxp1 may play an important role as a regulator of aerobic glycolysis in adipose tissue and muscle.


Subject(s)
Adipocytes , Forkhead Transcription Factors , Glycolysis , Muscle Cells , Transcription Factors , Animals , Mice , Adipocytes/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Glucose/metabolism , Glycolysis/genetics , Lactic Acid/metabolism , Muscle Cells/metabolism , Pyruvates , Transcription Factors/metabolism , Rats , Cell Line , Transcriptome
2.
Sci Transl Med ; 14(668): eabh1316, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36288279

ABSTRACT

Circadian rhythms play a critical role in regulating metabolism, including daily cycles of feeding/fasting. Glucokinase (GCK) is central for whole-body glucose homeostasis and oscillates according to a circadian clock. GCK activators (GKAs) effectively reduce hyperglycemia, but their use is also associated with hypoglycemia, hyperlipidemia, and hepatic steatosis. Given the circadian rhythmicity and natural postprandial activation of GCK, we hypothesized that GKA treatment would benefit from being timed specifically during feeding periods. Acute treatment of obese Zucker rats with the GKA AZD1656 robustly increased flux into all major metabolic pathways of glucose disposal, enhancing glucose elimination. Four weeks of continuous AZD1656 treatment of obese Zucker rats improved glycemic control; however, hepatic steatosis and inflammation manifested. In contrast, timing AZD1656 to feeding periods robustly reduced hepatic steatosis and inflammation in addition to improving glycemia, whereas treatment timed to fasting periods caused overall detrimental metabolic effects. Mechanistically, timing AZD1656 to feeding periods diverted newly synthesized lipid toward direct VLDL secretion rather than intrahepatic storage. In line with increased hepatic insulin signaling, timing AZD1656 to feeding resulted in robust activation of AKT, mTOR, and SREBP-1C after glucose loading, pathways known to regulate VLDL secretion and hepatic de novo lipogenesis. In conclusion, intermittent AZD1656 treatment timed to feeding periods promotes glucose disposal when needed the most, restores metabolic flexibility and hepatic insulin sensitivity, and thereby avoids hepatic steatosis. Thus, chronotherapeutic approaches may benefit the development of GKAs and other drugs acting on metabolic targets.


Subject(s)
Fatty Liver , Glucokinase , Rats , Animals , Rats, Zucker , Glucokinase/metabolism , Hypoglycemic Agents/therapeutic use , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Insulin/pharmacology , Glucose/metabolism , Obesity/drug therapy , Obesity/metabolism , Liver/metabolism , Chronotherapy , Inflammation/metabolism , TOR Serine-Threonine Kinases/metabolism , Lipids
3.
Front Endocrinol (Lausanne) ; 13: 957616, 2022.
Article in English | MEDLINE | ID: mdl-36072934

ABSTRACT

Cellular senescence is a state of irreversible cell cycle arrest and has been shown to play a key role in many diseases, including metabolic diseases. To investigate the potential contribution of hepatocyte cellular senescence to the metabolic derangements associated with non-alcoholic steatohepatitis (NASH), we treated human hepatocyte cell lines HepG2 and IHH with the senescence-inducing drugs nutlin-3a, doxorubicin and etoposide. The senescence-associated markers p16, p21, p53 and beta galactosidase were induced upon drug treatment, and this was associated with increased lipid storage, increased expression of lipid transporters and the development of hepatic steatosis. Drug-induced senescence also led to increased glycogen content, and increased VLDL secretion from hepatocytes. Senescence was also associated with an increase in glucose and fatty acid oxidation capacity, while de novo lipogenesis was decreased. Surprisingly, cellular senescence caused an overall increase in insulin signaling in hepatocytes, with increased insulin-stimulated phosphorylation of IR, Akt, and MAPK. Together, these data indicate that hepatic senescence plays a causal role in the development of NASH pathogenesis, by modulating glucose and lipid metabolism, favoring steatosis. Our findings contribute to a better understanding of the mechanisms linking cellular senescence and fatty liver disease and support the development of new therapies targeting senescent cells for the treatment of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Cellular Senescence , Glucose , Hepatocytes/metabolism , Humans , Insulin , Lipids , Non-alcoholic Fatty Liver Disease/pathology
4.
Nat Med ; 27(11): 1941-1953, 2021 11.
Article in English | MEDLINE | ID: mdl-34608330

ABSTRACT

Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle. We demonstrate that mature human adipocytes unexpectedly display a gene and protein signature indicative of an active cell cycle program. Adipocyte cell cycle progression associates with obesity and hyperinsulinemia, with a concomitant increase in cell size, nuclear size and nuclear DNA content. Chronic hyperinsulinemia in vitro or in humans, however, is associated with subsequent cell cycle exit, leading to a premature senescent transcriptomic and secretory profile in adipocytes. Premature senescence is rapidly becoming recognized as an important mediator of stress-induced tissue dysfunction. By demonstrating that adipocytes can activate a cell cycle program, we define a mechanism whereby mature human adipocytes senesce. We further show that by targeting the adipocyte cell cycle program using metformin, it is possible to influence adipocyte senescence and obesity-associated adipose tissue inflammation.


Subject(s)
Adipocytes/metabolism , Cell Cycle/physiology , Cellular Senescence/physiology , Hyperinsulinism/pathology , Obesity/pathology , Adipose Tissue/metabolism , Cell Differentiation/physiology , Cyclin D1/metabolism , Humans , Hypoglycemic Agents/pharmacology , Metformin/pharmacology
5.
Mol Metab ; 36: 100964, 2020 06.
Article in English | MEDLINE | ID: mdl-32248079

ABSTRACT

OBJECTIVE: Peroxisome proliferator-activated receptors (PPARs) are key transcription factors that regulate adipose development and function, and the conversion of white into brown-like adipocytes. Here we investigated whether PPARα and PPARγ activation synergize to induce the browning of white fat. METHODS: A selection of PPAR activators was tested for their ability to induce the browning of both mouse and human white adipocytes in vitro, and in vivo in lean and obese mice. RESULTS: All dual PPARα/γ activators tested robustly increased uncoupling protein 1 (Ucp1) expression in both mouse and human adipocytes in vitro, with tesaglitazar leading to the largest Ucp1 induction. Importantly, dual PPARα/γ activator tesaglitazar strongly induced browning of white fat in vivo in both lean and obese male mice at thermoneutrality, greatly exceeding the increase in Ucp1 observed with the selective PPARγ activator rosiglitazone. While selective PPARγ activation was sufficient for the conversion of white into brown-like adipocytes in vitro, dual PPARα/γ activation was superior to selective PPARγ activation at inducing white fat browning in vivo. Mechanistically, the superiority of dual PPARα/γ activators is mediated at least in part via a PPARα-driven increase in fibroblast growth factor 21 (FGF21). Combined treatment with rosiglitazone and FGF21 resulted in a synergistic increase in Ucp1 mRNA levels both in vitro and in vivo. Tesaglitazar-induced browning was associated with increased energy expenditure, enhanced insulin sensitivity, reduced liver steatosis, and an overall improved metabolic profile compared to rosiglitazone and vehicle control groups. CONCLUSIONS: PPARγ and PPARα synergize to induce robust browning of white fat in vivo, via PPARγ activation in adipose, and PPARα-mediated increase in FGF21.


Subject(s)
Adipose Tissue, White/metabolism , PPAR alpha/metabolism , PPAR gamma/metabolism , Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Adipose Tissue, Brown/metabolism , Animals , Energy Metabolism , Male , Mice , Mice, Inbred C57BL , PPAR alpha/genetics , PPAR gamma/genetics , Thermogenesis/genetics , Transcription Factors/metabolism , Uncoupling Protein 1/metabolism
6.
J Vis Exp ; (156)2020 02 13.
Article in English | MEDLINE | ID: mdl-32116300

ABSTRACT

White adipose tissue (WAT) dysregulation plays a central role in development of insulin resistance and type 2 diabetes (T2D). To develop new treatments for T2D, more physiologically relevant in vitro adipocyte models are required. This study describes a new technique to isolate and culture mature human adipocytes. This method is entitled MAAC (membrane mature adipocyte aggregate culture), and compared to other adipocyte in vitro models, MAAC possesses an adipogenic gene signature that is the closest to freshly isolated mature adipocytes. Using MAAC, adipocytes can be cultured from lean and obese patients, different adipose depots, co-cultured with different cell types, and importantly, can be kept in culture for 2 weeks. Functional experiments can also be performed on MAAC including glucose uptake, lipogenesis, and lipolysis. Moreover, MAAC responds robustly to diverse pharmacological agonism and can be used to study adipocyte phenotypic changes, including the transdifferentiation of white adipocytes into brown-like fat cells.


Subject(s)
Adipocytes/metabolism , Adipose Tissue, White/metabolism , Cell Culture Techniques/methods , Humans
7.
Cell Rep ; 27(1): 213-225.e5, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30943403

ABSTRACT

White adipose tissue (WAT) is a central factor in the development of type 2 diabetes, but there is a paucity of translational models to study mature adipocytes. We describe a method for the culture of mature white adipocytes under a permeable membrane. Compared to existing culture methods, MAAC (membrane mature adipocyte aggregate cultures) better maintain adipogenic gene expression, do not dedifferentiate, display reduced hypoxia, and remain functional after long-term culture. Subcutaneous and visceral adipocytes cultured as MAAC retain depot-specific gene expression, and adipocytes from both lean and obese patients can be cultured. Importantly, we show that rosiglitazone treatment or PGC1α overexpression in mature white adipocytes induces a brown fat transcriptional program, providing direct evidence that human adipocytes can transdifferentiate into brown-like adipocytes. Together, these data show that MAAC are a versatile tool for studying phenotypic changes of mature adipocytes and provide an improved translational model for drug development.


Subject(s)
Adipocytes, Brown/physiology , Adipocytes, White/cytology , Adipocytes, White/physiology , Adipogenesis/physiology , Cell Transdifferentiation , Primary Cell Culture/methods , Adipocytes, Brown/cytology , Animals , Cell Transdifferentiation/physiology , Cells, Cultured , Female , Humans , Membranes, Artificial , Mice , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL