Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 373(6552)2021 07 16.
Article in English | MEDLINE | ID: mdl-34437125

ABSTRACT

Germinal centers (GCs) are the site of immunoglobulin somatic hypermutation and affinity maturation, processes essential to an effective antibody response. The formation of GCs has been studied in detail, but less is known about what leads to their regression and eventual termination, factors that ultimately limit the extent to which antibodies mature within a single reaction. We show that contraction of immunization-induced GCs is immediately preceded by an acute surge in GC-resident Foxp3+ T cells, attributed at least partly to up-regulation of the transcription factor Foxp3 by T follicular helper (TFH) cells. Ectopic expression of Foxp3 in TFH cells is sufficient to decrease GC size, implicating the natural up-regulation of Foxp3 by TFH cells as a potential regulator of GC lifetimes.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Forkhead Transcription Factors/genetics , Germinal Center/immunology , T Follicular Helper Cells/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , CD4-Positive T-Lymphocytes/physiology , Forkhead Transcription Factors/metabolism , Genes, T-Cell Receptor , Germinal Center/cytology , Immunization , Immunophenotyping , Mice , Mice, Inbred C57BL , Mice, Transgenic , Single-Cell Analysis , T Follicular Helper Cells/immunology , T-Lymphocytes, Regulatory/physiology , Up-Regulation
2.
Nat Med ; 27(3): 546-559, 2021 03.
Article in English | MEDLINE | ID: mdl-33654293

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Host-Pathogen Interactions/genetics , SARS-CoV-2/physiology , Sequence Analysis, RNA/statistics & numerical data , Single-Cell Analysis/statistics & numerical data , Virus Internalization , Adult , Aged , Aged, 80 and over , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/virology , Cathepsin L/genetics , Cathepsin L/metabolism , Datasets as Topic/statistics & numerical data , Demography , Female , Gene Expression Profiling/statistics & numerical data , Humans , Lung/metabolism , Lung/virology , Male , Middle Aged , Organ Specificity/genetics , Respiratory System/metabolism , Respiratory System/virology , Sequence Analysis, RNA/methods , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Single-Cell Analysis/methods
3.
Sci Immunol ; 6(56)2021 02 26.
Article in English | MEDLINE | ID: mdl-33637594

ABSTRACT

Mast cells (MCs) play a pathobiologic role in type 2 (T2) allergic inflammatory diseases of the airway, including asthma and chronic rhinosinusitis with nasal polyposis (CRSwNP). Distinct MC subsets infiltrate the airway mucosa in T2 disease, including subepithelial MCs expressing the proteases tryptase and chymase (MCTC) and epithelial MCs expressing tryptase without chymase (MCT). However, mechanisms underlying MC expansion and the transcriptional programs underlying their heterogeneity are poorly understood. Here, we use flow cytometry and single-cell RNA-sequencing (scRNA-seq) to conduct a comprehensive analysis of human MC hyperplasia in CRSwNP, a T2 cytokine-mediated inflammatory disease. We link discrete cell surface phenotypes to the distinct transcriptomes of CRSwNP MCT and MCTC, which represent polarized ends of a transcriptional gradient of nasal polyp MCs. We find a subepithelial population of CD38highCD117high MCs that is markedly expanded during T2 inflammation. These CD38highCD117high MCs exhibit an intermediate phenotype relative to the expanded MCT and MCTC subsets. CD38highCD117high MCs are distinct from circulating MC progenitors and are enriched for proliferation, which is markedly increased in CRSwNP patients with aspirin-exacerbated respiratory disease, a severe disease subset characterized by increased MC burden and elevated MC activation. We observe that MCs expressing a polyp MCT-like effector program are also found within the lung during fibrotic diseases and asthma, and further identify marked differences between MCTC in nasal polyps and skin. These results indicate that MCs display distinct inflammation-associated effector programs and suggest that in situ MC proliferation is a major component of MC hyperplasia in human T2 inflammation.


Subject(s)
Nasal Mucosa/pathology , Nasal Polyps/immunology , Rhinitis/immunology , Sinusitis/immunology , Adult , Aged , Cell Proliferation , Endoscopy , Female , Flow Cytometry , Humans , Male , Mast Cells , Middle Aged , Nasal Mucosa/cytology , Nasal Mucosa/immunology , Nasal Mucosa/surgery , Nasal Polyps/pathology , Nasal Surgical Procedures , RNA-Seq , Rhinitis/pathology , Rhinitis/surgery , Single-Cell Analysis , Sinusitis/pathology , Sinusitis/surgery , Young Adult
4.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33332554

ABSTRACT

During affinity maturation, germinal center (GC) B cells alternate between proliferation and somatic hypermutation in the dark zone (DZ) and affinity-dependent selection in the light zone (LZ). This anatomical segregation imposes that the vigorous proliferation that allows clonal expansion of positively selected GC B cells takes place ostensibly in the absence of the signals that triggered selection in the LZ, as if by "inertia." We find that such inertial cycles specifically require the cell cycle regulator cyclin D3. Cyclin D3 dose-dependently controls the extent to which B cells proliferate in the DZ and is essential for effective clonal expansion of GC B cells in response to strong T follicular helper (Tfh) cell help. Introduction into the Ccnd3 gene of a Burkitt lymphoma-associated gain-of-function mutation (T283A) leads to larger GCs with increased DZ proliferation and, in older mice, clonal B cell lymphoproliferation, suggesting that the DZ inertial cell cycle program can be coopted by B cells undergoing malignant transformation.


Subject(s)
B-Lymphocytes/immunology , Cell Cycle/genetics , Cell Proliferation/genetics , Cyclin D3/physiology , Germinal Center/immunology , Somatic Hypermutation, Immunoglobulin/genetics , Animals , Burkitt Lymphoma/genetics , CRISPR-Cas Systems , Cells, Cultured , Chimera/immunology , Cyclin D3/genetics , Female , Gain of Function Mutation , Gene Editing/methods , Male , Mice , Mice, Inbred C57BL , T Follicular Helper Cells/immunology
5.
Cell ; 181(5): 1016-1035.e19, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32413319

ABSTRACT

There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection.


Subject(s)
Alveolar Epithelial Cells/metabolism , Enterocytes/metabolism , Goblet Cells/metabolism , Interferon Type I/metabolism , Nasal Mucosa/cytology , Peptidyl-Dipeptidase A/genetics , Adolescent , Alveolar Epithelial Cells/immunology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/physiology , COVID-19 , Cell Line , Cells, Cultured , Child , Coronavirus Infections/virology , Enterocytes/immunology , Goblet Cells/immunology , HIV Infections/immunology , Humans , Influenza, Human/immunology , Interferon Type I/immunology , Lung/cytology , Lung/pathology , Macaca mulatta , Mice , Mycobacterium tuberculosis , Nasal Mucosa/immunology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Receptors, Virus/genetics , SARS-CoV-2 , Serine Endopeptidases/metabolism , Single-Cell Analysis , Tuberculosis/immunology , Up-Regulation
6.
Development ; 146(19)2019 09 12.
Article in English | MEDLINE | ID: mdl-31515224

ABSTRACT

Maintenance of pluripotency and specification towards a new cell fate are both dependent on precise interactions between extrinsic signals and transcriptional and epigenetic regulators. Directed methylation of cytosines by the de novo methyltransferases DNMT3A and DNMT3B plays an important role in facilitating proper differentiation, whereas DNMT1 is essential for maintaining global methylation levels in all cell types. Here, we generated single-cell mRNA expression data from wild-type, DNMT3A, DNMT3A/3B and DNMT1 knockout human embryonic stem cells and observed a widespread increase in cellular and transcriptional variability, even with limited changes in global methylation levels in the de novo knockouts. Furthermore, we found unexpected transcriptional repression upon either loss of the de novo methyltransferase DNMT3A or the double knockout of DNMT3A/3B that is further propagated upon differentiation to mesoderm and ectoderm. Taken together, our single-cell RNA-sequencing data provide a high-resolution view into the consequences of depleting the three catalytically active DNMTs in human pluripotent stem cells.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , Human Embryonic Stem Cells/metabolism , Repressor Proteins/metabolism , Transcription, Genetic , Cell Cycle/genetics , Cell Differentiation/genetics , DNA Methylation/genetics , DNA Methyltransferase 3A , Enhancer Elements, Genetic/genetics , Entropy , Gene Expression Regulation, Developmental , Humans , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , DNA Methyltransferase 3B
7.
RNA ; 21(12): 2053-66, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26437669

ABSTRACT

HnRNP L is a ubiquitous splicing-regulatory protein that is critical for the development and function of mammalian T cells. Previous work has identified a few targets of hnRNP L-dependent alternative splicing in T cells and has described transcriptome-wide association of hnRNP L with RNA. However, a comprehensive analysis of the impact of hnRNP L on mRNA expression remains lacking. Here we use next-generation sequencing to identify transcriptome changes upon depletion of hnRNP L in a model T-cell line. We demonstrate that hnRNP L primarily regulates cassette-type alternative splicing, with minimal impact of hnRNP L depletion on transcript abundance, intron retention, or other modes of alternative splicing. Strikingly, we find that binding of hnRNP L within or flanking an exon largely correlates with exon repression by hnRNP L. In contrast, exons that are enhanced by hnRNP L generally lack proximal hnRNP L binding. Notably, these hnRNP L-enhanced exons share sequence and context features that correlate with poor nucleosome positioning, suggesting that hnRNP may enhance inclusion of a subset of exons via a cotranscriptional or epigenetic mechanism. Our data demonstrate that hnRNP L controls inclusion of a broad spectrum of alternative cassette exons in T cells and suggest both direct RNA regulation as well as indirect mechanisms sensitive to the epigenetic landscape.


Subject(s)
Epigenesis, Genetic , RNA, Messenger/metabolism , Ribonucleoproteins/physiology , Alternative Splicing , Exons , Humans , Jurkat Cells , Nucleosomes/metabolism , RNA, Messenger/genetics , Transcriptome
8.
Proc Natl Acad Sci U S A ; 112(17): E2139-48, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25870297

ABSTRACT

Studies in several cell types have highlighted dramatic and diverse changes in mRNA processing that occur upon cellular stimulation. However, the mechanisms and pathways that lead to regulated changes in mRNA processing remain poorly understood. Here we demonstrate that expression of the splicing factor CELF2 (CUGBP, Elav-like family member 2) is regulated in response to T-cell signaling through combined increases in transcription and mRNA stability. Transcriptional induction occurs within 6 h of stimulation and is dependent on activation of NF-κB. Subsequently, there is an increase in the stability of the CELF2 mRNA that correlates with a change in CELF2 3'UTR length and contributes to the total signal-induced enhancement of CELF2 expression. Importantly, we uncover dozens of splicing events in cultured T cells whose changes upon stimulation are dependent on CELF2 expression, and provide evidence that CELF2 controls a similar proportion of splicing events during human thymic T-cell development. Taken together, these findings expand the physiologic impact of CELF2 beyond that previously documented in developing neuronal and muscle cells to T-cell development and function, identify unappreciated instances of alternative splicing in the human thymus, and uncover novel mechanisms for CELF2 regulation that may broadly impact CELF2 expression across diverse cell types.


Subject(s)
3' Untranslated Regions/physiology , Alternative Splicing/physiology , Nerve Tissue Proteins/biosynthesis , RNA Stability/physiology , RNA-Binding Proteins/biosynthesis , Signal Transduction/physiology , T-Lymphocytes/metabolism , CELF Proteins , Humans , Jurkat Cells , Nerve Tissue Proteins/genetics , RNA-Binding Proteins/genetics , T-Lymphocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...