Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Public Health ; 17(4): 669-675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447323

ABSTRACT

BACKGROUND: This study presents a comprehensive genomic analysis of NDM and OXA-48-producing Klebsiella pneumoniae in the Western region of Saudi Arabia, traversed by tens of millions of Muslims from various countries annually. This significant influx of visitors invariably leads to the spread and diversity of MDR bacteria. METHODS: Genome sequencing was performed using MiSeq system of 29 CPKP isolates that were NDM and OXA-48-positive isolated from nosocomial infections and demonstrated resistance to most antibiotics, including carbapenems. RESULTS: WGS analysis showed that 12 (41.3%) isolates co-harbored blaOXA-48,blaCTX-M-15 and blaNDM genes. Notably, 16 (55.1%) isolates were identified as high-risk clone ST14, with 50% of these isolates co-harbored blaOXA-48, blaNDM and blaCTX-M-15 genes. All ST14 isolates were identified as capsular genotype KL2 and O1/O2v1 antigen with yersiniabactin locus ypt 14 carried by ICEKp5. The two isolates were identified as ST2096/KL64 hypervirulent K. pneumoniae (hvKp) clone harboring several virulence factors, including the regulator of the mucoid phenotype rmpA2 and aerobactin (iuc-1). Interestingly, two of the hvKp ST383/KL30 isolates were resistant to all tested antimicrobials except colistin and tigecycline, and simultaneously carried numerous ESBLs and carbapenemase genes. These isolates also harbor several virulence factors such as rmpA1, rmpA2, carried on KpVP-1, and aerobactin (iuc-1). CONCLUSION: this study provides insights into the spread and prevalence of high-risk clones of CPKP in the Western region of Saudi Arabia. The ST14 high-risk clone appears to be the predominant CPKP clone in this region, posing a significant threat to public health. This study also reports the presence of two globally disseminated hypervirulent K. pneumoniae (hvKp) clones, namely ST2096 and ST383. Therefore, it is essential to improve surveillance and implement strict infection control measures in this region, which receives a substantial number of visitors to effectively monitor and reduce the spread of high-risk clones of antimicrobial-resistant bacteria, including CPKP.


Subject(s)
Hydroxamic Acids , Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Saudi Arabia/epidemiology , beta-Lactamases/genetics , beta-Lactamases/pharmacology , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Genomics , Microbial Sensitivity Tests
2.
Poult Sci ; 103(2): 103320, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38215504

ABSTRACT

Salmonella is a significant foodborne pathogen that has a significant impact on public health, and different strains of multidrug resistance (MDR) have been identified in this genus. This study used a combination of phenotypic and genotypic approaches to identify distinct Salmonella species collected from poultry broiler and layer farms, and antibiotic sensitivity testing was performed on these species. A total of 56 Salmonella isolates were serotyped, and phenotypic antibiotic resistance was determined for each strain. The enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) method was also used to provide a genotypic description, from which a dendrogram was constructed and the most likely phylogenetic relationships were applied. Salmonella isolates were detected in 20 (17%) out of 117 samples collected from small-scale broiler flocks. Salmonella isolates were classified as MDR strains after showing tolerance to 4 antibiotics, but no resistance to cloxacillin, streptomycin, vancomycin, or netilmicin was observed. From a genotypic perspective, these strains lack dfrD, parC, and blasfo-1 resistant genes, while harboring blactx-M, blaDHA-L, qnrA, qnrB, qnrS, gyrA, ermA, ermB, ermC, ermTR, mefA, msrA, tet A, tet B, tet L, tet M resistance genes. The genotyping results obtained with ERIC-PCR allowed isolates to be classified based on the source of recovery. It was determined that Salmonella strains displayed MDR, and many genes associated with them. Additionally, the ERIC-PCR procedure aided in the generation of clusters with biological significance. Extensive research on Salmonella serotypes is warranted, along with the implementation of long-term surveillance programs to monitor MDR Salmonella serotypes in avian-derived foods.


Subject(s)
Chickens , Salmonella enteritidis , Animals , Chickens/microbiology , Salmonella enteritidis/genetics , Prevalence , Farms , Phylogeny , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Genetic Variation , Microbial Sensitivity Tests/veterinary
3.
Poult Sci ; 103(3): 103350, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262339

ABSTRACT

The development of antibiotic-resistant microorganisms prompted the investigation of possible antibiotic substitutes. As a result, the purpose of the current study is to assess the effect of dietary Spirulina platensis extract as an antibiotic alternative on Japanese quail (Coturnix japonica) growth, antioxidant status, blood parameters, and cecal microorganisms. There was a total of 150 Japanese quails used in this study, divided equally among 5 experimental groups (10 birds per group with 3 replicates): group 1 (G1) received a basal diet without any S. platensis extract, group 2 (G2) received a basal diet supplemented with 1 mL S. platensis extract/kg, group 3 (G3) received a basal diet supplemented with 2 mL S. platensis extract/kg, group 4 (G4) received a basal diet supplemented with 3 mL S. platensis extract/kg, and group 5 (G5) received a basal diet supplemented with 4 mL S. platensis extract/kg from d 7 until d 35. The results showed that compared to the control birds in G1, Japanese quail supplemented with 4 mL of S. platensis extract/kg of diet (G5) had significantly better live body weight, body weight gain, feed intake, feed conversion ratio, digestive enzymes, blood parameters, liver and kidney functions, lipid profile, antioxidant profile, immunological parameters, and cecal microorganism's count. There were no significant changes in the percentage of carcasses, liver, and total giblets among all the 5 groups. Only gizzard percentage showed a significant increase in G2 compared to birds in G1. In addition, intestinal pH showed a significant drop in G2 and G5 compared to birds in G1. After cooking the quail meat, the juiciness and tenderness increased as S. platensis extract levels increased, whereas aroma and taste declined slightly as S. platensis extract levels increased. Furthermore, when a high concentration of S. platensis extract was used, the lightness of the meat reduced while its redness and yellowness increased. The disk diffusion assay showed that S. platensis extract had significant antibacterial activity against Staphylococcus aureus, Listeria monocytogenes, Campylobacter jejuni, and Salmonella typhi, with inhibition zones ranging from 16 to 42 mm. This activity may be attributable to the volatile chemicals in S. platensis extract, of which Geosmin and 2-methylisoborneol are the primary components. In the diet of Japanese quails, it is possible to draw the conclusion that the extract of S. platensis can be utilized as a feed additive and as an alternative to antibiotics.


Subject(s)
Antioxidants , Coturnix , Spirulina , Animals , Chickens , Diet/veterinary , Dietary Supplements , Body Weight , Anti-Bacterial Agents/pharmacology , Animal Feed , Quail
4.
Saudi J Biol Sci ; 31(2): 103912, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38229887

ABSTRACT

Alzheimer's disease (AD) causes dementia among older adults, increasing the global burden of dementia. Therefore, this study investigates the potential neuroprotective, antioxidant, and anticancer effects of chamomile essential oil (CCO) in Alzheimer's disease. CCO's main volatile compounds (VOCs) were α-bisabolol, camazulene, and bisabolol oxide A, representing 81 % of all VOCs. CCO scavenged 93 % of DPPH free radicals and inhibited the pathogenic bacteria, i.e., Staphylococcus aureus and Salmonella typhi, besides reducing 89 % of brain cancer cell lines (U87). Eighty albino rats were randomized into four groups: standard control, Alzheimer's disease group caused by AlCl3, and treated groups. The results indicated that the mean value of tumor necrosis factor α (TNF-α), amyloid precursor protein (APP), amyloid beta (Aß), caspase-3, & B-cell lymphoma 2 (Bcl-2) was significantly elevated due to the harmful effect of AlCl3; however, CCO downregulated these values, and this effect was attributed to the considerable volatile compounds and phenolic compounds content. Additionally, CCO rats showed a significant increment in noradrenergic (NE), dopaminergic (DO), and serotoninergic systems with relative increases of 50, 50, and 14 % compared to diseased rats. The brain histology of CCO-treated rats showed a significant reduction in neuronal degeneration and improved brain changes, and its histology was close to that of the control brain. The results indicated that CCO offers a new strategy that could be used as an antioxidant and neuroprotective agent for AD due to its considerable contents of antioxidants and anti-inflammatory compounds.

5.
Mucosal Immunol ; 16(1): 27-38, 2023 02.
Article in English | MEDLINE | ID: mdl-36690078

ABSTRACT

Gastrointestinal nematode infections cause morbidity and socioeconomic loss in the most deprived communities. The shift in the context of obesity has led to spatial overlap with endemic gastrointestinal nematode regions resulting in the emergence of a novel comorbidity. Despite this, the impact of a high-fat diet (HFD) on immune-regulated protection against gastrointestinal infections remains largely unknown. We employed the murine model of nematode infection, Trichuris muris, to investigate the effect of an HFD on the immune response against chronic infection. Surprisingly, diet-induced obesity drove parasite expulsion in both single and repeated trickle low doses of T. muris eggs. Mechanistically, an HFD increased the expression of the ST2 receptor on CD4+ T cells, priming an enhanced type 2 helper T (Th2) cell cytokine production following interleukin (IL)-33 stimulation ex vivo. Despite IL-33-/- mice demonstrating that IL-33 is not critical for host protective immunity to T. muris under a conventional diet, HFD-fed T-cell deplete mice adoptively transferred with ST2-/- CD4 T cells were unable to expel a T. muris infection unlike those transferred with ST2-sufficient cells. Collectively, this study demonstrates that an HFD primes CD4+ T cells to utilize the IL-33-ST2 axis in a novel induction of type 2 immunity, providing insights into the emerging comorbidities of obesity and nematode infection.


Subject(s)
Helminths , Trichuriasis , Mice , Animals , Interleukin-33 , Diet, High-Fat , Interleukin-1 Receptor-Like 1 Protein , Trichuris , Cytokines/metabolism
6.
Biomed Res Int ; 2022: 1474426, 2022.
Article in English | MEDLINE | ID: mdl-35036427

ABSTRACT

BACKGROUND: The coronavirus disease-19 (COVID-19) pandemic caused a major impact on blood donation process and supply globally. A lockdown management procedure was launched nationally in Saudi Arabia to manage this global health crisis. The main aim of this study was to determine the effect of COVID-19 lockdown on blood donation services and supply in different regions of Saudi Arabia. Study Design and Methods. A retrospective cross-sectional study was conducted in the blood bank centers of 5 major cities including Riyadh, Jeddah, Dammam, Hail, and Jizan in Saudi Arabia. Demographic and blood characteristics were retrieved from the first 6 months of 2019 (January-June) and compared to the same period of 2020. RESULTS: Our findings showed variation in the characteristics of blood donation and supply among the centers surveyed, as some of these centers were adversely affected, while others showed an increase in the availability of blood products during the pandemic. For example, Jeddah's center was significantly affected by COVID-19 lockdown whereas Hail's center showed a significant increase in the analyzed characteristics of blood donation services in 2020 compared to 2019. Overall, there was no major difference among the surveyed centers between 2020 and 2019, and this might be due to the effective management of blood supply and transfusion. Discussion. Although blood supply and transfusion practice was slightly affected at various degree among the surveyed centers, the whole process did not show a significant effect on the overall outcome. This is in fact due to the proper preparedness, management of blood requirements and supplies, and efficient response of the surveyed centers in Saudi Arabia.


Subject(s)
Blood Donors/statistics & numerical data , COVID-19/epidemiology , Blood Component Removal/statistics & numerical data , Blood Transfusion/statistics & numerical data , Cross-Sectional Studies , Female , Humans , Male , Quarantine , Saudi Arabia
7.
Afr Health Sci ; 22(4): 526-533, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37092112

ABSTRACT

Background: Since the beginning of COVID-19 pandemic, many associated factors have been investigated to clarify the susceptibility and severity among the affected individuals. Biological markers can play an important role in identification of individual susceptibility to such pandemic. Growing evidence suggest the influence of different blood group systems on susceptibility to COVID-19 virus, with a particular blood type conferring selection advantage. Objectives: The study aimed to determine the association of ABO, Rhesus (D) and P1 blood groups with COVID-19 susceptibility in Taif city, Western Saudi Arabia. Methods: ABO, D and P1 blood antigens were determined in 104 blood samples of COVID-19 patients versus 100 control samples using either automated immunohematology analyser or test tube method. Statistical differences between patients and control samples were calculated based on p-value where results of ≤ 0.05 were considered significant. Results: O+ve blood group constituted the predominant type among the studied samples. Determination of P1 antigen showed significant association where Anti-P1 was positive in 76.9% of patients compared to 61.0% of controls with a P value of 0.01 conferring the susceptibility of P1+ve patients to COVID-19. Conclusion: Although our study showed no significant association between ABO and D, and susceptibility to COVID-19, there was a significant association between P1+ve and COVID-19. P1+ve participants were 2.131 times more associated with the risk of COVID-19 infection than those with Anti P1-ve. Thus, P1 antigen can be used as a biological marker for identification of individuals susceptibility to COVID-19. It is strongly advised that such individuals should consider extra protective measures. Further studies on other contributing factors should also be considered for more scientific clarity.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Cross-Sectional Studies , ABO Blood-Group System , Saudi Arabia/epidemiology , Pandemics
8.
Clin Cosmet Investig Dent ; 13: 395-403, 2021.
Article in English | MEDLINE | ID: mdl-34588818

ABSTRACT

PURPOSE: This in vitro study was undertaken to investigate the antimicrobial effect of distinctive oral mouth washes after the addition of zein-coated (Magnesium oxide) MgO nanoparticles on exemplary of some oral microorganisms. MATERIALS AND METHODS: Three hundred and twelve samples were used in this study. A set of five concentrations of MgO nanoparticles with zein and without zein-coating were incorporated into three oral mouth washes: Listerine zero, Listerine total control and Oral B in the mass percentages of 0.3%, 0.5%, 1%, 2%, 5% and 10%, in addition to controls with no MgO nanoparticles. The antimicrobial effect of three mouth washes with variable concentrations of MgO was tested against the following organisms: Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis and Candida albicans using the disc diffusion test (DDT) and direct contact test (DCT). Data were analyzed using one-way ANOVA statistical test. RESULTS: The tested mouthwashes with zein-coated MgO nanoparticles showed significant differences of antimicrobial activity on S. mutans, S. aureus, E. faecalis, and C. albicans in the disc diffusion test. While in the DCT, all tested mouthwashes with MgO nanoparticles with and without zein coating showed antimicrobial activity on all tested microorganisms. CONCLUSION: Zein-coated MgO nanoparticles may be considered as a potential antimicrobial agent when added to oral mouthwashes. Future analysis, including in vivo studies, is required in order to incorporate zein/MgO nanoparticles into oral mouthwashes that may improve its antibacterial property.

9.
iScience ; 24(9): 102941, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34368648

ABSTRACT

Global deployment of an effective and safe vaccine is necessary to curtail the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we evaluated a Newcastle disease virus (NDV)-based vectored-vaccine in mice and hamsters for its immunogenicity, safety, and protective efficacy against SARS-CoV-2. Intranasal administration of recombinant (r)NDV-S vaccine expressing spike (S) protein of SARS-CoV-2 to mice induced high levels of SARS-CoV-2-specific neutralizing immunoglobulin A (IgA) and IgG2a antibodies and T-cell-mediated immunity. Hamsters immunized with two doses of vaccine showed complete protection from lung infection, inflammation, and pathological lesions following SARS-CoV-2 challenge. Importantly, administration of two doses of intranasal rNDV-S vaccine significantly reduced the SARS-CoV-2 shedding in nasal turbinate and lungs in hamsters. Collectively, intranasal vaccination has the potential to control infection at the site of inoculation, which should prevent both clinical disease and virus transmission to halt the spread of the COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL
...