Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 15(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786919

ABSTRACT

Trioza erytreae (Del Guercio, 1918) (Hemiptera: Triozidae) is a citrus pest which produces gall symptoms on leaves and transmits bacteria associated with the citrus disease Huanglongbing, 'Candidatus Liberibacter' spp. In the present work, the biology and behaviour of T. erytreae were studied in different rootstock-cultivar combinations. Six rootstocks were used, Flying dragon (FD), 'Cleopatra' mandarin (CL), Carrizo citrange (CC), Forner-Alcaide no.5 (FA5), Forner-Alcaide no.517 (FA517) and Citrus macrophylla (CM), and six scion cultivars: 'Star Ruby', 'Clemenules', 'Navelina', 'Valencia Late', 'Fino 49' and 'Ortanique'. Survival and oviposition were evaluated in a no-choice trial, and preference in a choice trial, all of them under greenhouse conditions. Trioza erytreae did not show a clear settle preference for any citrus combination. However, it was able to lay more eggs in 'Fino 49' grafted on CC than on FD. In terms of survival, 'Ortanique' grafted onto FA5 was more suitable than when grafted onto FA517, and in the case of 'Valencia Late', when it was grafted onto CM rather than CC. Our results showed that T. erytreae behave differently depending on the citrus combination.

2.
Plants (Basel) ; 11(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36501427

ABSTRACT

Citrus is one of the most important fruit crops in Mediterranean countries such as Spain, which is one of the main citrus-producing countries worldwide. Soil-borne pathogens, such as Rosellinia necatrix, are relevant limiting biotic factors in fruit trees, due to their tricky management. This fungus is a polyphagous plant pathogen with worldwide distribution, causing white root rot in woody crops, including citrus trees in Spain. The objective of this study was to evaluate the tolerance of new plant material against R. necatrix infection. Therefore, plants of 12 different citrus rootstocks were inoculated with one R. necatrix isolate. During the assay, and periodically, above-ground symptoms and chlorophyll content were evaluated. At the end of the experiment, leaf area and plant biomass measures were obtained. Rootstocks B11R5T64 and B11R5T60 achieved the lowest disease incidence of symptoms and reduction of biomass, and were similar to their respective controls in chlorophyll content and leaf area. Carrizo citrange, CL-5146 and UFR-5 were the most affected rootstocks in symptoms and biomass reduction. This work provides information about R. necatrix-tolerant citrus rootstocks, which can constitute a new integrated, sustainable and effective long-term strategy to avoid white root rot.

3.
Insects ; 12(7)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34357282

ABSTRACT

Trioza erytreae (Del Guercio, 1918) (Hemiptera: Triozidae) is a vector of Candidatus Liberibacter spp., the causal agent of Huanglongbing disease (HLB). This study evaluates the preference of T. erytreae in different citrus seedlings. Thus, six different non-grafted citrus rootstocks were used for these experiments: (a) Carrizo citrange; (b) Citrus macrophylla; (c) 'Cleopatra' mandarin; (d) Forner-Alcaide No. 5; (e) Forner-Alcaide No. 517, and (f) Poncirus trifoliata ('Flying Dragon'). The behaviour and survival of this psyllid was evaluated through the feeding preference of T. erytreae adults for different rootstocks (in a choice trial under greenhouse conditions) and oviposition and survival of T. erytreae adults on the different citrus material (in a no-choice trial under laboratory conditions). Trioza erytreae showed a clear preference for hosting and feeding on C. macrophylla, and Carrizo citrange was the most suitable rootstock for insect reproduction and survival followed by C. macrophylla. Conversely, Poncirus trifoliata was the least attractive rootstock to T. erytreae adults in the greenhouse trial and led to significantly lower T. erytreae survival. Our results suggest that conventional citrus rootstocks, such as Carrizo citrange and C. macrophylla, could increase T. erytreae populations.

4.
Fungal Biol ; 125(1): 69-76, 2021 01.
Article in English | MEDLINE | ID: mdl-33317778

ABSTRACT

Two isolates of Rosellinia necatrix (Rn118-8 and Rn480) have previously obtained from diseased avocado trees in commercial orchards of the coastal area in southern Spain. Rn118-8 and Rn480 have weak virulence on avocado plants, and are infected by R. necatrix hypovirus 2 (RnHV2). In this work, the possible biological effects of the hypovirus on R. necatrix were tested. First, RnHV2 was transmitted from each of Rn118-8 and Rn480 to a highly virulent, RnHV2-free isolate of R. necatrix (Rn400) through hyphal anastomosis, using zinc compounds which attenuate the mycelial incompatibility reactions and allow for horizontal virus transfer between vegetatively incompatible fungal strains. Next, we carried out an analysis of growth rate in vitro and a virulence test of these newly infected strains in avocado plants. We obtained five strains of Rn400 infected by RnHV2 after horizontal transmission, and showed some of them to have lower colony growth in vitro and lower virulence on avocado plants compared with virus-free Rn400. These results suggest that R. necatrix isolates infected by RnHV2 could be used as novel virocontrol agents to combat avocado white root rot.


Subject(s)
Ascomycota , Fungal Viruses , Ascomycota/pathogenicity , Ascomycota/virology , Fungal Viruses/physiology , Persea/microbiology , Plant Roots/microbiology , Spain
5.
Front Plant Sci ; 11: 308, 2020.
Article in English | MEDLINE | ID: mdl-32265961

ABSTRACT

The NPR1 gene encodes a key component of systemic acquired resistance (SAR) signaling mediated by salicylic acid (SA). Overexpression of NPR1 confers resistance to biotrophic and hemibiotrophic fungi in several plant species. The NPR1 gene has also been shown to be involved in the crosstalk between SAR signaling and the jasmonic acid-ethylene (JA/Et) pathway, which is involved in the response to necrotrophic fungi. The aim of this research was to generate transgenic olive plants expressing the NPR1 gene from Arabidopsis thaliana to evaluate their differential response to the hemibiotrophic fungus Verticillium dahliae and the necrotroph Rosellinia necatrix. Three transgenic lines expressing the AtNPR1 gene under the control of the constitutive promoter CaMV35S were obtained using an embryogenic line derived from a seed of cv. Picual. After maturation and germination of the transgenic somatic embryos, the plants were micropropagated and acclimated to ex vitro conditions. The level of AtNPR1 expression in the transgenic materials varied greatly among the different lines and was higher in the NPR1-780 line. The expression of AtNPR1 did not alter the growth of transgenic plants either in vitro or in the greenhouse. Different levels of transgene expression also did not affect basal endochitinase activity in the leaves, which was similar to that of control plants. Response to the hemibiotrophic pathogen V. dahliae varied with pathotype. All plants died by 50 days after inoculation with defoliating (D) pathotype V-138, but the response to non-defoliating (ND) strains differed by race: following inoculation with the V-1242 strain (ND, race 2), symptoms appeared after 44-55 days, with line NPR1-780 showing the lowest disease severity index. This line also showed good performance when inoculated with the V-1558 strain (ND, race 1), although the differences from the control were not statistically significant. In response to the necrotroph R. necatrix, all the transgenic lines showed a slight delay in disease development, with mean area under the disease progress curve (AUDPC) values 7-15% lower than that of the control.

SELECTION OF CITATIONS
SEARCH DETAIL
...