Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
medRxiv ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38946951

ABSTRACT

In recent years, there has been increased focus on exploring the role the non-protein-coding genome plays in Mendelian disorders. One class of particular interest is long non-coding RNAs (lncRNAs), which has recently been implicated in the regulation of diverse molecular processes. However, because lncRNAs do not encode protein, there is uncertainty regarding what constitutes a pathogenic lncRNA variant, and thus annotating such elements is challenging. The Developmental Genome Anatomy Project (DGAP) and similar projects recruit individuals with apparently balanced chromosomal abnormalities (BCAs) that disrupt or dysregulate genes in order to annotate the human genome. We hypothesized that rearrangements disrupting lncRNAs could be the underlying genetic etiology for the phenotypes of a subset of these individuals. Thus, we assessed 279 cases with BCAs and selected 191 cases with simple BCAs (breakpoints at only two genomic locations) for further analysis of lncRNA disruptions. From these, we identified 66 cases in which the chromosomal rearrangements directly disrupt lncRNAs. Strikingly, the lncRNAs MEF2C-AS1 and ENSG00000257522 are each disrupted in two unrelated cases. Furthermore, in 30 cases, no genes of any other class aside from lncRNAs are directly disrupted, consistent with the hypothesis that lncRNA disruptions could underly the phenotypes of these individuals. To showcase the power of this genomic approach for annotating lncRNAs, here we focus on clinical reports and genetic analysis of two individuals with BCAs and additionally highlight six individuals with likely developmental etiologies due to lncRNA disruptions.

2.
Hum Mutat ; 43(12): 1837-1843, 2022 12.
Article in English | MEDLINE | ID: mdl-35870179

ABSTRACT

Synonymous variants have been shown to alter the correct splicing of pre-mRNAs and generate disease-causing transcripts. These variants are not an uncommon etiology of genetic disease; however, they are frequently overlooked during genetic testing in the absence of functional and clinical data. Here, we describe the occurrence of a synonymous variant [NM_005422.4 (TECTA):c.327C>T, p.(Gly109=)] in seven individuals with hearing loss from six unrelated families. The variant is not located near exonic/intronic boundaries but is predicted to impact splicing by activating a cryptic splicing donor site in exon 4 of TECTA. In vitro minigene assays show that the variant disrupts the reading frame of the canonical transcript, which is predicted to cause a premature termination codon 48 amino acids downstream of the variant, leading to nonsense-mediated decay. The variant is present in population databases, predominantly in Latinos of African ancestry, but is rare in other ethnic groups. Our findings suggest that this synonymous variant is likely pathogenic for TECTA-associated autosomal recessive hearing loss and seems to have arisen as a founder variant in this specific Latino subpopulation. This study demonstrates that synonymous variants need careful splicing assessment and support from additional testing methodologies to determine their clinical impact.


Subject(s)
Deafness , Hearing Loss , Humans , RNA Splice Sites , RNA Splicing/genetics , Hearing Loss/genetics , Deafness/genetics , Exons/genetics , Extracellular Matrix Proteins/genetics , GPI-Linked Proteins/genetics
3.
J Mol Diagn ; 24(3): 205-218, 2022 03.
Article in English | MEDLINE | ID: mdl-35041930

ABSTRACT

Clinical laboratories offering genome sequencing have the opportunity to return pharmacogenomic findings to patients, providing the added benefit of preemptive testing that could help inform medication selection or dosing throughout the lifespan. Implementation of pharmacogenomic reporting must address several challenges, including inherent limitations in short-read genome sequencing methods, gene and variant selection, standardization of genotype and phenotype nomenclature, and choice of guidelines and drugs to report. An automated pipeline, lmPGX, was developed as an end-to-end solution that produces two versions of a pharmacogenomic report, presenting either Clinical Pharmacogenetics Implementation Consortium or US Food and Drug Administration guidelines for 12 genes. The pipeline was validated for performance using reference samples and pharmacogenetic data from the Genetic Testing Reference Materials Coordination Program. To determine performance and limitations, lmPGX was compared with three additional publicly available pharmacogenomic pipelines. The lmPGX pipeline offers clinical laboratories an opportunity for seamless integration of pharmacogenomic results with genome reporting.


Subject(s)
Pharmacogenetics , Pharmacogenomic Testing , Genetic Testing , Genotype , Humans , Pharmacogenetics/methods , Pharmacogenomic Testing/methods , Phenotype
4.
Thorax ; 77(5): 452-460, 2022 05.
Article in English | MEDLINE | ID: mdl-34580195

ABSTRACT

INTRODUCTION: Asthma is a complex disease with heterogeneous expression/severity. There is growing interest in defining asthma endotypes consistently associated with different responses to therapy, focusing on type 2 inflammation (Th2) as a key pathological mechanism. Current asthma endotypes are defined primarily by clinical/laboratory criteria. Each endotype is likely characterised by distinct molecular mechanisms that identify optimal therapies. METHODS: We applied unsupervised (without a priori clinical criteria) principal component analysis on sputum airway cells RNA-sequencing transcriptomic data from 19 asthmatics from the Severe Asthma Research Program at baseline and 6-8 weeks follow-up after a 40 mg dose of intramuscular corticosteroids. We investigated principal components PC1, PC3 for association with 55 clinical variables. RESULTS: PC3 was associated with baseline Th2 clinical features including blood (rank-sum p=0.0082) and airway (rank-sum p=0.0024) eosinophilia, FEV1 change (Kendall tau-b R=-0.333 (-0.592 to -0.012)) and follow-up FEV1 albuterol response (Kendall tau-b R=0.392 (0.079 to 0.634)). PC1 with blood basophlia (rank-sum p=0.0191). The top 5% genes contributing to PC1, PC3 were enriched for distinct immune system/inflammation ontologies suggesting distinct subject-specific clusters of transcriptomic response to corticosteroids. PC3 association with FEV1 change was reproduced in silico in a comparable independent 14-subject (baseline, 8 weeks after daily inhaled corticosteroids (ICS)) airway epithelial cells microRNAome dataset. CONCLUSIONS: Transcriptomic PCs from this unsupervised methodology define molecular pharmacogenomic endotypes that may yield novel biology underlying different subject-specific responses to corticosteroid therapy in asthma, and optimal personalised asthma care. Top contributing genes to these PCs may suggest new therapeutic targets.


Subject(s)
Asthma , Eosinophils , Adrenal Cortex Hormones/therapeutic use , Asthma/drug therapy , Asthma/genetics , Basophils/pathology , Eosinophils/pathology , Humans , Inflammation , Lung , Sputum , Steroids/therapeutic use
5.
Genet Med ; 23(11): 2208-2212, 2021 11.
Article in English | MEDLINE | ID: mdl-34230634

ABSTRACT

PURPOSE: The ClinGen Variant Curation Expert Panels (VCEPs) provide disease-specific rules for accurate variant interpretation. Using the hearing loss-specific American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines, the Hearing Loss VCEP (HL VCEP) illustrates the utility of expert specifications in variant interpretation. METHODS: A total of 157 variants across nine HL genes, previously submitted to ClinVar, were curated by the HL VCEP. The curation process involved collecting published and unpublished data for each variant by biocurators, followed by bimonthly meetings of an expert curation subgroup that reviewed all evidence and applied the HL-specific ACMG/AMP guidelines to reach a final classification. RESULTS: Before expert curation, 75% (117/157) of variants had single or multiple variants of uncertain significance (VUS) submissions (17/157) or had conflicting interpretations in ClinVar (100/157). After applying the HL-specific ACMG/AMP guidelines, 24% (4/17) of VUS and 69% (69/100) of discordant variants were resolved into benign (B), likely benign (LB), likely pathogenic (LP), or pathogenic (P). Overall, 70% (109/157) variants had unambiguous classifications (B, LB, LP, P). We quantify the contribution of the HL-specified ACMG/AMP codes to variant classification. CONCLUSION: Expert specification and application of the HL-specific ACMG/AMP guidelines effectively resolved discordant interpretations in ClinVar. This study highlights the utility of ClinGen VCEPs in supporting more consistent clinical variant interpretation.


Subject(s)
Genome, Human , Hearing Loss , Humans , Genetic Testing , Genetic Variation/genetics , Hearing Loss/diagnosis , Hearing Loss/genetics
6.
Nat Genet ; 53(6): 787-793, 2021 06.
Article in English | MEDLINE | ID: mdl-33958783

ABSTRACT

A key driver of patients' well-being and clinical trials for Parkinson's disease (PD) is the course that the disease takes over time (progression and prognosis). To assess how genetic variation influences the progression of PD over time to dementia, a major determinant for quality of life, we performed a longitudinal genome-wide survival study of 11.2 million variants in 3,821 patients with PD over 31,053 visits. We discover RIMS2 as a progression locus and confirm this in a replicate population (hazard ratio (HR) = 4.77, P = 2.78 × 10-11), identify suggestive evidence for TMEM108 (HR = 2.86, P = 2.09 × 10-8) and WWOX (HR = 2.12, P = 2.37 × 10-8) as progression loci, and confirm associations for GBA (HR = 1.93, P = 0.0002) and APOE (HR = 1.48, P = 0.001). Polygenic progression scores exhibit a substantial aggregate association with dementia risk, while polygenic susceptibility scores are not predictive. This study identifies a novel synaptic locus and polygenic score for cognitive disease progression in PD and proposes diverging genetic architectures of progression and susceptibility.


Subject(s)
Cognition , Disease Progression , Genetic Loci , Genome-Wide Association Study , Multifactorial Inheritance/genetics , Parkinson Disease/genetics , Parkinson Disease/pathology , Synapses/genetics , Apolipoprotein E4/genetics , Cognition Disorders/genetics , Genetic Predisposition to Disease , Glucosylceramidase/genetics , Humans , Longitudinal Studies , Mutation/genetics , Parkinson Disease/physiopathology , Proportional Hazards Models , Risk Factors , Survival Analysis
7.
J Neurosci ; 41(20): 4378-4391, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33824189

ABSTRACT

Transmembrane channel-like protein isoform 1 (TMC1) is a major component of the mechano-electrical transducer (MET) channel in cochlear hair cells and is subject to numerous mutations causing deafness. We report a new dominant human deafness mutation, TMC1 p.T422K, and have characterized the homologous mouse mutant, Tmc1 p.T416K, which caused deafness and outer hair cell (OHC) loss by the fourth postnatal week. MET channels showed decreased Ca2+ permeability and resting open probability, but no change in single-channel conductance or expression. Three adjacent deafness mutations are TMC1 p.L416R, p.G417R, and p.M418K, the last homologous to the mouse Beethoven that exhibits similar channel effects. All substitute a positive for a neutral residue, which could produce charge screening in the channel pore or influence binding of an accessory subunit. Channel properties were compared in mice of both sexes between dominant (Tmc1 p.T416K, Tmc1 p.D569N) and recessive (Tmc1 p.W554L, Tmc1 p.D528N) mutations of residues near the putative pore of the channel. Tmc1 p.W554L and p.D569N exhibit reduced maximum current with no effect on single-channel conductance, implying a smaller number of channels transported to the stereociliary tips; this may stem from impaired TMC1 binding to LHFPL5. Tmc1 p.D528N, located in the pore's narrowest region, uniquely caused large reductions in MET channel conductance and block by dihydrostreptomycin (DHS). For Tmc1 p.T416K and Tmc1 p.D528N, transduction loss occurred between P15 and P20. We propose two mechanisms linking channel mutations and deafness: decreased Ca2+ permeability, common to all mutants, and decreased resting open probability in low Ca2+, confined to dominant mutations.SIGNIFICANCE STATEMENT Transmembrane channel-like protein isoform 1 (TMC1) is thought to be a major component of the mechanotransducer channel in auditory hair cells, but the protein organization and channel structure are still uncertain. We made four mouse lines harboring Tmc1 point mutations that alter channel properties, causing hair cell degeneration and deafness. These include a mouse homolog of a new human deafness mutation pT416K that decreased channel Ca2+ permeability by introducing a positively-charged amino acid in the putative pore. All mutations are consistent with the channel structure predicted from modeling, but only one, p.D528N near the external face of the pore, substantially reduced channel conductance and Ca2+ permeability and virtually abolished block by dihydrostreptomycin (DHS), strongly endorsing its siting within the pore.


Subject(s)
Deafness/genetics , Deafness/metabolism , Hair Cells, Auditory/metabolism , Mechanotransduction, Cellular/genetics , Membrane Proteins/genetics , Adolescent , Adult , Animals , Child , Deafness/pathology , Female , Hair Cells, Auditory/pathology , Humans , Male , Mice , Mice, Mutant Strains , Middle Aged , Pedigree , Point Mutation
8.
J Mol Diagn ; 23(6): 671-682, 2021 06.
Article in English | MEDLINE | ID: mdl-33872788

ABSTRACT

When sequencing small RNA libraries derived from whole blood, the most abundant microRNAs (miRs) detected are often miR-486-5p, miR-451a, and miR-92a-3p. These highly expressed erythropoietic miRs are released into the sample from red blood cell hemolysis. Next-generation sequencing of these unwanted miRs leads to a waste in sequencing cost and diminished detection of lowly expressed miRNAs, including many potential miRNA biomarkers. Previous work has developed a method to reduce targeted miRNAs using oligonucleotides that bind their target miRNA and prevent its ligation during library construction, although the extent to which oligonucleotides can be multiplexed and their effect on larger cohorts has not been thoroughly explored. We present a method for suppressing detection of three highly abundant heme miRs in a single multiplexed blocking oligonucleotide reaction. In a small paired-sample pilot (n = 8) and a large cohort of samples (n = 901), multiplexed oligos reduced detection of their target miRNAs by approximately 70%, allowing for an approximately 10-fold increase in reads mapping to nonheme miRs and increased detection of very lowly expressed miRs, with minimal off-target effects. By removing all three highly expressed erythropoietic miRNAs from next-generational sequencing libraries, this commercially available multiplexed blocking oligonucleotide method allows for greater detection of lowly expressed biomarkers, improving the efficacy, cost-efficiency, and sensitivity of biomarker studies and diagnostic tests.


Subject(s)
Hemolysis/genetics , MicroRNAs/genetics , Oligonucleotides/pharmacology , RNA/blood , Adult , Cohort Studies , Humans
9.
Hum Mutat ; 42(4): 373-377, 2021 04.
Article in English | MEDLINE | ID: mdl-33492714

ABSTRACT

Bi-allelic loss-of-function variants of OTOA are a well-known cause of moderate-to-severe hearing loss. Whereas non-allelic homologous recombination-mediated deletions of the gene are well known, gene conversions to pseudogene OTOAP1 have been reported in the literature but never fully described nor their pathogenicity assessed. Here, we report two unrelated patients with moderate hearing-loss, who were compound heterozygotes for a converted allele and a deletion of OTOA. The conversions were initially detected through sequencing depths anomalies at the OTOA locus after exome sequencing, then confirmed with long range polymerase chain reactions. Both conversions lead to loss-of-function by introducing a premature stop codon in exon 22 (p.Glu787*). Using genomic alignments and long read nanopore sequencing, we found that the two probands carry stretches of converted DNA of widely different lengths (at least 9 kbp and around 900 bp, respectively).


Subject(s)
Deafness , GPI-Linked Proteins , Hearing Loss , Alleles , Deafness/genetics , GPI-Linked Proteins/genetics , Gene Conversion , Hearing Loss/genetics , Humans , Pedigree , Exome Sequencing
10.
Eur J Hum Genet ; 29(6): 988-997, 2021 06.
Article in English | MEDLINE | ID: mdl-33398081

ABSTRACT

Nonsyndromic hearing loss is genetically heterogeneous. Despite comprehensive genetic testing, many cases remain unsolved because the clinical significance of identified variants is uncertain or because biallelic pathogenic variants are not identified for presumed autosomal recessive cases. Common synonymous variants are often disregarded. Determining the pathogenicity of synonymous variants may improve genetic diagnosis. We report a synonymous variant c.9861 C > T/p.(Gly3287=) in MYO15A in homozygosity or compound heterozygosity with another pathogenic or likely pathogenic MYO15A variant in 10 unrelated families with nonsyndromic sensorineural hearing loss. Biallelic variants in MYO15A were identified in 21 affected and were absent in 22 unaffected siblings. A mini-gene assay confirms that the synonymous variant leads to abnormal splicing. The variant is enriched in the Ashkenazi Jewish population. Individuals carrying biallelic variants involving c.9861 C > T often exhibit progressive post-lingual hearing loss distinct from the congenital profound deafness typically associated with biallelic loss-of-function MYO15A variants. This study establishes the pathogenicity of the c.9861 C > T variant in MYO15A and expands the phenotypic spectrum of MYO15A-related hearing loss. Our work also highlights the importance of multicenter collaboration and data sharing to establish the pathogenicity of a relatively common synonymous variant for improved diagnosis and management of hearing loss.


Subject(s)
Gene Frequency , Hearing Loss/genetics , Myosins/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genes, Recessive , Hearing Loss/ethnology , Hearing Loss/pathology , Humans , Infant , Jews/genetics , Male , Mutation , Pedigree , RNA Splicing
11.
Sci Rep ; 10(1): 4552, 2020 03 12.
Article in English | MEDLINE | ID: mdl-32165660

ABSTRACT

Small RNA-Seq is a common means to interrogate the small RNA'ome or the full spectrum of small RNAs (<200 nucleotide length) of a biological system. A pivotal problem in NGS based small RNA analysis is identifying and quantifying the small RNA'ome constituent components. For example, small RNAs in the circulatory system (circulating RNAs) are potential disease biomarkers and their function is being actively investigated. Most existing NGS data analysis tools focus on the microRNA component and a few other small RNA types like piRNA, snRNA and snoRNA. A comprehensive platform is needed to interrogate the full small RNA'ome, a prerequisite for down-stream data analysis. We present COMPSRA, a comprehensive modular stand-alone platform for identifying and quantifying small RNAs from small RNA sequencing data. COMPSRA contains prebuilt customizable standard RNA databases and sequence processing tools to enable turnkey basic small RNA analysis. We evaluated COMPSRA against comparable existing tools on small RNA sequencing data set from serum samples of 12 healthy human controls, and COMPSRA identified a greater diversity and abundance of small RNA molecules. COMPSRA is modular, stand-alone and integrates multiple customizable RNA databases and sequence processing tool and is distributed under the GNU General Public License free to non-commercial registered users at https://github.com/cougarlj/COMPSRA.


Subject(s)
Computational Biology/methods , RNA, Small Untranslated/blood , Sequence Analysis, RNA/methods , Healthy Volunteers , High-Throughput Nucleotide Sequencing , Humans , Internet , Software
12.
Front Mol Neurosci ; 12: 236, 2019.
Article in English | MEDLINE | ID: mdl-31636537

ABSTRACT

Anxiety disorders disproportionately affect women compared to men, which may arise from sex differences in stress responses. MiRNAs are small non-coding RNAs known to regulate gene expression through actions on mRNAs. MiRNAs are regulated, in part, by factors such as stress and gonadal sex, and they have been implicated in the pathophysiology of multiple psychiatric disorders. Here, we assessed putative sex differences in miRNA expression in the bed nucleus of the stria terminalis (BNST) - a sexually dimorphic brain region implicated in anxiety - of adult male and female rats that had been exposed to social isolation (SI) stress throughout adolescence. To assess the translational utility of our results, we assessed if childhood trauma in humans resulted in changes in blood miRNA expression that are similar to those observed in rats. Male and female Sprague-Dawley rats underwent SI during adolescence or remained group housed (GH) and were tested for anxiety-like behavior in the elevated plus maze as adults. Small RNA sequencing was performed on tissue extracted from the BNST. Furthermore, we re-analyzed an already available small RNA sequencing data set from the Grady Trauma Project (GTP) from men and women to identify circulating miRNAs that are associated with childhood trauma exposure. Our results indicated that there were greater anxiogenic-like effects and changes in BNST miRNA expression in SI versus GH females compared to SI versus GH males. In addition, we found nine miRNAs that were regulated in both the BNST from SI compared to GH rats and in blood samples from humans exposed to childhood trauma. These studies emphasize the utility of rodent models in studying neurobiological mechanisms underlying psychiatric disorders and suggest that rodent models could be used to identify novel sex-specific pharmacotherapies for anxiety disorders.

13.
Genet Med ; 21(11): 2442-2452, 2019 11.
Article in English | MEDLINE | ID: mdl-31160754

ABSTRACT

PURPOSE: Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.Met34Thr and c.109G>A/p.Val37Ile in GJB2 are controversial. Therefore, an expert consensus is required for the interpretation of these two variants. METHODS: The ClinGen Hearing Loss Expert Panel collected published data and shared unpublished information from contributing laboratories and clinics regarding the two variants. Functional, computational, allelic, and segregation data were also obtained. Case-control statistical analyses were performed. RESULTS: The panel reviewed the synthesized information, and classified the p.Met34Thr and p.Val37Ile variants utilizing professional variant interpretation guidelines and professional judgment. We found that p.Met34Thr and p.Val37Ile are significantly overrepresented in hearing loss patients, compared with population controls. Individuals homozygous or compound heterozygous for p.Met34Thr or p.Val37Ile typically manifest mild to moderate hearing loss. Several other types of evidence also support pathogenic roles for these two variants. CONCLUSION: Resolving controversies in variant classification requires coordinated effort among a panel of international multi-institutional experts to share data, standardize classification guidelines, review evidence, and reach a consensus. We concluded that p.Met34Thr and p.Val37Ile variants in GJB2 are pathogenic for autosomal recessive nonsyndromic hearing loss with variable expressivity and incomplete penetrance.


Subject(s)
Connexins/genetics , Hearing Loss/genetics , Alleles , Case-Control Studies , Connexin 26/genetics , Connexins/metabolism , Deafness/genetics , Female , Hearing Loss, Sensorineural/genetics , Humans , Male , Mutation , Polymorphism, Single Nucleotide/genetics
14.
Mol Genet Genomic Med ; 7(8): e806, 2019 08.
Article in English | MEDLINE | ID: mdl-31218851

ABSTRACT

Here, we report the prenatal detection of a compound heterozygous deletion at chromosome 15q15.3 by clinical chromosomal microarray (CMA) testing that included the CATSPER2 male infertility gene. However, given the low resolution of CMA at this homologous locus, it was unclear if the neighboring STRC hearing loss gene was also affected. Therefore, we developed a novel allele-specific PCR strategy, which narrowed the proximal breakpoint of the maternally inherited deletion to a 310 bp interval that was 440 bp upstream from the STRC transcription start site.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 15 , Genetic Predisposition to Disease/genetics , Hearing Loss, Sensorineural/genetics , Infertility, Male/genetics , Intercellular Signaling Peptides and Proteins/genetics , Sequence Deletion , Adult , Alleles , Calcium Channels/genetics , Chromosome Breakage , Female , Gene Dosage , Heterozygote , Humans , Male , Pregnancy , Seminal Plasma Proteins/genetics
16.
Genet Med ; 21(10): 2239-2247, 2019 10.
Article in English | MEDLINE | ID: mdl-30894701

ABSTRACT

PURPOSE: Proper interpretation of genomic variants is critical to successful medical decision making based on genetic testing results. A fundamental prerequisite to accurate variant interpretation is the clear understanding of the clinical validity of gene-disease relationships. The Clinical Genome Resource (ClinGen) has developed a semiquantitative framework to assign clinical validity to gene-disease relationships. METHODS: The ClinGen Hearing Loss Gene Curation Expert Panel (HL GCEP) uses this framework to perform evidence-based curations of genes present on testing panels from 17 clinical laboratories in the Genetic Testing Registry. The HL GCEP curated and reviewed 142 genes and 164 gene-disease pairs, including 105 nonsyndromic and 59 syndromic forms of hearing loss. RESULTS: The final outcome included 82 Definitive (50%), 12 Strong (7%), 25 Moderate (15%), 32 Limited (20%), 10 Disputed (6%), and 3 Refuted (2%) classifications. The summary of each curation is date stamped with the HL GCEP approval, is live, and will be kept up-to-date on the ClinGen website ( https://search.clinicalgenome.org/kb/gene-validity ). CONCLUSION: This gene curation approach serves to optimize the clinical sensitivity of genetic testing while reducing the rate of uncertain or ambiguous test results caused by the interrogation of genes with insufficient evidence of a disease link.


Subject(s)
Deafness/genetics , Genetic Testing/methods , Hearing Loss/genetics , Data Curation/methods , Databases, Genetic , Genetic Testing/standards , Genetic Variation , Genome, Human , Genomics/methods , Humans , Mutation , Reproducibility of Results
17.
Genet Epidemiol ; 43(1): 63-81, 2019 02.
Article in English | MEDLINE | ID: mdl-30298529

ABSTRACT

The Electronic Medical Records and Genomics (eMERGE) network is a network of medical centers with electronic medical records linked to existing biorepository samples for genomic discovery and genomic medicine research. The network sought to unify the genetic results from 78 Illumina and Affymetrix genotype array batches from 12 contributing medical centers for joint association analysis of 83,717 human participants. In this report, we describe the imputation of eMERGE results and methods to create the unified imputed merged set of genome-wide variant genotype data. We imputed the data using the Michigan Imputation Server, which provides a missing single-nucleotide variant genotype imputation service using the minimac3 imputation algorithm with the Haplotype Reference Consortium genotype reference set. We describe the quality control and filtering steps used in the generation of this data set and suggest generalizable quality thresholds for imputation and phenotype association studies. To test the merged imputed genotype set, we replicated a previously reported chromosome 6 HLA-B herpes zoster (shingles) association and discovered a novel zoster-associated loci in an epigenetic binding site near the terminus of chromosome 3 (3p29).


Subject(s)
Electronic Health Records , Genetic Predisposition to Disease , Genome-Wide Association Study , Herpes Zoster/genetics , Algorithms , Black People/genetics , Chromosomes, Human/genetics , Female , Haplotypes/genetics , Homozygote , Humans , Male , Phenotype , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis , White People/genetics
18.
Malar J ; 17(1): 467, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30545357

ABSTRACT

BACKGROUND: Evolutionary pressure by Plasmodium falciparum malaria is known to have favoured a large number of human gene adaptations, but there is surprisingly little investigation of the effect of malaria on human mitochondrial sequence variation. Plasmodium falciparum infection can cause severe malaria anaemia (SMA) with insufficient tissue oxygenation, lactic acidosis and death. Despite equal degrees of severe anaemia, some individuals develop lactic acidosis while others do not. A case-control study design was used to investigate whether differences in host mitochondrial gene sequences were associated with lactic acidosis in SMA. Full mitochondrial sequences were obtained from 36 subjects with SMA complicated by lactic acidosis and 37 subjects with SMA without lactic acidosis. The two groups were matched for age, sex, and degree of anaemia. RESULTS: Compared with the reference sequence, a median of 60 nucleotide variants per individual (interquartile range 4-91) was found, with an average frequency of 3.97 variants per 1000 nucleotides. The frequency and distribution of non-synonymous DNA variants in genes associated with oxidative phosphorylation were not statistically different between the two groups. Non-synonymous variants predicted to have the most disruptive effect on proteins responsible for oxidative phosphorylation were present at a similar frequency in both groups. CONCLUSIONS: Lactic acidosis in SMA does not appear to be consistently associated with the high prevalence of any mitochondrial gene variant.


Subject(s)
Acidosis, Lactic , Anemia , DNA, Mitochondrial/genetics , Malaria, Falciparum , Acidosis, Lactic/etiology , Acidosis, Lactic/genetics , Anemia/etiology , Anemia/genetics , Case-Control Studies , Child, Preschool , Female , Humans , Infant , Lactic Acid/blood , Malaria, Falciparum/complications , Malaria, Falciparum/genetics , Male , Oxidative Phosphorylation , Sequence Analysis, DNA , Uganda/epidemiology
19.
Hum Mutat ; 39(11): 1593-1613, 2018 11.
Article in English | MEDLINE | ID: mdl-30311386

ABSTRACT

Due to the high genetic heterogeneity of hearing loss (HL), current clinical testing includes sequencing large numbers of genes, which often yields a significant number of novel variants. Therefore, the standardization of variant interpretation is crucial to provide consistent and accurate diagnoses. The Hearing Loss Variant Curation Expert Panel was created within the Clinical Genome Resource to provide expert guidance for standardized genomic interpretation in the context of HL. As one of its major tasks, our Expert Panel has adapted the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for the interpretation of sequence variants in HL genes. Here, we provide a comprehensive illustration of the newly specified ACMG/AMP HL rules. Three rules remained unchanged, four rules were removed, and the remaining 21 rules were specified. These rules were further validated and refined using a pilot set of 51 variants assessed by curators and disease experts. Of the 51 variants evaluated in the pilot, 37% (19/51) changed category based upon application of the expert panel specified rules and/or aggregation of evidence across laboratories. These HL-specific ACMG/AMP rules will help standardize variant interpretation, ultimately leading to better care for individuals with HL.


Subject(s)
Genetic Testing/methods , Genome, Human/genetics , Hearing Loss/genetics , Gene Frequency/genetics , Genetic Variation/genetics , Genomics/methods , Humans , Mutation/genetics , Sequence Analysis, DNA , Societies, Medical , United States
20.
J Mol Diagn ; 20(6): 789-801, 2018 11.
Article in English | MEDLINE | ID: mdl-30096381

ABSTRACT

Variant interpretation depends on accurate annotations using biologically relevant transcripts. We have developed a systematic strategy for designating primary transcripts and have applied it to 109 hearing loss-associated genes that were divided into three categories. Category 1 genes (n = 38) had a single transcript; category 2 genes (n = 33) had multiple transcripts, but a single transcript was sufficient to represent all exons; and category 3 genes (n = 38) had multiple transcripts with unique exons. Transcripts were curated with respect to gene expression reported in the literature and the Genotype-Tissue Expression Project. In addition, high-frequency loss-of-function variants in the Genome Aggregation Database and disease-causing variants in ClinVar and the Human Gene Mutation Database across the 109 genes were queried. These data were used to classify exons as clinically significant, insignificant, or of uncertain significance. Interestingly, 6% of all exons, containing 124 reportedly disease-causing variants, were of uncertain significance. Finally, we used exon-level next-generation sequencing quality metrics generated at two clinical laboratories and identified a total of 43 technically challenging exons in 20 different genes that had inadequate coverage and/or homology issues that might lead to false-variant calls. We have demonstrated that transcript analysis plays a critical role in accurate clinical variant interpretation.


Subject(s)
Genetic Variation , Exons/genetics , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...