Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurooncol Adv ; 6(1): vdae008, 2024.
Article in English | MEDLINE | ID: mdl-38371226

ABSTRACT

Background: Low-grade gliomas (LGGs) represent children's most prevalent central nervous system tumor, necessitating molecular profiling to diagnose and determine the most suitable treatment. Developing highly sensitive screening techniques for liquid biopsy samples is particularly beneficial, as it enables the early detection and molecular characterization of tumors with minimally invasive samples. Methods: We examined CSF and plasma samples from patients with pilocytic astrocytoma (PA) using custom multiplexed droplet digital polymerase chain reaction (ddPCR) assays based on whole genome sequencing data. These assays included a screening test to analyze BRAF duplication and a targeted assay for the detection of patient-specific KIAA1549::BRAF fusion junction sequences or single nucleotide variants. Results: Our findings revealed that 5 out of 13 individual cerebrospinal fluid (CSF) samples tested positive for circulating tumor DNA (ctDNA). Among these cases, 3 exhibited the KIAA1549::BRAF fusion, which was detected through copy number variation (CNV) analysis (n = 1) or a fusion-specific probe (n = 2), while 1 case each displayed the BRAF V600E mutation and the FGFR1 N577K mutation. Additionally, a quantitative analysis of cell-free DNA (cfDNA) concentrations in PA CSF samples showed that most cases had low cfDNA levels, below the limit of detection of our assay (<1.9 ng). Conclusions: While CNV analysis of CSF samples from LGGs still has some limitations, it has the potential to serve as a valuable complementary tool. Furthermore, it can also be multiplexed with other aberrations, for example, to the BRAF V600 test, to provide important insights into the molecular characteristics of LGGs.

2.
NPJ Precis Oncol ; 8(1): 44, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388693

ABSTRACT

Midline CNS tumors are occasionally inaccessible for surgical biopsies. In these instances, cell-free DNA (cfDNA) may serve as a viable alternative for molecular analysis and identification of targetable mutations. Here, we report a young child with an inoperable brainstem tumor in whom a stereotactic biopsy was deemed unsafe. The tumor progressed on steroids and after radiotherapy the patient developed hydrocephalus and received a ventriculoperitoneal shunt. Droplet digital PCR analysis of cfDNA from an intraoperative cerebrospinal fluid liquid biopsy revealed a BRAF V600 mutation enabling targeted treatment with MEK and BRAF inhibitors. The patient, now on trametinib and dabrafenib for 1 year, has had substantial tumor volume regression and reduction of contrast enhancement on MRIs and is making remarkable clinical progress. This case highlights that in a subset of CNS tumors, access to liquid biopsy analysis may be crucial to identify actionable therapeutic targets that would otherwise go undiscovered.

3.
Cancers (Basel) ; 15(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37046633

ABSTRACT

Medulloblastoma is a malignant embryonal tumor of the central nervous system (CNS) that mainly affects infants and children. Prognosis is highly variable, and molecular biomarkers for measurable residual disease (MRD) detection are lacking. Analysis of cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) using broad genomic approaches, such as low-coverage whole-genome sequencing, has shown promising prognostic value. However, more sensitive methods are needed for MRD analysis. Here, we show the technical feasibility of capturing medulloblastoma-associated structural variants and point mutations simultaneously in cfDNA using multiplexed droplet digital PCR (ddPCR). Assay sensitivity was assessed with a dilution series of tumor in normal genomic DNA, and the limit of detection was below 100 pg of input DNA for all assays. False positive rates were zero for structural variant assays. Liquid biopsies (CSF and plasma, n = 47) were analyzed from 12 children with medulloblastoma, all with negative CSF cytology. MRD was detected in 75% (9/12) of patients overall. In CSF samples taken before or within 21 days of surgery, MRD was detected in 88% (7/8) of patients with localized disease and in one patient with the metastasized disease. Our results suggest that this approach could expand the utility of ddPCR and complement broader analyses of cfDNA for MRD detection.

4.
Front Oncol ; 12: 899325, 2022.
Article in English | MEDLINE | ID: mdl-35865473

ABSTRACT

Risk-adapted treatment in acute lymphoblastic leukemia (ALL) relies on genetic information and measurable residual disease (MRD) monitoring. In this proof of concept study, DNA from diagnostic bone marrow (BM) of six children with ALL, without stratifying genetics or central nervous system (CNS) involvement, underwent whole-genome sequencing (WGS) to identify structural variants (SVs) in the leukemic blasts. Unique sequences generated by SVs were targeted with patient-specific droplet digital PCR (ddPCR) assays. Genomic DNA (gDNA) from BM and cell-free DNA (cfDNA) from plasma and cerebrospinal fluid (CSF) were analyzed longitudinally. WGS with 30× coverage enabled target identification in all cases. Limit of quantifiability (LoQ) and limit of detection (LoD) for the ddPCR assays (n = 15) were up to 10-5 and 10-6, respectively. All targets were readily detectable in a multiplexed ddPCR with minimal DNA input (1 ng of gDNA) at a 10-1 dilution, and targets for half of the patients were also detectable at a 10-2 dilution. The level of MRD in BM at end of induction and end of consolidation block 1 was in a comparable range between ddPCR and clinical routine methods for samples with detectable residual disease, although our approach consistently detected higher MRD values for patients with B-cell precursor ALL. Additionally, several samples with undetectable MRD by flow cytometry were MRD-positive by ddPCR. In plasma, the level of leukemic targets decreased in cfDNA over time following the MRD level detected in BM. cfDNA was successfully extracted from all diagnostic CSF samples (n = 6), and leukemic targets were detected in half of these. The results suggest that our approach to design molecular assays, together with ddPCR quantification, is a technically feasible option for accurate MRD quantification and that cfDNA may contribute valuable information regarding MRD and low-grade CNS involvement.

SELECTION OF CITATIONS
SEARCH DETAIL
...