Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Nat Commun ; 15(1): 2956, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580651

Pivotal in many ways for human health, the control of adult bone mass is governed by complex, incompletely understood crosstalk namely between mesenchymal stem cells, osteoblasts and osteoclasts. The SOX4, SOX11 and SOX12 (SOXC) transcription factors were previously shown to control many developmental processes, including skeletogenesis, and SOX4 was linked to osteoporosis, but how SOXC control adult bone mass remains unknown. Using SOXC loss- and gain-of-function mouse models, we show here that SOXC redundantly promote prepubertal cortical bone mass strengthening whereas only SOX4 mitigates adult trabecular bone mass accrual in early adulthood and subsequent maintenance. SOX4 favors bone resorption over formation by lowering osteoblastogenesis and increasing osteoclastogenesis. Single-cell transcriptomics reveals its prevalent expression in Lepr+ mesenchymal cells and ability to upregulate genes for prominent anti-osteoblastogenic and pro-osteoclastogenic factors, including interferon signaling-related chemokines, contributing to these adult stem cells' secretome. SOXC, with SOX4 predominantly, are thus key regulators of adult bone mass.


Mesenchymal Stem Cells , Mice , Animals , Humans , Adult , Mesenchymal Stem Cells/metabolism , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism
2.
Proc Natl Acad Sci U S A ; 121(8): e2316969121, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38346197

SOX8 was linked in a genome-wide association study to human height heritability, but roles in chondrocytes for this close relative of the master chondrogenic transcription factor SOX9 remain unknown. We undertook here to fill this knowledge gap. High-throughput assays demonstrate expression of human SOX8 and mouse Sox8 in growth plate cartilage. In situ assays show that Sox8 is expressed at a similar level as Sox9 in reserve and early columnar chondrocytes and turned off when Sox9 expression peaks in late columnar and prehypertrophic chondrocytes. Sox8-/- mice and Sox8fl/flPrx1Cre and Sox9fl/+Prx1Cre mice (inactivation in limb skeletal cells) have a normal or near normal skeletal size. In contrast, juvenile and adult Sox8fl/flSox9fl/+Prx1Cre compound mutants exhibit a 15 to 20% shortening of long bones. Their growth plate reserve chondrocytes progress slowly toward the columnar stage, as witnessed by a delay in down-regulating Pthlh expression, in packing in columns and in elevating their proliferation rate. SOX8 or SOX9 overexpression in chondrocytes reveals not only that SOX8 can promote growth plate cell proliferation and differentiation, even upon inactivation of endogenous Sox9, but also that it is more efficient than SOX9, possibly due to greater protein stability. Altogether, these findings uncover a major role for SOX8 and SOX9 in promoting skeletal growth by stimulating commitment of growth plate reserve chondrocytes to actively proliferating columnar cells. Further, by showing that SOX8 is more chondrogenic than SOX9, they suggest that SOX8 could be preferred over SOX9 in therapies to promote cartilage formation or regeneration in developmental and degenerative cartilage diseases.


Chondrocytes , Genome-Wide Association Study , Mice , Humans , Animals , Chondrocytes/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Gene Expression Regulation , Cell Differentiation , Cell Proliferation , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism
3.
Cell Chem Biol ; 30(9): 1053-1063.e5, 2023 09 21.
Article En | MEDLINE | ID: mdl-37562406

Type I diabetes (T1D) impairs bone accrual in patients, but the mechanism is unclear. Here in a murine monogenic model for T1D, we demonstrate that diabetes suppresses bone formation resulting in a rapid loss of both cortical and trabecular bone. Single-cell RNA sequencing uncovers metabolic dysregulation in bone marrow osteogenic cells of diabetic mice. In vivo stable isotope tracing reveals impaired glycolysis in diabetic bone that is highly responsive to insulin stimulation. Remarkably, deletion of the insulin receptor reduces cortical but not trabecular bone. Increasing glucose uptake by overexpressing Glut1 in osteoblasts exacerbates bone defects in T1D mice. Conversely, activation of glycolysis by Pfkfb3 overexpression preserves both trabecular and cortical bone mass in the face of diabetes. The study identifies defective glucose metabolism in osteoblasts as a pathogenic mechanism for osteopenia in T1D, and furthermore implicates boosting osteoblast glycolysis as a potential bone anabolic therapy.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Humans , Mice , Animals , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Osteoblasts/metabolism , Bone Density , Glycolysis
4.
Cell Rep ; 40(2): 111045, 2022 07 12.
Article En | MEDLINE | ID: mdl-35830813

The mammalian skull vault is essential to shape the head and protect the brain, but the cellular and molecular events underlying its development remain incompletely understood. Single-cell transcriptomic profiling from early to late mouse embryonic stages provides a detailed atlas of cranial lineages. It distinguishes various populations of progenitors and reveals a high expression of SOXC genes (encoding the SOX4, SOX11, and SOX12 transcription factors) early in development in actively proliferating and myofibroblast-like osteodermal progenitors. SOXC inactivation in these cells causes severe skull and skin underdevelopment due to the limited expansion of cell populations before and upon lineage commitment. SOXC genes enhance the expression of gene signatures conferring dynamic cellular and molecular properties, including actin cytoskeleton assembly, chromatin remodeling, and signaling pathway induction and responsiveness. These findings shed light onto craniogenic mechanisms and SOXC functions and suggest that similar mechanisms could decisively control many developmental, adult, pathological, and regenerative processes.


Myofibroblasts , SOXC Transcription Factors , Animals , Gene Expression Regulation, Developmental , Mammals/metabolism , Mice , Myofibroblasts/metabolism , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism
5.
Nat Immunol ; 23(6): 947-959, 2022 06.
Article En | MEDLINE | ID: mdl-35552540

Inflammation is an important component of fibrosis but immune processes that orchestrate kidney fibrosis are not well understood. Here we apply single-cell sequencing to a mouse model of kidney fibrosis. We identify a subset of kidney tubule cells with a profibrotic-inflammatory phenotype characterized by the expression of cytokines and chemokines associated with immune cell recruitment. Receptor-ligand interaction analysis and experimental validation indicate that CXCL1 secreted by profibrotic tubules recruits CXCR2+ basophils. In mice, these basophils are an important source of interleukin-6 and recruitment of the TH17 subset of helper T cells. Genetic deletion or antibody-based depletion of basophils results in reduced renal fibrosis. Human kidney single-cell, bulk gene expression and immunostaining validate a function for basophils in patients with kidney fibrosis. Collectively, these studies identify basophils as contributors to the development of renal fibrosis and suggest that targeting these cells might be a useful clinical strategy to manage chronic kidney disease.


Basophils , Renal Insufficiency, Chronic , Animals , Fibrosis , Humans , Kidney/metabolism , Kidney Tubules , Mice , Renal Insufficiency, Chronic/metabolism , Single-Cell Analysis
6.
J Med Genet ; 59(11): 1058-1068, 2022 11.
Article En | MEDLINE | ID: mdl-35232796

BACKGROUND: A neurodevelopmental syndrome was recently reported in four patients with SOX4 heterozygous missense variants in the high-mobility-group (HMG) DNA-binding domain. The present study aimed to consolidate clinical and genetic knowledge of this syndrome. METHODS: We newly identified 17 patients with SOX4 variants, predicted variant pathogenicity using in silico tests and in vitro functional assays and analysed the patients' phenotypes. RESULTS: All variants were novel, distinct and heterozygous. Seven HMG-domain missense and five stop-gain variants were classified as pathogenic or likely pathogenic variant (L/PV) as they precluded SOX4 transcriptional activity in vitro. Five HMG-domain and non-HMG-domain missense variants were classified as of uncertain significance (VUS) due to negative results from functional tests. When known, inheritance was de novo or from a mosaic unaffected or non-mosaic affected parent for patients with L/PV, and from a non-mosaic asymptomatic or affected parent for patients with VUS. All patients had neurodevelopmental, neurological and dysmorphic features, and at least one cardiovascular, ophthalmological, musculoskeletal or other somatic anomaly. Patients with L/PV were overall more affected than patients with VUS. They resembled patients with other neurodevelopmental diseases, including the SOX11-related and Coffin-Siris (CSS) syndromes, but lacked the most specific features of CSS. CONCLUSION: These findings consolidate evidence of a fairly non-specific neurodevelopmental syndrome due to SOX4 haploinsufficiency in neurogenesis and multiple other developmental processes.


Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Neurodevelopmental Disorders , Humans , Micrognathism/genetics , Hand Deformities, Congenital/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Syndrome , Phenotype , DNA , SOXC Transcription Factors/genetics
7.
ACR Open Rheumatol ; 3(6): 359-370, 2021 Jun.
Article En | MEDLINE | ID: mdl-33931959

OBJECTIVES: Fibroblast-like synoviocytes (FLS) and articular chondrocytes (AC) derive from a common pool of embryonic precursor cells. They are currently believed to engage in largely distinct differentiation programs to build synovium and articular cartilage and maintain healthy tissues throughout life. We tested this hypothesis by deeply characterizing and comparing their transcriptomic attributes. METHODS: We profiled the transcriptomes of freshly isolated AC, synovium, primary FLS, and dermal fibroblasts from healthy adult humans using bulk RNA sequencing assays and downloaded published single-cell RNA sequencing data from freshly isolated human FLS. We integrated all data to define cell-specific signatures and validated findings with quantitative reverse transcription PCR of human samples and RNA hybridization of mouse joint sections. RESULTS: We identified 212 AC and 168 FLS markers on the basis of exclusive or enriched expression in either cell and 294 AC/FLS markers on the basis of similar expression in both cells. AC markers included joint-specific and pan-cartilaginous genes. FLS and AC/FLS markers featured 37 and 55 joint-specific genes, respectively, and 131 and 239 pan-fibroblastic genes, respectively. These signatures included many previously unrecognized markers with potentially important joint-specific roles. AC/FLS markers overlapped in their expression patterns among all FLS and AC subpopulations, suggesting that they fulfill joint-specific properties in all, rather than in discrete, AC and FLS subpopulations. CONCLUSION: This study broadens knowledge and identifies a prominent overlap of the human adult AC and FLS transcriptomic signatures. It also provides data resources to help further decipher mechanisms underlying joint homeostasis and degeneration and to improve the quality control of tissues engineered for regenerative treatments.

8.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article En | MEDLINE | ID: mdl-33597301

Cartilage is essential throughout vertebrate life. It starts developing in embryos when osteochondroprogenitor cells commit to chondrogenesis, activate a pancartilaginous program to form cartilaginous skeletal primordia, and also embrace a growth-plate program to drive skeletal growth or an articular program to build permanent joint cartilage. Various forms of cartilage malformation and degeneration diseases afflict humans, but underlying mechanisms are still incompletely understood and treatment options suboptimal. The transcription factor SOX9 is required for embryonic chondrogenesis, but its postnatal roles remain unclear, despite evidence that it is down-regulated in osteoarthritis and heterozygously inactivated in campomelic dysplasia, a severe skeletal dysplasia characterized postnatally by small stature and kyphoscoliosis. Using conditional knockout mice and high-throughput sequencing assays, we show here that SOX9 is required postnatally to prevent growth-plate closure and preosteoarthritic deterioration of articular cartilage. Its deficiency prompts growth-plate chondrocytes at all stages to swiftly reach a terminal/dedifferentiated stage marked by expression of chondrocyte-specific (Mgp) and progenitor-specific (Nt5e and Sox4) genes. Up-regulation of osteogenic genes (Runx2, Sp7, and Postn) and overt osteoblastogenesis quickly ensue. SOX9 deficiency does not perturb the articular program, except in load-bearing regions, where it also provokes chondrocyte-to-osteoblast conversion via a progenitor stage. Pathway analyses support roles for SOX9 in controlling TGFß and BMP signaling activities during this cell lineage transition. Altogether, these findings deepen our current understanding of the cellular and molecular mechanisms that specifically ensure lifelong growth-plate and articular cartilage vigor by identifying osteogenic plasticity of growth-plate and articular chondrocytes and a SOX9-countered chondrocyte dedifferentiation/osteoblast redifferentiation process.


Cartilage, Articular/cytology , Cell Differentiation , Chondrocytes/cytology , Chondrogenesis , Growth Plate/cytology , Osteoblasts/cytology , SOX9 Transcription Factor/physiology , Animals , Cartilage, Articular/metabolism , Cell Lineage , Chondrocytes/metabolism , Growth Plate/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/metabolism , Osteogenesis
9.
Methods Mol Biol ; 2230: 357-365, 2021.
Article En | MEDLINE | ID: mdl-33197025

Identifying and tracking proliferating and quiescent cells in situ is an important phenotyping component of skeletal tissues in development, physiology and disease. Among all the methods that exist, which include immunostaining for cell cycle-specific proteins, the gold standards use thymidine analogs. These compounds label proliferating cells by being incorporated into de novo-synthesized genomic DNA. 5-bromo-2'-deoxyuridine (BrdU) has traditionally been used for this purpose, but its detection is lengthy and requires harsh treatment of tissue sections to give access of anti-BrdU antibody to DNA. An alternative, more recently developed, uses 5-ethynyl-2'-deoxyuridine (EdU). This thymidine analog is detected by click chemistry, that is, covalent cross-linking of its ethynyl group with a fluorescent azide that is small enough to easily penetrate native tissues and reach DNA. In addition to being simple and quick, this EdU-based assay is compatible with other protocols, such as immunostaining, on the same tissue sections. We here describe an EdU-based protocol optimized to label and functionally assess actively proliferating cells as well as slowly dividing cells, including stem cells, in mouse skeletal tissues.


Bone Development/drug effects , Bone and Bones/ultrastructure , Cell Proliferation/drug effects , Staining and Labeling/methods , Animals , Bone and Bones/drug effects , Click Chemistry/methods , Deoxyuridine/analogs & derivatives , Deoxyuridine/pharmacology , Flow Cytometry/methods , Mice
10.
Am J Hum Genet ; 106(6): 830-845, 2020 06 04.
Article En | MEDLINE | ID: mdl-32442410

SOX6 belongs to a family of 20 SRY-related HMG-box-containing (SOX) genes that encode transcription factors controlling cell fate and differentiation in many developmental and adult processes. For SOX6, these processes include, but are not limited to, neurogenesis and skeletogenesis. Variants in half of the SOX genes have been shown to cause severe developmental and adult syndromes, referred to as SOXopathies. We here provide evidence that SOX6 variants also cause a SOXopathy. Using clinical and genetic data, we identify 19 individuals harboring various types of SOX6 alterations and exhibiting developmental delay and/or intellectual disability; the individuals are from 17 unrelated families. Additional, inconstant features include attention-deficit/hyperactivity disorder (ADHD), autism, mild facial dysmorphism, craniosynostosis, and multiple osteochondromas. All variants are heterozygous. Fourteen are de novo, one is inherited from a mosaic father, and four offspring from two families have a paternally inherited variant. Intragenic microdeletions, balanced structural rearrangements, frameshifts, and nonsense variants are predicted to inactivate the SOX6 variant allele. Four missense variants occur in residues and protein regions highly conserved evolutionarily. These variants are not detected in the gnomAD control cohort, and the amino acid substitutions are predicted to be damaging. Two of these variants are located in the HMG domain and abolish SOX6 transcriptional activity in vitro. No clear genotype-phenotype correlations are found. Taken together, these findings concur that SOX6 haploinsufficiency leads to a neurodevelopmental SOXopathy that often includes ADHD and abnormal skeletal and other features.


Attention Deficit Disorder with Hyperactivity/genetics , Craniosynostoses/genetics , Neurodevelopmental Disorders/genetics , Osteochondroma/genetics , SOXD Transcription Factors/genetics , Active Transport, Cell Nucleus , Adolescent , Amino Acid Sequence , Base Sequence , Brain/embryology , Brain/growth & development , Brain/metabolism , Child , Child, Preschool , Computer Simulation , Female , Genomic Structural Variation/genetics , Humans , Infant , Male , Mutation, Missense , Neurodevelopmental Disorders/diagnosis , RNA-Seq , SOXD Transcription Factors/chemistry , SOXD Transcription Factors/metabolism , Syndrome , Transcription, Genetic , Transcriptome , Translocation, Genetic/genetics
11.
Curr Opin Cell Biol ; 61: 39-47, 2019 12.
Article En | MEDLINE | ID: mdl-31382142

SOX9 is a pivotal transcription factor in chondrocytes, a lineage essential in skeletogenesis. Its mandatory role in transactivating many cartilage-specific genes is well established, whereas its pioneer role in lineage specification, which along with transactivation defines master transcription factors, remains to be better defined. Abundant, but yet incomplete evidence exists that intricate molecular networks control SOX9 activity during the multi-step chondrogenesis pathway. They include a highly modular genetic regulation, post-transcriptional and post-translational modifications, and varying sets of functional partners. Fully uncovering SOX9 actions and regulation is fundamental to explain mechanisms underlying many diseases that directly or indirectly affect SOX9 activities and to design effective disease treatments. We here review current knowledge, highlight recent discoveries, and propose new research directions to answer remaining questions.


Cartilage/metabolism , Cartilage/pathology , Chondrogenesis , SOX9 Transcription Factor/metabolism , Animals , Chondrocytes/metabolism , Gene Expression Regulation , Humans , Protein Processing, Post-Translational , SOX9 Transcription Factor/chemistry , SOX9 Transcription Factor/genetics
12.
Trends Genet ; 35(9): 658-671, 2019 09.
Article En | MEDLINE | ID: mdl-31288943

The SRY-related (SOX) transcription factor family pivotally contributes to determining cell fate and identity in many lineages. Since the original discovery that SRY deletions cause sex reversal, mutations in half of the 20 human SOX genes have been associated with rare congenital disorders, henceforward called SOXopathies. Mutations are generally de novo, heterozygous, and inactivating, revealing gene haploinsufficiency, but other types, including duplications, have been reported too. Missense variants primarily target the HMG domain, the SOX hallmark that mediates DNA binding and bending, nuclear trafficking, and protein-protein interactions. We here review key clinical and molecular features of SOXopathies and discuss the prospect that the disease family likely involves more SOX genes and larger clinical and genetic spectrums than currently appreciated.


Developmental Disabilities/etiology , Mutation , SOX Transcription Factors/genetics , Developmental Disabilities/genetics , Gene Expression Regulation, Developmental , Haploinsufficiency , Humans , SOX Transcription Factors/chemistry , SOX Transcription Factors/metabolism , SOXD Transcription Factors/genetics , Sex-Determining Region Y Protein/genetics
13.
Cell Physiol Biochem ; 51(5): 2237-2249, 2018.
Article En | MEDLINE | ID: mdl-30537732

BACKGROUND/AIMS: Mesenchymal stromal cells (MSCs) hold considerable promise in bone tissue engineering, but their poor survival and potency when in vivo implanted limits their therapeutic potential. For this reason, the study on culture conditions and cellular signals that can influence the potential therapeutic outcomes of MSCs have received considerable attention in recent years. Cell maintenance under hypoxic conditions, in particular for a short period, is beneficial for MSCs, as low O2 tension is similar to that present in the physiologic niche, however the precise mechanism through which hypoxia preconditioning affects these cells remains unclear. METHODS: In order to explore what happens during the first 48 h of hypoxia preconditioning in human MSCs (hMSCs) from bone marrow, the cells were exposed to 1.5% O2 tension in the X3 Hypoxia Hood and Culture Combo - Xvivo System device. The expression modulation of critical genes which could be good markers of increased osteopotency has been investigated by Western blot, immunufluorescence and ELISA. Luciferase reporter assay and Chromatin immunoprecipitation was used to investigate the regulation of the expression of Collagen type XV (ColXV) gene. RESULTS: We identified ColXV as a new low O2 tension sensitive gene, and provided a novel mechanistic evidence that directly HIF-1α (hypoxia-inducible factor-1 alpha) mediates ColXV expression in response to hypoxia, since it was found specifically in vivo recruited at ColXV promoter, in hypoxia-preconditioned hMSCs. This finding, together the evidence that also Runx2, VEGF and FGF-2 expression increased in hypoxia preconditioned hMSCs, is consistent with the possibility that increased ColXV expression in response to hypoxia is mediated by an early network that supports the osteogenic potential of the cells. CONCLUSION: These results add useful information to understand the role of a still little investigated collagen such as ColXV, and identify ColXV as a marker of successful hypoxia preconditioning. As a whole, our data give further evidence that hypoxia preconditioned hMSCs have greater osteopotency than normal hMSCs, and that the effects of hypoxic regulation of hMSCs activities should be considered before they are clinically applied.


Collagen/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mesenchymal Stem Cells/metabolism , Cell Hypoxia , Cells, Cultured , Collagen/analysis , Collagen/metabolism , Gene Expression Regulation , HeLa Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/analysis , Mesenchymal Stem Cells/cytology , Promoter Regions, Genetic
14.
Development ; 145(14)2018 07 18.
Article En | MEDLINE | ID: mdl-30021842

SOX9 controls cell lineage fate and differentiation in major biological processes. It is known as a potent transcriptional activator of differentiation-specific genes, but its earliest targets and its contribution to priming chromatin for gene activation remain unknown. Here, we address this knowledge gap using chondrogenesis as a model system. By profiling the whole transcriptome and the whole epigenome of wild-type and Sox9-deficient mouse embryo limb buds, we uncover multiple structural and regulatory genes, including Fam101a, Myh14, Sema3c and Sema3d, as specific markers of precartilaginous condensation, and we provide evidence of their direct transactivation by SOX9. Intriguingly, we find that SOX9 helps remove epigenetic signatures of transcriptional repression and establish active-promoter and active-enhancer marks at precartilage- and cartilage-specific loci, but is not absolutely required to initiate these changes and activate transcription. Altogether, these findings widen our current knowledge of SOX9 targets in early chondrogenesis and call for new studies to identify the pioneer and transactivating factors that act upstream of or along with SOX9 to prompt chromatin remodeling and specific gene activation at the onset of chondrogenesis and other processes.


Chondrogenesis/physiology , Chromatin Assembly and Disassembly/physiology , Embryo, Mammalian/embryology , Epigenesis, Genetic/physiology , Gene Expression Regulation, Developmental/physiology , Limb Buds/embryology , SOX9 Transcription Factor/metabolism , Animals , Embryo, Mammalian/cytology , Limb Buds/cytology , Mice , Mice, Transgenic , Microfilament Proteins/biosynthesis , Microfilament Proteins/genetics , Myosin Heavy Chains/biosynthesis , Myosin Heavy Chains/genetics , Myosin Type II/biosynthesis , Myosin Type II/genetics , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , SOX9 Transcription Factor/genetics
15.
J Tissue Eng Regen Med ; 12(2): 447-459, 2018 02.
Article En | MEDLINE | ID: mdl-28508565

Menaquinones, also known as Vitamin K2 family, regulate calcium homeostasis in a 'bone-vascular cross-talk' and recently received particular attention for their positive effect on bone formation. Given that the correlation between menaquinones and bone metabolism to date is still unclear, the objective of our study was to investigate the possible role of menaquinone-4 (MK-4), an isoform of the menaquinones family, in the modulation of osteogenesis. For this reason, we used a model of human amniotic fluid mesenchymal stem cells (hAFMSCs) cultured both in two-dimensional (2D) and three-dimensional (3D; RCCS™bioreactor) in vitro culture systems. Furthermore, to mimic the 'bone remodelling unit' in vitro, hAFMSCs were co-cultured in the 3D system with human monocyte cells (hMCs) as osteoclast precursors. The results showed that in a conventional 2D culture system, hAFMSCs were responsive to the MK-4, which significantly improved the osteogenic process through γ-glutamyl carboxylase-dependent pathway. The same results were obtained in the 3D dynamic system where MK-4 treatment supported the osteoblast-like formation promoting the extracellular bone matrix deposition and the expression of the osteogenic-related proteins (alkaline phosphatase, osteopontin, collagen type-1 and osteocalcin). Notably, when the hAFMSCs were co-cultured in a 3D dynamic system with the hMCs, the presence of MK-4 supported the cellular aggregate formation as well as the osteogenic function of hAFMSCs, but negatively affected the osteoclastogenic process. Taken together, our results demonstrate that MK-4 supported the aggregate formation of hAFMSCs and increased the osteogenic functions. Specifically, our data could help to optimize bone regenerative medicine combining cell-based approaches with MK-4 treatment.


Amniotic Fluid/cytology , Cell Culture Techniques/methods , Mesenchymal Stem Cells/cytology , Osteogenesis/drug effects , Vitamin K 2/analogs & derivatives , Carbon-Carbon Ligases/metabolism , Cells, Cultured , Female , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Osteoclasts/cytology , Osteoclasts/drug effects , Osteoclasts/metabolism , Pregnancy , Vitamin K 2/pharmacology
16.
Oncotarget ; 8(60): 101686-101696, 2017 Nov 24.
Article En | MEDLINE | ID: mdl-29254196

Hydrogen sulfide (H2S), generated in the osteoblasts predominantly via cystathionine-γ-lyase (CSE), is bone protective. Previous studies suggested that the onset of bone loss due to estrogen deficiency is associated to decreased levels of H2S and blunted gene expression of CSE. However, there are still a lot of unknowns on how H2S levels influence bone cells function. The present study aims to explore the mechanisms by which estrogen may regulate CSE expression, in particular the role of estrogen receptor alpha (ERα) in human osteoblasts (hOBs). Vertebral lamina derived hOBs were characterized and then assessed for CSE expression by western blot analysis in the presence or absence of ERα overexpression. Bioinformatic analysis, luciferase reporter assay and ChIP assay were performed to investigate ERα recruitment and activity on hCSE gene promoter. Three putative half Estrogen Responsive Elements (EREs) were identified in the hCSE core promoter and were found to participate in the ERα - mediated positive regulation of CSE expression. All osteoblast samples responded to ERα over-expression increasing the levels of CSE protein in a comparable manner. Notably, the ERα recruitment on the regulatory regions of the CSE promoter occurred predominantly in female hOBs than in male hOBs. The obtained results suggest that CSE/H2S system is in relation with estrogen signaling in bone in a gender specific manner.

17.
Article En | MEDLINE | ID: mdl-28660185

Tissue engineering (TE) approaches using biomaterials have gain important roles in the regeneration of cartilage. This paper describes the production by microfluidics of alginate-based microfibers containing both extracellular matrix (ECM)-derived biomaterials and chondrocytes. As ECM components gelatin or decellularized urinary bladder matrix (UBM) were investigated. The effectiveness of the composite microfibers has been tested to modulate the behavior and redifferentiation of dedifferentiated chondrocytes. The complete redifferentiation, at the single-cell level, of the chondrocytes, without cell aggregate formation, was observed after 14 days of cell culture. Specific chondrogenic markers and high cellular secretory activity was observed in embedded cells. Notably, no sign of collagen type 10 deposition was determined. The obtained data suggest that dedifferentiated chondrocytes regain a functional chondrocyte phenotype when embedded in appropriate 3D scaffold based on alginate plus gelatin or UBM. The proposed scaffolds are indeed valuable to form a cellular microenvironment mimicking the in vivo ECM, opening the way to their use in cartilage TE.

18.
J Cell Mol Med ; 21(9): 2236-2244, 2017 09.
Article En | MEDLINE | ID: mdl-28332281

We have previously demonstrated that collagen type XV (ColXV) is a novel bone extracellular matrix (ECM) protein. It is well known that the complex mixture of multiple components present in ECM can help both to maintain stemness or to promote differentiation of stromal cells following change in qualitative characteristics or concentrations. We investigated the possible correlation between ColXV expression and mineral matrix deposition by human mesenchymal stromal cells (hMSCs) with different osteogenic potential and by osteoblasts (hOBs) that are able to grow in culture medium with or without calcium. Analysing the osteogenic process, we have shown that ColXV basal levels are lower in cells less prone to osteo-induction such as hMSCs from Wharton Jelly (hWJMSCs), compared to hMSCs that are prone to osteo-induction such as those from the bone marrow (hBMMSCs). In the group of samples identified as 'mineralized MSCs', during successful osteogenic induction, ColXV protein continued to be detected at substantial levels until early stage of differentiation, but it significantly decreased and then disappeared at the end of culture when the matrix formed was completely calcified. The possibility to grow hOBs in culture medium without calcium corroborated the results obtained with hMSCs demonstrating that calcium deposits organized in a calcified matrix, and not calcium 'per se', negatively affected ColXV expression. As a whole, our data suggest that ColXV may participate in ECM organization in the early-phases of the osteogenic process and that this is a prerequisite to promote the subsequent deposition of mineral matrix.


Collagen/metabolism , Osteogenesis , Calcification, Physiologic , Extracellular Matrix/metabolism , Humans , Osteoblasts/metabolism
19.
Stem Cells ; 34(7): 1801-11, 2016 07.
Article En | MEDLINE | ID: mdl-26930142

There is a growing demand for the development of experimental strategies for efficient articular cartilage repair. Current tissue engineering-based regenerative strategies make use of human mesenchymal stromal cells (hMSCs). However, when implanted in a cartilage defect, control of hMSCs differentiation toward the chondrogenic lineage remains a significant challenge. We have recently demonstrated that silencing the antichondrogenic regulator microRNA-221 (miR-221) was highly effective in promoting in vitro chondrogenesis of monolayered hMSCs in the absence of the chondrogenic induction factor TGF-ß. Here we investigated the feasibility of this approach first in conventional 3D pellet culture and then in an in vivo model. In pellet cultures, we observed that miR-221 silencing was sufficient to drive hMSCs toward chondrogenic differentiation in the absence of TGF-ß. In vivo, the potential of miR-221 silenced hMSCs was investigated by first encapsulating the cells in alginate and then by filling a cartilage defect in an osteochondral biopsy. After implanting the biopsy subcutaneously in nude mice, we found that silencing of miR-221 strongly enhanced in vivo cartilage repair compared to the control conditions (untreated hMSCs or alginate-only). Notably, miR-221 silenced hMSCs generated in vivo a cartilaginous tissue with no sign of collagen type X deposition, a marker of undesired hypertrophic maturation. Altogether our data indicate that silencing miR-221 has a prochondrogenic role in vivo, opening new possibilities for the use of hMSCs in cartilage tissue engineering. Stem Cells 2016;34:1801-1811.


Cartilage/pathology , Chondrogenesis , Gene Silencing , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Wound Healing , Animals , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Humans , Mice, Nude , MicroRNAs/genetics , Models, Biological , Regeneration
20.
Life Sci ; 152: 82-93, 2016 May 01.
Article En | MEDLINE | ID: mdl-27015789

AIMS: We aimed to establish a 3D osteoblasts/osteoclasts co-culture system requiring limited amounts of human primary cells and useful as platform to 1. recapitulate an "oral bone microenvironment" in healthy or pathological condition, and 2. produce potential implantable cell constructs for regeneration of jawbone which can be negatively affected by bisphosphonates (BPs). MAIN METHODS: Osteoblasts from normal bone chips (hOBs) or from jawbone of patients taking BPs (hnOBs) were co-cultured with monocytes (hMCs) either in static (3D-C) or dynamic (3D-DyC) condition using the RCCS-4™ bioreactor for 3weeks. Cell aggregates were characterized for viability, histological features and specific osteoclastic and osteogenic markers. KEY FINDINGS: In all tested conditions hOBs supported the formation of mature osteoclasts (hOCs), without differentiating agents or exogenous scaffolds. 3D-DyC condition associated with a ground based condition (Xg) rather than modeled microgravity (µXg) produced aggregates with high level of osteogenic markers including Osteopontin (OPN), Osterix (OSX), Runx2 and appreciable bone mineral matrix. hnOBs co-cultured with hMCs in 3D-Dyc/Xg condition generated OPN and mineral matrix positive aggregates. SIGNIFICANCE: We optimized a 3D co-culture system with a limited amount of cells preserving viability and functionality of bone cellular components and generating bone-like aggregates also by using cells from jawbone necrotic tissue. The feasibility to obtain from poor-quality bone sites viable osteoblasts able to form aggregates when co-cultured with hMCs, allows to study the development of autologous implantable constructs to overcome jawbone deficiency in patients affected by MRONJ (Medication-Related Osteonecrosis of the Jaws).


Jaw/cytology , Osteoblasts/physiology , Osteoclasts/physiology , Aged , Aged, 80 and over , Biomarkers/metabolism , Bone Density Conservation Agents/pharmacology , Bone and Bones/cytology , Cell Survival/drug effects , Coculture Techniques , Diphosphonates/pharmacology , Environment , Female , Humans , Male , Mandible/cytology , Middle Aged , Monocytes/drug effects , Necrosis , Osteoblasts/drug effects , Osteoclasts/drug effects , Weightlessness
...