Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0305166, 2024.
Article in English | MEDLINE | ID: mdl-38861543

ABSTRACT

CNN has demonstrated remarkable performance in EEG signal detection, yet it still faces limitations in terms of global perception. Additionally, due to individual differences in EEG signals, the generalization ability of epilepsy detection models is week. To address this issue, this paper presents a cross-patient epilepsy detection method utilizing a multi-head self-attention mechanism. This method first utilizes Short-Time Fourier Transform (STFT) to transform the original EEG signals into time-frequency features, then models local information using Convolutional Neural Network (CNN), subsequently captures global dependency relationships between features using the multi-head self-attention mechanism of Transformer, and finally performs epilepsy detection using these features. Meanwhile, this model employs a light multi-head attention mechanism module with an alternating structure, which can comprehensively extract multi-scale features while significantly reducing computational costs. Experimental results on the CHB-MIT dataset show that the proposed model achieves accuracy, sensitivity, specificity, F1 score, and AUC of 92.89%, 96.17%, 92.99%, 94.41%, and 96.77%, respectively. Compared to the existing methods, the method proposed in this paper obtains better performance along with better generalization.


Subject(s)
Electroencephalography , Epilepsy , Neural Networks, Computer , Humans , Epilepsy/diagnosis , Epilepsy/physiopathology , Electroencephalography/methods , Fourier Analysis , Signal Processing, Computer-Assisted , Algorithms
2.
Front Neurol ; 15: 1378076, 2024.
Article in English | MEDLINE | ID: mdl-38633533

ABSTRACT

Introduction: In recent years, the use of EEG signals for seizure detection has gained widespread academic attention. Aiming at the problem of overfitting deep learning models due to the small number of EEG signal data during epilepsy detection, this paper proposes an epilepsy detection method that combines data augmentation and deep learning. Methods: First, the Adversarial and Mixup Data Augmentation (AMDA) method is used to realize the data augmentation, which effectively enriches the number of training samples. To further improve the classification accuracy and robustness of epilepsy detection, this paper proposes a one-dimensional convolutional neural network and gated recurrent unit (AM-1D CNN-GRU) network model based on attention mechanism for epilepsy detection. Results and discussion: The experimental results show that the performance of epilepsy detection achieved by using augmented data is significantly improved, and the accuracy, sensitivity, and area under the subject's working characteristic curve are up to 96.06, 95.48%, and 0.9637, respectively. Compared with the non-augmented data, all indicators are increased by more than 6.2%. Meanwhile, the detection performance was significantly improved compared with other epilepsy detection methods. The results of this research can provide a reference for the clinical application of epilepsy detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...