Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
1.
Acta Trop ; 257: 107317, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981566

ABSTRACT

BACKGROUND: Tuberculosis (TB) as a foremost infectious disease adds massive burden to morbidity and mortality rate, despite of well-structured TB control programs around the globe. Inappropriate health care management system and poor implementation on standard in relevance to TB, remain some reasons causative to TB prevalence and its rising antimicrobial resistance. Health Care Workers (HCWs) laboring as a part of TB control system, are the vital warriors in achieving the goals of TB End Strategy by 2035. Their performance is influenced by their knowledge, attitude, and practices (KAP) toward this infectious disease. This study aimed to signify the role of KAP score of health care Workers in the better control and prevention of TB in the Islamabad Capital Territory (ICT), Pakistan. METHODS: A cross-sectional study on Knowledge, Attitude and Practice study of Tuberculosis (TB) among health care Workers, was done in ICT, which is the capital of Pakistan. The KAP of TB was collected for the 306 Health Care Workers from all the Islamabad TB referring health facilities which refer the TB patients for testing to the National Reference Laboratory, Islamabad Pakistan. Eligible health care workers were requested to respond on KAP questionnaire after informed consent. KAP questionnaire comprised of knowledge, attitude, and practices section including demographic information. All the data was analyzed using IBM SPSS statistics 21. One Way Analysis of Variance (ANOVA) was applied to calculate KAP mean score against different variables. On the significant data sets of ANOVA output, Tukey's Multiple Comparison Test was applied for pairwise comparison. Pearson correlation coefficient was utilized to explore the association between two qualitative variables. The non-parametric tests were applied to evaluate difference of KAP score in relation to demographic covariates individually. RESULTS: From June to July 2023, we conducted TB KAP study among Health Care Workers of ICT, Pakistan. The average age was 33 years (range 26-30 years). Majority of the recruited subjects were not being trained for dealing with TB infection. The results demonstrated that Health Care Workers working were lacking their knowledge about mode of TB transmission, best diagnostic technique, and contraction of TB infections. The mean knowledge, attitude and practices mean scores were 15.05 (SD = 3.96), 83.68 (SD = 15.74) and 6.31 (SD = 2.21), respectively. Mean knowledge score of Health Care Workers were significantly related to their educational level and occupation while no significant association was declared with working experience as TB staff. Pearson coefficient of attitude score with knowledge of Health Care Workers was of weak level (0.28). Practice mean score was correlated to knowledge mean score at a moderate level (r = 0.40). On the other hand, practice score was r = 0.29 with attitude mean score had shown weak level correlation. A number of demographic factors were strongly linked to each of the mean score of knowledge, attitude, and practices. CONCLUSION: These findings highlighted the significant involvement of education, profession, and professional trainings in the better knowledge, attitude, and practices of the TB related health care Workers. For a better management system of infectious diseases like TB, a well-trained and professionally competent staff of Health Care Workers is important so as to achieve the goal of TB-End strategy by 2035 from Pakistan, which is the 5th highest burden country for TB.


Subject(s)
Health Knowledge, Attitudes, Practice , Health Personnel , Tuberculosis , Humans , Pakistan/epidemiology , Cross-Sectional Studies , Health Personnel/psychology , Health Personnel/statistics & numerical data , Male , Adult , Female , Tuberculosis/prevention & control , Tuberculosis/epidemiology , Surveys and Questionnaires , Middle Aged , Attitude of Health Personnel , Young Adult
2.
ACS Omega ; 9(29): 31237-31253, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39072056

ABSTRACT

Soil salinization is a serious concern across the globe that is negatively affecting crop productivity. Recently, biochar received attention for mitigating the adverse impacts of salinity. Salinity stress induces osmotic, ionic, and oxidative damages that disturb physiological and biochemical functioning and nutrient and water uptake, leading to a reduction in plant growth and development. Biochar maintains the plant function by increasing nutrient and water uptake and reducing electrolyte leakage and lipid peroxidation. Biochar also protects the photosynthetic apparatus and improves antioxidant activity, gene expression, and synthesis of protein osmolytes and hormones that counter the toxic effect of salinity. Additionally, biochar also improves soil organic matter, microbial and enzymatic activities, and nutrient and water uptake and reduces the accumulation of toxic ions (Na+ and Cl), mitigating the toxic effects of salinity on plants. Thus, it is interesting to understand the role of biochar against salinity, and in the present Review we have discussed the various mechanisms through which biochar can mitigate the adverse impacts of salinity. We have also identified the various research gaps that must be addressed in future study programs. Thus, we believe that this work will provide new suggestions on the use of biochar to mitigate salinity stress.

3.
Article in English | MEDLINE | ID: mdl-39052462

ABSTRACT

This paper presents a high accuracy air-coupled acoustic rangefinder based on piezoelectric microcantilever beam array using continuous waves. Cantilevers are used to create a functional ultrasonic rangefinder with a range of 0 m up to 1 m. This is achieved through a design of custom arrays. This research investigates various classification techniques to identify airborne ranges using ultrasonic signals. The initial approach involves implementing individual models like the Support Vector Machine (SVM), Gaussian Naive Bayes (GNB), Logistic Regression (LR), k-Nearest Neighbors (kNN), and Decision Tree (DT). To potentially achieve better performance, the study introduces a Deep Learning (DL) architecture based on Convolutional Neural Networks (CNN) to categorize different ranges. The CNN model combines the strengths of multiple classification models, aiming for more accurate range detection. To ensure the model generalizes well to unseen data, a technique called k-fold cross-validation, which provides the reliability assessment, is employed. The proposed framework demonstrates a significant improvement in accuracy (100%), and AUC (1.0) over other approaches.

4.
Front Nutr ; 11: 1371672, 2024.
Article in English | MEDLINE | ID: mdl-38899322

ABSTRACT

Pollen grains are the male reproductive part of the flowering plants. It is collected by forager honey bees and mixed with their salivary secretions, enzymes, and nectar, which form fermented pollen or "bee bread" which is stored in cells of wax honeycombs. Bee pollen (BP) is a valuable apitherapeutic product and is considered a nutritional healthy food appreciated by natural medicine from ancient times. Recently, BP has been considered a beneficial food supplement and a value-added product that contains approximately 250 different bioactive components. It contains numerous beneficial elements such as Mg, Ca, Mn, K, and phenolic compounds. BP possesses strong antioxidant, anti-inflammatory, antimicrobial, antiviral, analgesic, immunostimulant, neuroprotective, anti-cancer, and hepatoprotective properties. It is used for different purposes for the welfare of mankind. Additionally, there is a growing interest in honey bee products harvesting and utilizing for many purposes as a natural remedy and nutritive function. In this review, the impacts of BP on different organisms in different ways by highlighting its apitherapeutic efficacy are described.

5.
Environ Int ; 190: 108834, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38908278

ABSTRACT

High-risk antibiotic resistance genes (ARGs) in reclaimed water-irrigated soil pose a potential threat to ecosystem and human health. Inorganic fertilization - including with nitrogen, a key ingredient in agricultural production - may affect the ARG profile in soil. However, little is known about nitrogen fertilization's influence on ARGs profiles in the soil-plant system. This study investigated the effects of different nitrogen fertilizer types (CO(NH2)2, NO3--N (NaNO3) and NH4+-N (NH4HCO3)) and different nitrogen fertilizer application rates (low, medium, high) on the distribution of high-risk ARGs in reclaimed water-irrigated soil and plants using quantitative PCR, high-throughput sequencing and metagenomic sequencing. Soil microcosms results revealed that nitrogen fertilization significantly affected the pattern of high-risk ARGs in soil, and also affected high-risk ARGs abundance and transfer capacity in plants. Compared with nitrogen fertilizer application rate, nitrogen fertilizer types significantly contributed to enhancing the soil resistome, with the order of CO(NH2)2 > NO3--N ≈ NH4+-N. The medium application of NO3--N and NH4+-N significantly reduced high-risk ARGs abundance in the leaf endophyte. Bacterial community mainly drove the variation of ARGs in nitrogen-fertilized soil-plant system, and class I integron and metal resistance genes (MRGs) also had direct effects on these high-risk ARGs. A similar high-risk ARGs pattern was also found in field plot experiments, and several dangerous pathogens were observed as the main high-risk ARGs potential hosts in nitrogen-fertilized soil. Based on an economic assessment, application of NH4+-N (NH4HCO3) could reduce costs by $1,312.83 ha-1 compared with NO3--N (NaNO3). These results showed that the more important role of nitrogen type might be an effective and economical way to control high-risk ARGs spread in soil-plant system under reclaimed water irrigation.

6.
Neurobiol Dis ; 198: 106553, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839022

ABSTRACT

α-Synuclein (α-syn) is a small protein that is involved in cell vesicle trafficking in neuronal synapses. A progressive aggregation of this protein is the expected molecular cause of Parkinson's disease, a disease that affects millions of people around the world. A growing body of evidence indicates that phospholipids can strongly accelerate α-syn aggregation and alter the toxicity of α-syn oligomers and fibrils formed in the presence of lipid vesicles. This effect is attributed to the presence of high copies of lysines in the N-terminus of the protein. In this study, we performed site-directed mutagenesis and replaced one out of two lysines at each of the five sites located in the α-syn N-terminus. Using several biophysical and cellular approaches, we investigated the extent to which six negatively charged fatty acids (FAs) could alter the aggregation properties of K10A, K23A, K32A, K43A, and K58A α-syn. We found that FAs uniquely modified the aggregation properties of K43A, K58A, and WT α-syn, as well as changed morphology of amyloid fibrils formed by these mutants. At the same time, FAs failed to cause substantial changes in the aggregation rates of K10A, K23A, and K32A α-syn, as well as alter the morphology and toxicity of the corresponding amyloid fibrils. Based on these results, we can conclude that K10, K23, and K32 amino acid residues play a critical role in protein-lipid interactions since their replacement on non-polar alanines strongly suppressed α-syn-lipid interactions.


Subject(s)
Mutagenesis, Site-Directed , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Humans , Amyloid/metabolism , Amyloid/genetics , Fatty Acids/metabolism
7.
Protein Sci ; 33(7): e5078, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38895991

ABSTRACT

Alzheimer's disease is the fastest-growing neurodegenerative disease that affects over six million Americans. The abnormal aggregation of amyloid ß peptide and Tau protein is the expected molecular cause of the loss of neurons in brains of AD patients. A growing body of evidence indicates that lipids can alter the aggregation rate of amyloid ß peptide and modify the toxicity of amyloid ß aggregates. However, the role of lipids in Tau aggregation remains unclear. In this study, we utilized a set of biophysical methods to determine the extent to which phospatidylserine (PS) altered the aggregation properties of Tau isoforms with one (1N4R) and two (2N4R) N terminal inserts that enhance the binding of Tau to tubulin. We found that the length and saturation of fatty acids (FAs) in PS altered the aggregation rate of 2N4R isoform, while no changes in the aggregation rate of 1N4R were observed. These results indicate that N terminal inserts play an important role in protein-lipid interactions. We also found that PS could change the toxicity of 1N4R and 2N4R Tau fibrils, as well as alter molecular mechanisms by which these aggregates exert cytotoxicity to neurons. Finally, we found that although Tau fibrils formed in the presence and absence of PS endocytosed by cells, only fibril species that were formed in the presence of PS exert strong impairment of the cell mitochondria.


Subject(s)
Phosphatidylserines , Tubulin , tau Proteins , tau Proteins/metabolism , tau Proteins/chemistry , tau Proteins/toxicity , Humans , Phosphatidylserines/metabolism , Phosphatidylserines/chemistry , Tubulin/metabolism , Tubulin/chemistry , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Protein Binding , Neurons/metabolism , Neurons/drug effects , Protein Aggregates , Protein Isoforms/metabolism , Protein Isoforms/chemistry
8.
Vet Parasitol ; 330: 110224, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861910

ABSTRACT

The identification and characterization of tick proteins allow us to discover new physiological targets useful for the development of tick control methods. Bm05br (Brazil Rhipicephalus microplus protein 05) is a protein with unknown function identified in the saliva of R. microplus. Rs05br (Brazil Rhipicephalus sanguineus protein 05), a protein with 99 % similarity to Bm05br, was identified in Rhipicephalus linnaei egg, larval, and nymphal stages, as well as in adult saliva. To improve the knowledge about both proteins, immunological characterization was performed, including antigenicity analysis, vaccination trials, and artificial feeding. The sequence and antigenicity analysis of Bm05br and Rs05br proteins showed that R. linnaei could serve as a tick model for cross-protection studies. The recombinant Bm05br protein was immunogenic. Anti-Bm05br antibodies recognized the homologous protein Rs05br in different stages, organs, and in the saliva of R. linnaei. Although rBm05br did not induce a protective response against infestation in R. linnaei in this study, further experiments could be developed taking into account new formulations and animal models for vaccination. These results also serve as a reference for future research on the function of these proteins in R. microplus and R. linnaei physiology, as well as other species of the genus Rhipicephalus.


Subject(s)
Arthropod Proteins , Rhipicephalus , Tick Infestations , Animals , Rhipicephalus/immunology , Rhipicephalus/chemistry , Arthropod Proteins/immunology , Arthropod Proteins/genetics , Arthropod Proteins/chemistry , Tick Infestations/veterinary , Tick Infestations/parasitology , Tick Infestations/immunology , Tick Infestations/prevention & control , Female , Recombinant Proteins/immunology , Rabbits , Larva/immunology , Saliva/immunology , Saliva/chemistry , Amino Acid Sequence
9.
Ticks Tick Borne Dis ; 15(6): 102361, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880004

ABSTRACT

The genus Amblyomma contains the highest percentage of reptile-associated ticks, and comprises approximately nine subgenera. One of these subgenera is Adenopleura, which also encompasses Amblyomma javanense, and its type species Amblyomma compressum. This study describes a new Amblyomma species associated with Bengal monitor lizards (Varanus bengalensis) based on morphology and its mitogenome in Khyber Pakhtunkhwa, Pakistan. Reptiles belonging to different genera were examined for Amblyomma ticks and only the monitor lizard was infested with ticks in the District Bajaur. Collected Amblyomma cf. javanense ticks were analyzed and formally described as a new species. Overall, 57 A. cf. javanense ticks were collected on monitor lizards (4/27) with a 15% prevalence of infestation, 2.1 mean abundance, and 14.3 mean intensity. Ticks comprised males (n = 23, 40%), females (n = 14, 25%) and nymphs (n = 20, 35%), while no larvae were found. BLAST analysis of A. cf. javanense sequences showed the following maximum identities; 98.25% with undetermined Amblyomma species based on 12S rRNA, 96.07% with A. javanense based on 16S rRNA, 99.56% and 90.95% with an Amblyomma sp. and A. javanense, respectively, based on ITS2. Moreover, the mitochondrial genome of A. cf. javanense showed maximum identities of 80.75%, 80.48% and 79.42% with Amblyomma testudinarium, A. javanense, and Amblyomma sp., respectively. The phylogenetic analysis of A. cf. javanense revealed that its 12S rRNA and 16S rRNA are closely related to an Amblyomma sp. and A. javanense, respectively, from Sri Lanka, its ITS2 is closely related to A. javanense from China and an Amblyomma sp. from Sri Lanka, and its mitogenome is closely related to A. javanense and Amblyomma sp. from China. The pairwise distance analysis resulted in divergence of 0-1.71% (12S rRNA), 0-17.5% (16S rRNA), 0-9.1% (ITS2) and 0-20.5% (mitochondrial genome). We also contributed the full-length mitochondrial genome sequence of A. compressum and showed that this species does not share a most recent common ancestor with A. javanense. As the subgenus Adenopleura is paraphyletic, this study could help to understand the systematics and phylogeny of this taxon.

10.
Colloids Surf B Biointerfaces ; 240: 113976, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795585

ABSTRACT

In this study, UV-vis spectroscopy was employed to investigate the interaction between formylphenoxyacetic acid (FPAA) and its derivatives (chalcone and flavones) with ionic surfactants (SDS, CTAB, and DTAB) in different physiological environments. Changes in the physiochemical properties of FPAA chalcone and flavones including binding constants, partitioning constants, and Gibbs free energy were observed which were influenced by the presence of ionic surfactants computed using mathematical models. The solubilization of the targeted compounds in the ionic surfactants was determined through the binding constant (Kb). The results of the present study indicated that electrostatic interactions played a significant role in the solubilization of the targeted compounds in SDS, CTAB, and DTAB. At pH 4.1, FPAA chalcone exhibited stronger binding affinity with SDS compared to CTAB and DTAB. However, at pH 7.4, chalcone showed stronger binding with DTAB compared to SDS, while negligible interaction with CTAB was observed at pH 7.4. The flavones demonstrated stronger binding with DTAB at pH 7.4 compared to SDS and CTAB and it exhibited strong bonding with CTAB at pH 4.1. The negative values of the Gibbs free energy for binding (ΔGb˚) and partitioning (ΔGp˚) constants displayed the spontaneity of the process. However, FPAA chalcone with SDS and FPAA flavones with DTAB furnished positive ΔGb˚, indicating a non-spontaneous process.


Subject(s)
Flavones , Solubility , Surface-Active Agents , Surface-Active Agents/chemistry , Flavones/chemistry , Flavones/metabolism , Hydrogen-Ion Concentration , Cetrimonium/chemistry , Thermodynamics , Ions/chemistry , Chalcone/chemistry , Chalcones/chemistry , Chalcones/metabolism , Sodium Dodecyl Sulfate/chemistry , Static Electricity
11.
ACS Appl Bio Mater ; 7(5): 3283-3294, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38727030

ABSTRACT

Medical implants are constantly facing the risk of bacterial infections, especially infections caused by multidrug resistant bacteria. To mitigate this problem, gold nanoparticles with alkyl bromide moieties (Au NPs-Br) on the surfaces were prepared. Xenon light irradiation triggered the plasmon effect of Au NPs-Br to induce free radical graft polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA), leading to the formation of poly(DMAEMA) brush-grafted Au NPs (Au NPs-g-PDM). The Au NPs-g-PDM nanocomposites were conjugated with phytic acid (PA) via electrostatic interaction and van der Waals interaction. The as-formed aggregates were deposited on the titanium (Ti) substrates to form the PA/Au NPs-g-PDM (PAP) hybrid coatings through surface adherence of PA and the gravitational effect. Synergistic bactericidal effects of contact-killing caused by the cationic PDM brushes, and local heating generated by the Au NPs under near-infrared irradiation, conferred strong antibacterial effects on the PAP-deposited Ti (Ti-PAP) substrates. The synergistic bactericidal effects reduced the threshold temperature required for the photothermal sterilization, which in turn minimized the secondary damage to the implant site. The Ti-PAP substrates exhibited 97.34% and 99.97% antibacterial and antiadhesive efficacy, respectively, against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), compared to the control under in vitro antimicrobial assays. Furthermore, the as-constructed Ti-PAP surface exhibited a 99.42% reduction in the inoculated S. aureus under in vivo assays. In addition, the PAP coatings exhibited good biocompatibility in the hemolysis and cytotoxicity assays as well as in the subcutaneous implantation of rats.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Gold , Materials Testing , Metal Nanoparticles , Microbial Sensitivity Tests , Particle Size , Phytic Acid , Staphylococcus aureus , Gold/chemistry , Gold/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Metal Nanoparticles/chemistry , Phytic Acid/chemistry , Phytic Acid/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Animals , Surface Properties , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Cations/chemistry , Cations/pharmacology , Polymers/chemistry , Polymers/pharmacology , Titanium/chemistry , Titanium/pharmacology
12.
Phys Rev Lett ; 132(17): 173402, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38728730

ABSTRACT

We propose a method to change the effective interaction between two fluids by modulation of their local density distributions with external periodic potentials, whereby the mixing properties can be controlled. This method is applied to a mixture of dilute bosonic gases, and binodal and spinodal curves emerge in the phase diagram. Spinodal decomposition into a mixed-bubble state becomes possible, in which one of the coexisting phases has a finite mixing ratio. A metastable mixture is also realized, which undergoes phase separation via nucleation.

13.
Bioengineering (Basel) ; 11(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38790371

ABSTRACT

Bartonella henselae is a Gram-negative bacterium causing a variety of clinical symptoms, ranging from cat-scratch disease to severe systemic infections, and it is primarily transmitted by infected fleas. Its status as an emerging zoonotic pathogen and its capacity to persist within host erythrocytes and endothelial cells emphasize its clinical significance. Despite progress in understanding its pathogenesis, limited knowledge exists about the virulence factors and regulatory mechanisms specific to the B. henselae strain Houston-1. Exploring these aspects is crucial for targeted therapeutic strategies against this versatile pathogen. Using reverse-vaccinology-based subtractive proteomics, this research aimed to identify the most antigenic proteins for formulating a multi-epitope vaccine against the B. henselae strain Houston-1. One crucial virulent and antigenic protein, the PAS domain-containing sensor histidine kinase protein, was identified. Subsequently, the identification of B-cell and T-cell epitopes for the specified protein was carried out and the evaluated epitopes were checked for their antigenicity, allergenicity, solubility, MHC binding capability, and toxicity. The filtered epitopes were merged using linkers and an adjuvant to create a multi-epitope vaccine construct. The structure was then refined, with 92.3% of amino acids falling within the allowed regions. Docking of the human receptor (TLR4) with the vaccine construct was performed and demonstrated a binding energy of -1047.2 Kcal/mol with more interactions. Molecular dynamic simulations confirmed the stability of this docked complex, emphasizing the conformation and interactions between the molecules. Further experimental validation is necessary to evaluate its effectiveness against B. henselae.

14.
J Phys Chem Lett ; 15(17): 4761-4766, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38661515

ABSTRACT

Heart tissue can experience a progressive accumulation of transthyretin (TTR), a small four subunit protein that transports holoretinol binding protein and thyroxine. This severe pathology is known as transthyretin amyloid cardiomyopathy. Numerous experimental studies indicated that the aggregation rate and toxicity of TTR fibrils could be altered by the presence of lipids; however, the role of plasmalogens in this process remains unknown. In this study, we investigate the effect of choline plasmalogens (CPs) with different lengths and saturations of fatty acids (FAs) on TTR aggregation. We found that CPs with saturated and unsaturated FAs strongly suppressed TTR aggregation. We also found that CPs with saturated FAs did not change the morphology of TTR fibrils; however, much thicker fibrillar species were formed in the presence of CPs with unsaturated FAs. Finally, we found that CPs with C16:0, C18:0, and C18:1 FAs substantially lowered the cytotoxicity of TTR fibrils that were formed in their presence.


Subject(s)
Plasmalogens , Prealbumin , Prealbumin/chemistry , Prealbumin/metabolism , Plasmalogens/metabolism , Plasmalogens/chemistry , Humans , Amyloid/chemistry , Amyloid/metabolism , Protein Aggregates/drug effects , Fatty Acids/chemistry , Fatty Acids/metabolism
15.
Parasitology ; : 1-10, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38586995

ABSTRACT

Two major families exist in ticks, the Argasidae and Ixodidae. The Argasidae comprise 2 sub-families, Argasinae and Ornithodorinae. The placement into subfamilies illuminate differences in morphological and molecular systematics and is important since it provides insight into evolutionary divergence within this family. It also identifies fundamental gaps in our understanding of argasid evolution that provide directions for future research. Molecular systematics based on mitochondrial genomics and 18S/28S ribosomal RNA confirmed the placement of various genera and subgenera into the Argasinae: Argas (including Argas and Persicargas), Navis, Ogadenus, Otobius lagophilus, Proknekalia, Secretargas and the Ornithodorinae: Alectorobius, Antricola (including Antricola and Parantricola), Carios, Chiropterargas, Nothoaspis, Ornithodoros (including Microargas, Ornamentum, Ornithodoros sensu strictu, Pavlovskyella), Otobius sensu strictu, Reticulinasus and Subparmatus. The position of Alveonasus remains controversial since traditional taxonomy placed it in the Ornithodorinae, while cladistic and limited molecular analysis placed it in the Argasinae. The current study aimed to resolve the systematic position of Alveonasus using mitochondrial genomic and 18S/28S ribosomal RNA systematics by sequencing the type species Alveonasus lahorensis from Pakistan. In addition, the mitochondrial genomes for Argas reflexus and Alectorobius kelleyi are reported from Germany and the USA, respectively. The systematic data unambiguously place Alveonasus in the Argasinae and also suggest that Alveonasus may be another paraphyletic genus.

16.
ACS Omega ; 9(13): 15573-15589, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585086

ABSTRACT

Unconventional hydrocarbon exploration is needed in the current oil and gas crisis scenario. Therefore, the development of conditions for unconventional hydrocarbon exploration is needed. In the Upper Indus Basin (UIB), Pakistan, the Patala Formation is one of the potential candidates for this unconventional exploration. It is a proven source rock at the regional level in the Kohat-Potwar sub-basin of UIB. This study aims to evaluate the shale gas potential of the rock in the Minwal-Joyamair area of the sub-basin. Developing a shale rock physics model is important for exploring and developing shale reservoirs due to the difference between unconventional shale and conventional sand reservoirs. These differences include mineral types, mineral characteristics, matrix pores, and fluid properties. To achieve the study's objectives, an integrated strategy provides for evaluating rock physics parameters, petrophysics, and geochemical analyses. This integrated approach indicates that the Patala Formation is a good potential reservoir for shale gas exploration. The Formation has a significant thickness (around 40-50 m), higher total organic carbon content (02-10%), higher brittleness index (0.44-0.56), and relatively shallow depth (2136-3223 m). These research findings suggested that the presence of organic and quartz-rich lithofacies can be considered as highly favorable "sweet spots" for shale-gas exploration in the UIB, Pakistan. Through proper understanding of the spatial and temporal distribution of these "sweet spots", shale-gas exploration can be developed as an effective strategy to exploit shale gas.

17.
ACS Omega ; 9(12): 14123-14141, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559993

ABSTRACT

The Kohat sub-basin is one of the main hydrocarbon-producing sedimentary basins located in the northwest extension of the Indus Basin in Pakistan. It contains numerous proven and potential petroleum from the Cambrian to the Miocene. Conventional petroleum resources have been depleting rapidly over the last couple of years. Therefore, unconventional resources should be explored using a variety of geochemical and geophysical techniques to address the energy demands. Geochemical techniques, including total organic carbon (TOC) assessment, Rock-Eval pyrolysis, organic petrography, and biomarker studies, are essential for evaluating the potential of shale gas reservoirs to delineate future prospects in a basin. The source rock potential of the Paleocene rocks, including the Patala, Lockhart, and Hangu formations of the sub-basin, is evaluated using geochemical analyses on well cuttings from the Tolanj-01 well. The analyses include estimation of total organic carbon (TOC), Rock-Eval pyrolysis, and organic petrography (vitrinite reflectance) to evaluate the organic richness, thermal maturity, kerogen type, hydrocarbon type, and environment of deposition. Other techniques for extractable organic matter (EOM) include solid-liquid chromatographic separation of fractions, gas chromatography (GC-FID)/whole oil chromatography, and gas chromatography-mass spectrometry (GC-MS). The organic matter (TOC, wt %) analysis reveals that 18 (18) samples of the Hangu formation (0.08-1.8 wt %) show poor values, 12 (12) samples of the Lockhart formation (0.05-0.5 wt %) have poor to fair content, and 26 (26) samples of the Patala formation have poor to fair (0.08-0.19 wt %) TOC content. Rock-Eval pyrolysis studies including hydrogen index, oxygen index, Tmax, quantities of free hydrocarbons (S1, mg/g), and hydrocarbons produced from pyrolysis (S2, mg/g) are determined for the well-cut samples (56) of the Paleocene rocks. The hydrogen index values for the Hangu formation are lower than 200, and those for the Lockhart and Patala formations range between 100 and 250. A maceral analysis is also conducted on these samples, which reveal that the majority of the samples of the Paleocene units present in the basin belong to kerogen types II/III. The thermal maturity of the Hangu and Lockhart formations falls in the late-stage oil window, while that of the Patala formation falls in the peak to late oil window. The genetic potential (GP) for these rock units is also determined based on S1 and S2 values, which reveals that it is generally poor except for a few samples of the Hangu and Lockhart formations, which show fair GP values. For the organic petrography (vitrinite reflectance, R0), one sample from each unit is selected, which shows that the Hangu, Lockhart, and Patala formations fall in the category of the mature oil window with their R0 (%) values being 0.95, 0.89, and 0.82, respectively. The extracts (EOM) from these rock units are also analyzed to assess the depositional settings, biological source input, biodegradation, thermal maturity, etc. The greater values of pristine to phytane (Pr/Ph > 1) ratios for Hangu (1.33), Lockhart (1.23), and Patala (1.8) indicate an intermediate condition (suboxic), while a cross-plot of Pr/n-C17-Ph/n-C18 shows that the organic matter is deposited in a transitional setting. The ratios between C19TCT/C19 TCT + C23 TCT and C24 TeCT/C24TeCT + C23TCT biological source inputs are mainly of marine origin. Similarly, the ternary diagram of regular steranes (C27-C28-C29) shows a greater marine input. Lower values of the carbon preference index (CPI1) for Hangu (0.95), Lockhart (0.91), and Patala (1.04) indicate higher thermal maturity of the Paleocene rocks. Similarly, the methylphenanthrene index (MPI-1) values, Moretane index, and Pr/n-C17 vs Ph/n-C18 plots also show higher thermal maturity for these rock extracts.

18.
Appl Radiat Isot ; 207: 111265, 2024 May.
Article in English | MEDLINE | ID: mdl-38432033

ABSTRACT

This study involved the assessment of 222Rn concentrations in liquid samples (namely serum and urine) obtained from individuals who were smokers and non-smokers across five distinct age groups in the Najaf Governorate of Iraq. The measurements were conducted using a portable digital Air Things device commonly employed for detecting radon gas in residential environments. This device was placed in a container that is placed in liquid samples, which makes it work to capture the existing radon. The mean value of radon concentrations in serum and urine samples for smokers was 5.64 ± 2.80 Bq/m3 and 3.56 ± 2.31 Bq/m3, respectively. While, the mean value of radon concentrations in serum and urine samples for non-smokers was 2.32 ± 0.67 Bq/m3 and 1.61 ± 1.00 Bq/m3, respectively. By comparing the radon concentrations for serum and urine samples with age and smoking groups, the value of P-Value (p < 0.01) was increased significantly statistically. Also, it is found that a positive and good correlation for radon concentrations between serum and urine. Although the levels of radon were found to be under the globally accepted thresholds, the results of 222Rn in all samples of serum and urine in smokers were higher than in non-smokers. Thus, it may be concluded that cigarette smoking is used as a biomarker of the presence of radon gas.


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , Radiation Monitoring , Radon , Humans , Radon/analysis , Air Pollution, Indoor/analysis , Housing , Air Pollutants, Radioactive/analysis , Environment , Radiation Monitoring/methods
19.
Insects ; 15(3)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38535350

ABSTRACT

Forest canopies, an essential part of forest ecosystems, are among the most highly threatened terrestrial habitats. Mountains provide ideal conditions for studying the variation in community structure with elevations. Spiders are one of the most abundant predators of arthropods in terrestrial ecosystems and can have extremely important collective effects on forest ecosystems. How the diversity and composition of canopy spider communities respond to elevation changes in temperate forests remains poorly understood. In this study, we collected canopy spiders from four elevation sites (800 m, 1100 m, 1400 m, and 1700 m) on Changbai Mountain using the fogging method in August 2016. With the methods of ANOVA analysis, transformation-based redundancy analysis, and random forest analysis, we explored the responses of canopy spider communities to elevation. In total, 8826 spiders comprising 81 species were identified and the most abundant families were Thomisidae, Clubionidae, Linyphiidae, and Theridiidae (77.29% of total individuals). Species richness decreased whereas evenness increased with increasing elevation, indicating that elevation has an important impact on community structure. The pattern of absolute abundance was hump shaped with increasing elevation. We found that the community compositions at the three taxonomic levels (species, family, and guild) along the elevation gradient were obviously altered and the variation in community composition was higher at low-elevation sites than at high-elevation sites. There were 19 common species (23.46%) among the four elevations. Regression and RDA results showed that vegetation variables contributed to the variation in the diversity and composition of canopy spiders. Furthermore, the influence of factors would be weakened with the taxonomic level increasing. Therefore, our findings greatly highlight the important role of vegetation in the diversity and composition of canopy spiders and the influence is closely related to the taxonomic level.

20.
Int J Biol Macromol ; 264(Pt 1): 130632, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447831

ABSTRACT

Plasmalogens comprise a large fraction of the total phospholipids in plasma membranes. These molecules modulate membrane fluidity, produce inflammatory mediators mitigating effects of metabolic stresses. A growing body of evidence suggests that an onset of Parkinson's disease (PD), a severe neurodegenerative pathology, can be triggered by metabolic changes in plasma membranes. However, the role of plasmalogens in the aggregation of α-synuclein (α-syn), an expected molecular cause of PD, remains unclear. In this study we examine the effect of choline plasmalogens (CPs), unique phospholipids that have a vinyl ether linkage at the sn-1 position of glycerol, on the aggregation rate of α-syn. We found that the length and saturation of fatty acids (FAs) in CPs change rates of protein aggregation. We also found drastic changes in the morphology of α-syn fibrils formed in the presence of different CPs compared to α-syn fibrils grown in the lipid-free environment. At the same time, we did not observe substantial changes in the secondary structure and toxicity of α-syn fibrils formed in the presence of different CPs. These results indicate that the length and saturation of FAs in CPs present in the plasma membrane can alter α-syn stability and modulate its aggregation properties, which, in turn can accelerate or delay the onset of PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Plasmalogens , Amyloid/chemistry , Parkinson Disease/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL