Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
BMC Infect Dis ; 23(1): 658, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37798644

BACKGROUND: Few studies on neonatal severe bacterial infection are available in LMICs. Data are needed in these countries to prioritize interventions and decrease neonatal infections which are a primary cause of neonatal mortality. The BIRDY project (Bacterial Infections and Antimicrobial Drug Resistant among Young Children) was initially conducted in Madagascar, Senegal and Cambodia (BIRDY 1, 2012-2018), and continued in Madagascar only (BIRDY 2, 2018-2021). We present here the BIRDY 2 project whose objectives were (1) to estimate the incidence of neonatal severe bacterial infections and compare these findings with those obtained in BIRDY 1, (2) to identify determinants associated with severe bacterial infection and (3) to specify the antibiotic resistance pattern of bacteria in newborns. METHODS: The BIRDY 2 study was a prospective community-based mother and child cohort, both in urban and semi-rural areas. All pregnant women in the study areas were identified and enrolled. Their newborns were actively and passively followed-up from birth to 3 months. Data on clinical symptoms developed by the children and laboratory results of all clinical samples investigated were collected. A Cox proportional hazards model was performed to identify risk factors associated with possible severe bacterial infection. FINDINGS: A total of 53 possible severe bacterial infection and 6 confirmed severe bacterial infection episodes were identified among the 511 neonates followed-up, with more than half occurring in the first 3 days. For the first month period, the incidence of confirmed severe bacterial infection was 11.7 per 1,000 live births indicating a 1.3 -fold decrease compared to BIRDY 1 in Madagascar (p = 0.50) and the incidence of possible severe bacterial infection was 76.3, indicating a 2.6-fold decrease compared to BIRDY 1 in Madagascar (p < 0.001). The 6 severe bacterial infection confirmed by blood culture included 5 Enterobacterales and one Enterococcus faecium. The 5 Enterobacterales were extended-spectrum ß-lactamases (ESBL) producers and were resistant to quinolones and gentamicin. Enterococcus faecium was sensitive to vancomycin but resistant to amoxicillin and to gentamicin. These pathogns were classified as multidrug-resistant bacteria and were resistant to antibiotics recommended in WHO guidelines for neonatal sepsis. However, they remained susceptible to carbapenem. Fetid amniotic fluid, need for resuscitation at birth and low birth weight were associated with early onset possible severe bacterial infection. CONCLUSION: Our results suggest that the incidence of severe bacterial infection is still high in the community of Madagascar, even if it seems lower when compared to BIRDY 1 estimates, and that existing neonatal sepsis treatment guidelines may no longer be appropriate in Madagascar. These results motivate to further strengthen actions for the prevention, early diagnosis and case management during the first 3 days of life.


Bacterial Infections , Communicable Diseases , Neonatal Sepsis , Child , Infant, Newborn , Humans , Female , Pregnancy , Child, Preschool , Neonatal Sepsis/drug therapy , Prospective Studies , Madagascar/epidemiology , Incidence , Bacterial Infections/drug therapy , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Communicable Diseases/drug therapy , Gentamicins/therapeutic use , Risk Factors
2.
PLoS Med ; 18(9): e1003681, 2021 09.
Article En | MEDLINE | ID: mdl-34582450

BACKGROUND: Severe bacterial infections (SBIs) are a leading cause of neonatal deaths in low- and middle-income countries (LMICs). However, most data came from hospitals, which do not include neonates who did not seek care or were treated outside the hospital. Studies from the community are scarce, and few among those available were conducted with high-quality microbiological techniques. The burden of SBI at the community level is therefore largely unknown. We aimed here to describe the incidence, etiology, risk factors, and antibiotic resistance profiles of community-acquired neonatal SBI in 3 LMICs. METHODS AND FINDINGS: The BIRDY study is a prospective multicentric community-based mother and child cohort study and was conducted in both urban and rural areas in Madagascar (2012 to 2018), Cambodia (2014 to 2018), and Senegal (2014 to 2018). All pregnant women within a geographically defined population were identified and enrolled. Their neonates were actively followed from birth to 28 days to document all episodes of SBI. A total of 3,858 pregnant women (2,273 (58.9%) in Madagascar, 814 (21.1%) in Cambodia, and 771 (20.0%) in Senegal) were enrolled in the study, and, of these, 31.2% were primigravidae. Women enrolled in the urban sites represented 39.6% (900/2,273), 45.5% (370/814), and 61.9% (477/771), and those enrolled in the rural sites represented 60.4% (1,373/2,273), 54.5% (444/814), and 38.1% (294/771) of the total in Madagascar, Cambodia, and Senegal, respectively. Among the 3,688 recruited newborns, 49.6% were male and 8.7% were low birth weight (LBW). The incidence of possible severe bacterial infection (pSBI; clinical diagnosis based on WHO guidelines of the Integrated Management of Childhood Illness) was 196.3 [95% confidence interval (CI) 176.5 to 218.2], 110.1 [88.3 to 137.3], and 78.3 [59.5 to 103] per 1,000 live births in Madagascar, Cambodia, and Senegal, respectively. The incidence of pSBI differed between urban and rural sites in all study countries. In Madagascar, we estimated an incidence of 161.0 pSBI per 1,000 live births [133.5 to 194] in the urban site and 219.0 [192.6 to 249.1] pSBI per 1,000 live births in the rural site (p = 0.008). In Cambodia, estimated incidences were 141.1 [105.4 to 189.0] and 85.3 [61.0 to 119.4] pSBI per 1,000 live births in urban and rural sites, respectively (p = 0.025), while in Senegal, we estimated 103.6 [76.0 to 141.2] pSBI and 41.5 [23.0 to 75.0] pSBI per 1,000 live births in urban and rural sites, respectively (p = 0.006). The incidences of culture-confirmed SBI were 15.2 [10.6 to 21.8], 6.5 [2.7 to 15.6], and 10.2 [4.8 to 21.3] per 1,000 live births in Madagascar, Cambodia, and Senegal, respectively, with no difference between urban and rural sites in each country. The great majority of early-onset infections occurred during the first 3 days of life (72.7%). The 3 main pathogens isolated were Klebsiella spp. (11/45, 24.4%), Escherichia coli (10/45, 22.2%), and Staphylococcus spp. (11/45, 24.4%). Among the 13 gram-positive isolates, 5 were resistant to gentamicin, and, among the 29 gram-negative isolates, 13 were resistant to gentamicin, with only 1 E. coli out of 10 sensitive to ampicillin. Almost one-third of the isolates were resistant to both first-line drugs recommended for the management of neonatal sepsis (ampicillin and gentamicin). Overall, 38 deaths occurred among neonates with SBI (possible and culture-confirmed SBI together). LBW and foul-smelling amniotic fluid at delivery were common risk factors for early pSBI in all 3 countries. A main limitation of the study was the lack of samples from a significant proportion of infants with pBSI including 35 neonatal deaths. Without these samples, bacterial infection and resistance profiles could not be confirmed. CONCLUSIONS: In this study, we observed a high incidence of neonatal SBI, particularly in the first 3 days of life, in the community of 3 LMICs. The current treatment for the management of neonatal infection is hindered by antimicrobial resistance. Our findings suggest that microbiological diagnosis of SBI remains a challenge in these settings and support more research on causes of neonatal death and the implementation of early interventions (e.g., follow-up of at-risk newborns during the first days of life) to decrease the burden of neonatal SBI and associated mortality and help achieve Sustainable Development Goal 3.


Bacterial Infections/epidemiology , Adolescent , Adult , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Cambodia/epidemiology , Cohort Studies , Female , Humans , Incidence , Infant, Newborn , Infant, Newborn, Diseases , Madagascar/epidemiology , Male , Middle Aged , Patient Acuity , Pregnancy , Prospective Studies , Senegal/epidemiology , Young Adult
3.
Am J Trop Med Hyg ; 105(5): 1339-1346, 2021 08 30.
Article En | MEDLINE | ID: mdl-34460418

Maternal group B Streptococcus (GBS) colonization is a major risk factor for neonatal GBS infection. However, data on GBS are scarce in low- and middle-income countries. Using sociodemographic data and vaginal swabs collected from an international cohort of mothers and newborns, this study aimed to estimate the prevalence of GBS colonization among pregnant women in Madagascar (n = 1,603) and Senegal (n = 616). The prevalence was 5.0% (95% CI, 3.9-6.1) and 16.1% (95% CI, 13.1-19.0) in Madagascar and Senegal, respectively. No factors among sociodemographic characteristics, living conditions, and obstetric history were found to be associated independently with GBS colonization in both countries. This community-based study provides one of the first estimates of maternal GBS colonization among pregnant women from Madagascar and Senegal.


Maternal Exposure/statistics & numerical data , Mothers/statistics & numerical data , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Streptococcal Infections/diagnosis , Streptococcal Infections/epidemiology , Streptococcus/isolation & purification , Adult , Cohort Studies , Female , Humans , Infant, Newborn , Madagascar/epidemiology , Population Surveillance , Pregnancy , Pregnant Women , Prevalence , Senegal/epidemiology
4.
Am J Trop Med Hyg ; 100(6): 1355-1362, 2019 06.
Article En | MEDLINE | ID: mdl-31017082

The diffusion of extended-spectrum beta-lactamase (E-ESBL)-producing Enterobacteriaceae is a major concern worldwide, especially in low-income countries, where they may lead to therapeutic failures. In hospitals, where colonization is the highest, E-ESBL transmission is poorly understood, limiting the possibility of establishing effective control measures. We assessed E-ESBL-acquisition routes in a neonatalogy ward in Madagascar. Individuals from a neonatology ward were longitudinally followed-up (August 2014-March 2015). Newborns' family members' and health-care workers (HCWs) were stool-sampled and tested for E-ESBL colonization weekly. Several hypothetical acquisition routes of newborns-e.g. direct contact with family members and HCWs and indirect contact with other newborns through environmental contamination, colonization pressure, or transient hand carriage-were examined and compared using mathematical modeling and Bayesian inference. In our results, high E-ESBL acquisition rates were found, reaching > 70% for newborns, > 55% for family members, and > 75% for HCWs. Modeling analyses indicated transmission sources for newborn colonization to be species dependent. Health-care workers' route were selected for Klebsiella pneumoniae and Escherichia coli, with respective estimated transmission strengths of 0.05 (0.008; 0.14) and 0.008 (0.001; 0.021) ind-1 day-1. Indirect transmissions associated with ward prevalence, e.g. through hand carriage or environment, were selected for Enterobacter cloacae, E. coli, and K. pneumoniae (range 0.27-0.41 ind-1 day-1). Importantly, family members were not identified as transmission source. To conclude, E-ESBL acquisition sources are strongly species dependent. Escherichia coli and E. cloacae involve more indirect contamination, whereas K. pneumoniae also spreads through contact with colonized HCWs. These findings should help improve control measures to reduce in-hospital transmission.


Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/transmission , Enterobacteriaceae/drug effects , beta-Lactamases/metabolism , Carrier State , Enterobacteriaceae/enzymology , Enterobacteriaceae Infections/epidemiology , Health Personnel , Humans , Infant, Newborn , Madagascar/epidemiology , Models, Biological , Monte Carlo Method , Nurseries, Hospital , Parents , beta-Lactamases/genetics
5.
Article En | MEDLINE | ID: mdl-30792853

Background: The present study aimed to perform a deep phenotypic and genotypic analysis of 15 clinical carbapenem-resistant Acinetobacter baumannii (CRAb) strains isolated in Madagascar between 2008 and 2016 from diverse sources. Methods: CRAb isolates collected from the Clinical Biology Centre of the Institut Pasteur of Madagascar, from the neonatal unit of Antananarivo military hospital, and from intensive care units of Mahajanga Androva and Antananarivo Joseph Ravoahangy Andrianavalona (HJRA) hospitals were subjected to susceptibility testing. Whole-genome sequencing allowed us to assess the presence of antibiotic-resistance determinants, insertion sequences, integrons, genomic islands and potential virulence factors in all strains. The structure of the carO porin gene and deduced protein (CarO) were also assessed in CRAb isolates. Results: All isolates were found to be multidrug-resistant strains. Antibiotic-resistance genes against six classes of antimicrobial agents were described. The four carbapenem-resistance genes: blaOXA-51 like , blaOXA-23 , blaOXA-24 , and blaOXA-58 genes were detected in 100, 53.3, 13.3, and 6.6% of the isolates, respectively. Additionally, an ISAba1 located upstream of blaOXA-23 and blaADC-like genes was observed in 53.3 and 66.7% of isolates, respectively. Further, Tn2006 and Tn2008 were found associated to the ISAba1-blaOXA-23 structure. An 8051-bp mobilizable plasmid harbouring the blaOXA-24 gene was isolated in two strains. In addition, 46.7% of isolates were positive for class 1 integrons. Overall, five sequences types (STs), with predominantly ST2, were detected. Several virulence genes were found in the CRAb isolates, among which two genes, epsA and ptk, responsible for the capsule-positive phenotype, were involved in A. baumannii pathogenesis. Conclusions: This study revealed the presence of high-level carbapenem resistance in A. baumannii with the first description of OXA-24 and OXA-58 carbapenemases in Madagascar. This highlights the importance of better monitoring and controlling CRAb in Madagascan hospitals to avoid their spread.


Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial , Acinetobacter baumannii/classification , Acinetobacter baumannii/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Transposable Elements , Genomic Islands , Humans , Integrons , Madagascar , Microbial Sensitivity Tests , Phenotype , Plasmids/genetics , Plasmids/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism
6.
PLoS One ; 13(3): e0193325, 2018.
Article En | MEDLINE | ID: mdl-29494706

In low and middle income countries (LMICs), where the burden of neonatal sepsis is the highest, the spread of extended spectrum beta-lactamase-producing enterobacteriaceae (ESBL-PE) in the community, potentially contributing to the neonatal mortality, is a public health concern. Data regarding the acquisition of ESBL-PE during the neonatal period are scarce. The routes of transmission are not well defined and particularly the possible key role played by pregnant women. This study aimed to understand the neonatal acquisition of ESBL-PE in the community in Madagascar. The study was conducted in urban and semi-rural areas. Newborns were included at birth and followed-up during their first month of life. Maternal stool samples at delivery and six stool samples in each infant were collected to screen for ESBL-PE. A Cox proportional hazards model was performed to identify factors associated with the first ESBL-PE acquisition. The incidence rate of ESBL-PE acquisition was 10.4 cases/1000 newborn-days [95% CI: 8.0-13.4 cases per 1000 newborn-days]. Of the 83 ESBL-PE isolates identified, Escherichia coli was the most frequent species (n = 28, 34.1%), followed by Klebsiella pneumoniae (n = 20, 24.4%). Cox multivariate analysis showed that independent risk factors for ESBL-PE acquisition were low birth weight (adjusted Hazard-ratio (aHR) = 2.7, 95% CI [1.2; 5.9]), cesarean-section, (aHR = 3.4, 95% CI [1.7; 7.1]) and maternal use of antibiotics at delivery (aHR = 2.2, 95% CI [1.1; 4.5]). Our results confirm that mothers play a significant role in the neonatal acquisition of ESBL-PE. In LMICs, public health interventions during pregnancy should be reinforced to avoid unnecessary caesarean section, unnecessary antibiotic use at delivery and low birth weight newborns.


Enterobacteriaceae Infections/diagnosis , Enterobacteriaceae/enzymology , beta-Lactamases/metabolism , Adult , Child, Preschool , Cohort Studies , Enterobacteriaceae/isolation & purification , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Escherichia coli/enzymology , Escherichia coli/isolation & purification , Female , Humans , Incidence , Infant , Infant, Low Birth Weight , Infant, Newborn , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/isolation & purification , Madagascar/epidemiology , Male , Multivariate Analysis , Pregnancy , Proportional Hazards Models , Risk Factors , Young Adult
7.
J Exp Med ; 208(10): 2083-98, 2011 Sep 26.
Article En | MEDLINE | ID: mdl-21911422

Autosomal dominant TLR3 deficiency has been identified as a genetic etiology of childhood herpes simplex virus 1 (HSV-1) encephalitis (HSE). This defect is partial, as it results in impaired, but not abolished induction of IFN-ß and -λ in fibroblasts in response to TLR3 stimulation. The apparently normal resistance of these patients to other infections, viral illnesses in particular, may thus result from residual TLR3 responses. We report here an autosomal recessive form of complete TLR3 deficiency in a young man who developed HSE in childhood but remained normally resistant to other infections. This patient is compound heterozygous for two loss-of-function TLR3 alleles, resulting in an absence of response to TLR3 activation by polyinosinic-polycytidylic acid (poly(I:C)) and related agonists in his fibroblasts. Moreover, upon infection of the patient's fibroblasts with HSV-1, the impairment of IFN-ß and -λ production resulted in high levels of viral replication and cell death. In contrast, the patient's peripheral blood mononuclear cells responded normally to poly(I:C) and to all viruses tested, including HSV-1. Consistently, various TLR3-deficient leukocytes from the patient, including CD14(+) and/or CD16(+) monocytes, plasmacytoid dendritic cells, and in vitro derived monocyte-derived macrophages, responded normally to both poly(I:C) and HSV-1, with the induction of antiviral IFN production. These findings identify a new genetic etiology for childhood HSE, indicating that TLR3-mediated immunity is essential for protective immunity to HSV-1 in the central nervous system (CNS) during primary infection in childhood, in at least some patients. They also indicate that human TLR3 is largely redundant for responses to double-stranded RNA and HSV-1 in various leukocytes, probably accounting for the redundancy of TLR3 for host defense against viruses, including HSV-1, outside the CNS.


Encephalitis, Herpes Simplex/immunology , Immunity/immunology , Simplexvirus/immunology , Toll-Like Receptor 3/deficiency , Cells, Cultured , DNA Mutational Analysis , Encephalitis, Herpes Simplex/genetics , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/physiology , Genome-Wide Association Study , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Male , Mutation , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Pedigree , Poly I-C/immunology , Poly I-C/pharmacology , Simplexvirus/genetics , Toll-Like Receptor 3/genetics , Young Adult
...