Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Curr Protoc ; 4(6): e1067, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857108

ABSTRACT

The blood-brain barrier (BBB) constitutes a crucial protective anatomical layer with a microenvironment that tightly controls material transit. Constructing an in vitro BBB model to replicate in vivo features requires the sequential layering of constituent cell types. Maintaining heightened integrity in the observed tight junctions during both the establishment and post-experiment phases is crucial to the success of these models. We have developed an in vitro BBB model that replicates the cellular composition and spatial orientation of in vivo BBB observed in humans. The experiment includes comprehensive procedures and steps aimed at enhancing the integration of the four-cell model. Departing from conventional in vitro BBB models, our methodology eliminates the necessity for pre-coated plates to facilitate cell adhesion, thereby improving cell visualization throughout the procedure. An in-house coating strategy and a simple yet effective approach significantly reduce costs and provides superior imaging of cells and corresponding tight junction protein expression. Also, our BBB model includes all four primary cell types that are structural parts of the human BBB. With its innovative and user-friendly features, our in-house optimized in vitro four-cell-based BBB model showcases novel methodology and provides a promising experimental platform for drug screening processes. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Coating and culture system Basic Protocol 2: Cell seeding and Transwell insert handling Basic Protocol 3: Assessment of model functionality.


Subject(s)
Blood-Brain Barrier , Humans , Blood-Brain Barrier/metabolism , Tight Junctions/metabolism , Cell Culture Techniques/methods , Models, Biological , Brain/cytology , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/metabolism
2.
Anal Chem ; 96(24): 9876-9884, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38842795

ABSTRACT

Droplet-based microfluidic platforms demand modifications to the droplet composition to facilitate reactions and analyses. However, limited techniques exist to modify the droplet contents post their generation. Here, ion transport across two ion-exchange membranes possessing distinct selectivity is employed to introduce ions into (salt) or extract ions from (desalt) water-in-oil droplets. The ion concentration distribution and transport mechanisms are visualized using a precipitation reaction and a charged fluorescent tracer. Furthermore, current measurements reveal characteristic regimes in desalting and salting modes and demonstrate that the rates of ion transport linearly correlate with applied voltage and the ionic strength of the droplets. Importantly, up to 98% desalting efficiency is achieved. This technique advances droplet-based sample preparation through the straightforward manipulation of droplet contents.

3.
Anal Methods ; 16(1): 91-104, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38086621

ABSTRACT

The COVID-19 pandemic highlighted the importance of designing sensitive and selective point-of-care (POC) diagnostic sensors for early and rapid detection of infection. Paper-based lateral flow assays (LFAs) are easy to use, inexpensive, and rapid, but they lack sensitivity. Preconcentration techniques can improve the sensitivity of LFAs by increasing the local concentration of the analyte before detection. Here, ion concentration polarization (ICP) is used to focus the analyte, SARS-CoV-2 Spike protein (S-protein), directly over a test line composed of angiotensin converting enzyme 2 (ACE2) capture probes. ICP is the enrichment and depletion of electrolyte ions at opposing ends of an ion-selective membrane under a voltage bias. The ion depleted zone (IDZ) establishes a steep gradient in electric field strength along its boundary. Enrichment of charged species (such as a biomolecule analyte) occurs at an axial location along this electric field gradient in the presence of a fluid flow that counteracts migration of those species - a phenomenon called ICP focusing. In this paper, running buffer composition and pretreatment solutions for ICP focusing in a paper-based LFA are evaluated, and the method of voltage application for ICP-enrichment is optimized. With a power consumption of 1.8 mW, S-protein is concentrated by a factor of 21-fold, leading to a 2.9-fold increase in the signal from the LFA compared to a LFA without ICP-enrichment. The described ICP-enhanced LFA is significant because the preconcentration strategy is amenable to POC applications and can be applied to existing LFAs for improvement in sensitivity.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Pandemics , COVID-19/diagnosis , SARS-CoV-2 , Ions
4.
Anal Chem ; 95(39): 14624-14633, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37738658

ABSTRACT

Droplets enable the encapsulation of cells for their analysis in isolated domains. The study of molecular signatures (including genes, proteins, and metabolites) from a few or single cells is critical for identifying key subpopulations. However, dealing with biological analytes at low concentrations requires long incubation times and amplification to achieve the requisite signal strength. Further, cell lysis requires additional chemical lysing agents or heat, which can interfere with assays. Here, we leverage ion concentration polarization (ICP) in droplets to rapidly lyse breast cancer cells within 2 s under a DC voltage bias of 30 V. Numerical simulations attribute cell lysis to an ICP-based electric field and shear stress. We further achieve up to 19-fold concentration enrichment of an enzymatic assay product resulting from cell lysis and a 3.8-fold increase in the reaction rate during enrichment. Our technique for sensitive in-droplet cell analysis provides scope for rapid, high-throughput detection of low-abundance intracellular analytes.

5.
Anal Chem ; 95(24): 9337-9346, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37279505

ABSTRACT

In this article, we report a microfluidic bead-based lateral flow immunoassay (LFIA) with a novel sensing mechanism for label-free, non-optical detection of protein binding. This device comprises two packed beds of microbeads: first, bioconjugated microbeads that serve as a test line, and second, a three-dimensional (3D) electrode for sensing. As the protein target binds the bioconjugated microbeads, a shift in ionic conductivity across the bioconjugated beads is produced and can be directly measured at the surface of the 3D electrode by obtaining current-voltage curves before and after incubation of the analyte. We use a model antigen, rabbit IgG, for quantitative evaluation of this sensor, obtaining a limit of detection (LOD) of 50 nM for the LFIA. We demonstrate that this device can be used to measure binding kinetics, exhibiting a rapid (<3 min) increase in the signal after the introduction of the analyte and an exponential decay in the signal after replacing the sample with buffer only. To improve the LOD of our system, we implement an electrokinetic preconcentration technique, faradaic ion concentration polarization (fICP), to increase the local concentration of antigen available during binding as well as the time the antigen interacts with the test line. Our results indicate that this enrichment-enhanced assay (fICP-LFIA) has an LOD of 370 pM, an 135-fold improvement over the LFIA and a 7-fold improvement in sensitivity. We anticipate that this device can be readily adapted for point-of-care diagnostics and translated to any desired protein target by simply modifying the biorecognition agent on these off-the-shelf microbeads.


Subject(s)
Immunoassay , Immunoassay/methods , Limit of Detection
6.
Lab Chip ; 23(11): 2586-2600, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37185977

ABSTRACT

This paper describes a dielectrophoretic method for selection of circulating melanoma cells (CMCs), which lack reliable identifying surface antigens and are extremely rare in blood. This platform captures CMCs individually by dielectrophoresis (DEP) at an array of wireless bipolar electrodes (BPEs) aligned to overlying nanoliter-scale chambers, which isolate each cell for subsequent on-chip single-cell analysis. To determine the best conditions to employ for CMC isolation in this DEP-BPE platform, the static and dynamic dielectrophoretic response of established melanoma cell lines, melanoma cells from patient-derived xenografts (PDX) and peripheral blood mononuclear cells (PBMCs) were evaluated as a function of frequency using two established DEP platforms. Further, PBMCs derived from patients with advanced melanoma were compared with those from healthy controls. The results of this evaluation reveal that each DEP method requires a distinct frequency to achieve capture of melanoma cells and that the distribution of dielectric properties of PBMCs is more broadly varied in and among patients versus healthy controls. Based on this evaluation, we conclude that 50 kHz provides the highest capture efficiency on our DEP-BPE platform while maintaining a low rate of capture of unwanted PBMCs. We further quantified the efficiency of single-cell capture on the DEP-BPE platform and found that the efficiency diminished beyond around 25% chamber occupancy, thereby informing the minimum array size that is required. Importantly, the capture efficiency of the DEP-BPE platform for melanoma cells when using optimized conditions matched the performance predicted by our analysis. Finally, isolation of melanoma cells from contrived (spike-in) and clinical samples on our platform using optimized conditions was demonstrated. The capture and individual isolation of CMCs, confirmed by post-capture labeling, from patient-derived samples suggests the potential of this platform for clinical application.


Subject(s)
Melanoma , Neoplastic Cells, Circulating , Humans , Leukocytes, Mononuclear , Cell Separation/methods , Cell Line
7.
Anal Chem ; 95(20): 7880-7887, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37172139

ABSTRACT

Tumor cell heterogeneity drives disease progression and response to therapy, and therefore, there is a need for single-cell analysis methods. In this paper, we present an integrated, scalable method to analyze enzymatic activity in many individual cancer cells at once. The reported method uses dielectrophoresis (DEP) to selectively capture tumor cells at wireless electrodes aligned to an overlying array of cell-sized micropockets. Following hydrodynamic transfer of the captured cells into microfluidic chambers, the chambers are fluidically isolated and sealed with a hydrophobic ionic liquid, which possesses sufficient conductivity to allow for subsequent electrical lysis of the cells to access their contents for enzymatic assay. The wireless electrodes have an interlocking spiral design that ensures successful electrical lysis regardless of the location of the cell within the chamber. Here, breast cancer cells are assessed for ß-galactosidase through its activation of a fluorogenic substrate. A key point is that the fluorogenic assay solution was optimized to allow for dielectrophoretic cell capture, thereby obviating the need for a solution exchange step. Our approach has several distinct advantages including a high rate of single-cell capture, a capture efficiency that is independent of the dimensions of the reaction chambers, no need for mechanical closure of reaction volumes, and no observed cross-talk. In this study, first, the steps of cell capture, transfer, and lysis are established on this platform in the presence of the optimized assay solution. We then quantify the increase in fluorescence intensity obtained over the duration of the enzymatic assay of individual cells. Finally, this method is applied to the analysis of ß-galactosidase activity in 258 individual MDA-MB-231 breast cancer cells, revealing heterogeneity in expression of this enzyme in this cell line. We expect that the adaptability of this method will allow for expanded studies of single-cell enzymatic expression and activity. This will in turn open avenues of research into cancer cell heterogeneity in metabolism, invasiveness, and drug response. The ability to study these features of cancer at the single-cell level raises the possibility for treatment plans tailored to target the specific combinations of cell subpopulations present in tumors. Furthermore, we expect that this method can be adapted to uses outside of cancer research, such as studies of neuron metabolism, pathogenesis in bacteria, and stem cell development.


Subject(s)
Breast Neoplasms , Microfluidic Analytical Techniques , Humans , Female , Single-Cell Analysis , Electrodes , Electric Conductivity , beta-Galactosidase , Microfluidic Analytical Techniques/methods , Electrophoresis/methods
8.
Annu Rev Anal Chem (Palo Alto Calif) ; 16(1): 49-69, 2023 06 14.
Article in English | MEDLINE | ID: mdl-36854209

ABSTRACT

Label-free electrochemical biosensing leverages the advantages of label-free techniques, low cost, and fewer user steps, with the sensitivity and portability of electrochemical analysis. In this review, we identify four label-free electrochemical biosensing mechanisms: (a) blocking the electrode surface, (b) allowing greater access to the electrode surface, (c) changing the intercalation or electrostatic affinity of a redox probe to a biorecognition unit, and (d) modulating ion or electron transport properties due to conformational and surface charge changes. Each mechanism is described, recent advancements are summarized, and relative advantages and disadvantages of the techniques are discussed. Furthermore, two avenues for gaining further diagnostic information from label-free electrochemical biosensors, through multiplex analysis and incorporating machine learning, are examined.


Subject(s)
Diagnosis , Electrochemical Techniques , Electrodes , Electron Transport , Machine Learning
9.
ACS Sens ; 8(3): 1173-1182, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36800317

ABSTRACT

In this paper, we report a method to integrate the electrokinetic pre-enrichment of nucleic acids within a bed of probe-modified microbeads with their label-free electrochemical detection. In this detection scheme, hybridization of locally enriched target nucleic acids to the beads modulates the conduction of ions along the bead surfaces. This is a fundamental advancement in that this mechanism is similar to that observed in nanopore sensors, yet occurs in a bed of microbeads with microscale interstices. In application, this approach has several distinct advantages. First, electrokinetic enrichment requires only a simple DC power supply, and in combination with nonoptical detection, it makes this method amenable to point-of-care applications. Second, the sensor is easy to fabricate and comprises a packed bed of commercially available microbeads, which can be readily modified with a wide range of probe types, thereby making this a versatile platform. Finally, the sensor is highly sensitive (picomolar) despite the modest 100-fold pre-enrichment we employ here by faradaic ion concentration polarization (fICP). Further gains are anticipated under conditions for fICP focusing that are known to yield higher enrichment factors (up to 100,000-fold enrichment). Here, we demonstrate the detection of 3.7 pM single-stranded DNA complementary to the bead-bound oligoprobe, following a 30 min single step of enrichment and hybridization. Our results indicate that a shift in the slope of a current-voltage curve occurs upon hybridization and that this shift is proportional to the logarithm of the concentration of target DNA. Finally, we investigate the proposed mechanism of sensing by developing a numerical simulation that shows an increase in ion flux through the bed of insulating beads, given the changes in surface charge and zeta potential, consistent with our experimental conditions.


Subject(s)
Nucleic Acids , Nucleic Acids/chemistry , Nucleic Acid Hybridization/genetics , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Ions/chemistry
10.
ACS Appl Mater Interfaces ; 14(16): 18087-18096, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35417143

ABSTRACT

This paper describes an electropolymerization-based on-chip valving system, accomplished by electrosynthesis of conductive polymeric ionic liquid (CPIL) films at selected points within an array of bipolar electrodes (BPEs), in which each of these wireless electrodes spans an IL-aqueous phase boundary. The low viscosity and high hydrophobicity of the CPIL precursor allow it to be patterned by established microfluidic methods. This advancement has the potential to impact microscale analysis because it allows on-demand creation of solid CPIL microstructures at locations specified by microfluidics, phase boundaries, and electrode potentials. To achieve this outcome, an imidazolium-based IL was functionalized with a pyrrole moiety, and the viscosity was tuned by choosing the appropriate counterion to form a CPIL with the desired viscosity, hydrophobicity, and oxidation potential. This monomer species was then introduced into a microfluidic device, which was prefilled with an aqueous buffer solution. The device comprised many parallel microchannels lined with nanoliter-scale chambers. BPEs interconnected the channels such that the BPE tips were each aligned to a chamber opening. The electrodes contacting the outermost channels were connected directly to a power supply and functioned as driving electrodes. The CPIL displaced the buffer in the channels and established a phase boundary at the opening of each chamber, thereby digitizing the aqueous phase. Finally, an alternating square waveform (under mode 1) was applied for 5 min to yield immobilized polymer films at a location defined by the BPE poles. In total, three modes were developed and three corresponding polymer film patterns were formed. Under mode 2, a DC power supply was used to achieve a dissymmetrical polymer film pattern, and, under mode 3, a regional polymer film pattern was formed under an AC potential with a DC offset. Our preliminary results demonstrate that the generated polymer films are immobile and sufficiently thick to seal the chambers at room temperature over the duration of our observation window (50 min), and this seal is maintained even at elevated temperatures that induce partial evaporation of the chamber contents. A key point is that this method is compatible with a preceding step─dielectrophoretic capture of single melanoma cells within the nanoliter-scale chambers.

11.
Lab Chip ; 22(3): 573-583, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35023536

ABSTRACT

Ion concentration polarization (ICP) accomplishes preconcentration for bioanalysis by localized depletion of electrolyte ions, thereby generating a gradient in electric field strength that facilitates electrokinetic focusing of charged analytes by their electromigration against opposing fluid flow. Such ICP focusing has been shown to accomplish up to a million-fold enrichment of nucleic acids and proteins in single-stage preconcentrators. However, the rate at which the sample volume is swept is limited, requiring several hours to achieve these high enrichment factors. This limitation is caused by two factors. First, an ion depleted zone (IDZ) formed at a planar membrane or electrode may not extend across the full channel cross section under the flow rate employed for focusing, thereby allowing the analyte to "leak" past the IDZ. Second, within the IDZ, large fluid vortices lead to mixing, which decreases the efficiency of analyte enrichment and worsens with increased channel dimensions. Here, we address these challenges with faradaic ICP (fICP) at a three-dimensional (3D) electrode comprising metallic microbeads. This 3D-electrode distributes the IDZ, and therefore, the electric field gradient utilized for counter-flow focusing across the full height of the fluidic channel, and its large area, microstructured surface supports smaller vortices. An additional bed of insulating microbeads restricts flow patterns and supplies a large area for surface conduction of ions through the IDZ. Finally, the resistance of this secondary bed enhances focusing by locally strengthening sequestering forces. This easy-to-build platform lays a foundation for the integration of enrichment with user-defined packed bed and electrode materials.


Subject(s)
Nucleic Acids , Electrodes , Ions , Porosity , Proteins/analysis
12.
Anal Chem ; 93(1): 103-123, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33231423
13.
Anal Chim Acta ; 1128: 149-173, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32825899

ABSTRACT

Ion concentration polarization focusing (ICPF) is an electrokinetic technique, in which analytes are enriched and separated along a localized electric field gradient in the presence of a counter flow. This field gradient is generated by depletion of ions of the background electrolyte at an ion permselective junction. In this tutorial review, we summarize the fundamental principles and experimental parameters that govern selective ion transport and the stability of the enriched analyte plug. We also examine faradaic ICP (fICP), in which local ion concentration is modulated via electrochemical reactions as an attractive alternative to ICP that achieves similar performance with a decrease in both power consumption and Joule heating. The tutorial covers important challenges to the broad application of ICPF including undesired pH gradients, low volumetric throughput, samples that induce biofouling or are highly conductive, and limited approaches to on- or off-chip analysis. Recent developments in the field that seek to address these challenges are reviewed along with new approaches to maximize enrichment, focus uncharged analytes, and achieve enrichment and separation in water-in-oil droplets. For new practitioners, we discuss practical aspects of ICPF, such as strategies for device design and fabrication and the relative advantages of several types of ion selective junctions and electrodes. Lastly, we summarize tips and tricks for tackling common experimental challenges in ICPF.

14.
Anal Chem ; 92(4): 3346-3353, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31950824

ABSTRACT

Circulating tumor DNA (ctDNA) is a promising biomarker that can provide a wealth of information regarding the genetic makeup of cancer as well as provide a guide for monitoring treatment. Methods for rapid and accurate profiling of ctDNA are highly desirable in order to obtain the necessary information from this biomarker. However, isolation of ctDNA and its subsequent analysis remains a challenge due to the dependence on expensive and specialized equipment. In order to enable widespread implementation of ctDNA analysis, there is a need for low-cost and highly accurate methods that can be performed by nonexpert users. In this study, an assay is developed that exploits the high specificity of molecular beacon (MB) probes with the speed and simplicity of loop-mediated isothermal amplification (LAMP) for the detection of the BRAF V600E single-nucleotide polymorphism (SNP). Furthermore, solid-phase microextraction (SPME) is applied for the successful isolation of clinically relevant concentrations (73.26 fM) of ctDNA from human plasma. In addition, the individual effects of plasma salts and protein on the extraction of ctDNA with SPME are explored. The performed work expands the use of MB-LAMP for SNP detection as well as demonstrates SPME as a sample preparation tool for nucleic acid analysis in plasma.


Subject(s)
Circulating Tumor DNA/isolation & purification , Nucleic Acid Amplification Techniques , Proto-Oncogene Proteins B-raf/genetics , Solid Phase Microextraction , Circulating Tumor DNA/blood , Humans , Polymorphism, Single Nucleotide/genetics
15.
J Am Chem Soc ; 142(6): 3196-3204, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31951387

ABSTRACT

Droplet-based techniques have had a profound impact in chemistry, owing to their ability to perform rapid and massively parallel reactions in minute fluid volumes. In many applications, concentration enrichment is required to increase the speed of reactions or the sensitivity of assays; but in-droplet concentration enrichment remains challenging. Here, we interface electrokinetic concentration polarization with droplet microfluidics to accomplish in-droplet demixing. This result is significant because the concentration of any charged species in the droplet can be enriched and the approach can be readily integrated into existing droplet workflows. Further, we show that such electrokinetic enrichment is rapid, on the order of seconds, and is robust, occurring over a wide parametric space. We further demonstrate electrokinetic separation of two anionic fluorophores within the droplet. Such a capability potentiates the droplet-templated synthesis of particles with gradient composition and the development of mobility-shift assays, which rely on discrimination of multiple species tagged with a single color fluorophore. Finally, by using a calcium-binding dye as an indicator, we demonstrate in-droplet cation exchange. This demonstration of cation exchange in droplets is significant because of its broad applicability to strategies for synthesis and bioassays. These results lay the foundation for new advanced droplet techniques with transformative applications.


Subject(s)
Nanotechnology , Oils/chemistry , Anions , Calcium/chemistry , Cations , Fluorescent Dyes/chemistry , Kinetics , Water/chemistry
16.
Nat Chem ; 12(1): 14-16, 2020 01.
Article in English | MEDLINE | ID: mdl-31827273
17.
Lab Chip ; 19(13): 2233-2240, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31161167

ABSTRACT

Ion concentration polarization (ICP) has been broadly applied to accomplish electrokinetic focusing of charged species. However, ICP-based extraction and enrichment of uncharged (neutral) compounds, important for pharmaceutical, biological, and environmental applications, has not yet been reported. Here, we report the ICP-based continuous extraction of two neutral compounds from aqueous solution, by their partition into an ionic micellar phase. Our initial results show that the efficiency of the extraction increases with the concentration of the surfactant comprising the micellar phase, reaching 98 ± 2%, and drops precipitously when the concentration of the target compound exceeds the capacity of the micelles. As a key feature relevant to the practical application of this method, we show that focusing occurs even an order of magnitude below the critical micelle concentration through the local enrichment and assembly of surfactants into micelles, thus minimizing their consumption. To underscore the relevance of this approach to water purification, this method is applied to the extraction of pyrene, a model for polyaromatic hydrocarbons. This approach provides access to a broad range of strategies for selective separation that have been developed in micellar electrokinetic chromatography.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary , Microfluidic Analytical Techniques , Pyrenes/isolation & purification , Surface-Active Agents/chemistry , Ions/chemistry , Micelles , Microfluidic Analytical Techniques/instrumentation , Pyrenes/chemistry , Solutions , Water/chemistry
18.
Micromachines (Basel) ; 10(4)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018537

ABSTRACT

Clusters of biological cells play an important role in normal and disease states, such as in the release of insulin from pancreatic islets and in the enhanced spread of cancer by clusters of circulating tumor cells. We report a method to pattern cells into clusters having sizes correlated to the dimensions of each electrode in an array of wireless bipolar electrodes (BPEs). The cells are captured by dielectrophoresis (DEP), which confers selectivity, and patterns cells without the need for physical barriers or adhesive interactions that can alter cell function. Our findings demonstrate that this approach readily achieves fine control of cell cluster size over a broader range set by other experimental parameters. These parameters include the magnitude of the voltage applied externally to drive capture at the BPE array, the rate of fluid flow, and the time allowed for DEP-based cell capture. Therefore, the reported method is anticipated to allow the influence of cluster size on cell function to be more fully investigated.

19.
Chem Sci ; 10(5): 1506-1513, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30809368

ABSTRACT

We present integration of selective single-cell capture at an array of wireless electrodes (bipolar electrodes, BPEs) with transfer into chambers, reagent exchange, fluidic isolation and rapid electrical lysis in a single platform, thus minimizing sample loss and manual intervention steps. The whole process is achieved simply by exchanging the solution in a single inlet reservoir and by adjusting the applied voltage at a pair of driving electrodes, thus making this approach particularly well-suited for a broad range of research and clinical applications. Further, the use of BPEs allows the array to be scalable to increase throughput. Specific innovations reported here include the incorporation of a leak channel to balance competing flow paths, the use of 'split BPEs' to create a distinct recapture and electrical lysis point within the reaction chamber, and the dual purposing of an ionic liquid as an immiscible phase to seal the chambers and as a conductive medium to permit electrical lysis at the split BPEs.

20.
J Org Chem ; 84(4): 2346-2350, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30681336

ABSTRACT

A strategy to control the oxidation potential of catechol using borinic acids is presented. Borinic acids reversibly bind catechol to form boron "ate" complexes (BACs) that alter the electron density on the oxygen atoms of catechol and, in turn, the propensity of the catechol toward electrochemical oxidation. The effect of different substituents on the borinic acid are investigated to determine their efficacy in tuning the electron density within the BAC and the resulting oxidation potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...