Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 74(2): 520-542, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36055563

ABSTRACT

Nature's vital, but notoriously inefficient, CO2-fixing enzyme Rubisco often limits the growth of photosynthetic organisms including crop species. Form I Rubiscos comprise eight catalytic large subunits and eight auxiliary small subunits and can be classified into two distinct lineages-'red' and 'green'. While red-type Rubiscos (Form IC and ID) are found in rhodophytes, their secondary symbionts, and certain proteobacteria, green-type Rubiscos (Form IA and IB) exist in terrestrial plants, chlorophytes, cyanobacteria, and other proteobacteria. Eukaryotic red-type Rubiscos exhibit desirable kinetic properties, namely high specificity and high catalytic efficiency, with certain isoforms outperforming green-type Rubiscos. However, it is not yet possible to functionally express a high-performing red-type Rubisco in chloroplasts to boost photosynthetic carbon assimilation in green plants. Understanding the molecular and evolutionary basis for divergence between red- and green-type Rubiscos could help us to harness the superior CO2-fixing power of red-type Rubiscos. Here we review our current understanding about red-type Rubisco distribution, biogenesis, and sequence-structure, and present opportunities and challenges for utilizing red-type Rubisco kinetics towards crop improvements.


Subject(s)
Ribulose-Bisphosphate Carboxylase , Viridiplantae , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Carbon Dioxide/metabolism , Chloroplasts/metabolism , Photosynthesis , Viridiplantae/metabolism , Kinetics
2.
Mycorrhiza ; 32(5-6): 465-480, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36210381

ABSTRACT

The south Florida pine rocklands is a critically endangered, fire-dependent ecosystem dominated by the overstory tree Pinus densa (South Florida slash pine). Because pine recruitment in this ecosystem has proven problematic, restoration efforts need to include replanting slash pine trees. Even though ectomycorrhizal fungi are known to be critical symbionts of young pines and are necessary for the development of healthy pines, virtually nothing is known about these mutualists and their role in pine establishment and survival in the pine rocklands. One approach to improve pine establishment is to grow seedlings in a nursery before outplanting, facilitating early associations with ectomycorrhizae, and therefore improving seedling health. In this study, we compared health metrics (height, stem diameter, final needle length, root length, root colonization, needle greenness, root volume, and root:shoot ratio) of seedlings grown in soil amended with five commercially available mycorrhizal inocula versus field soil collected from three pine rockland fragments. Seedlings grown with native field soil from the pine rocklands generally performed better than those grown with commercial inoculum in all metrics except root length. According to their labels, each commercial inoculum contained between 4 and 10 ectomycorrhizal fungi species. However, no ectomycorrhizal fungi were recovered from two of the inoculum products and only three ectomycorrhizal fungi in total were recovered from the other three products. In contrast, seedlings grown with field soil are associated with ten ectomycorrhizal species. Our results highlight the importance of incorporating native ectomycorrhizal fungi into pine seedling replanting as part of restoration efforts in the pine rocklands.


Subject(s)
Mycorrhizae , Pinus , Ecosystem , Pinus/microbiology , Seedlings/microbiology , Soil
3.
New Phytol ; 231(4): 1449-1461, 2021 08.
Article in English | MEDLINE | ID: mdl-33959967

ABSTRACT

Two natural auxins, phenylacetic acid (PAA) and indole-3-acetic acid (IAA), play crucial roles in plant growth and development. One route of IAA biosynthesis uses the glucosinolate intermediate indole-3-acetaldoxime (IAOx) as a precursor, which is thought to occur only in glucosinolate-producing plants in Brassicales. A recent study showed that overproducing phenylacetaldoxime (PAOx) in Arabidopsis increases PAA production. However, it remains unknown whether this increased PAA resulted from hydrolysis of PAOx-derived benzyl glucosinolate or, like IAOx-derived IAA, is directly converted from PAOx. If glucosinolate hydrolysis is not required, aldoxime-derived auxin biosynthesis may occur beyond Brassicales. To better understand aldoxime-derived auxin biosynthesis, we conducted an isotope-labelled aldoxime feeding assay using an Arabidopsis glucosinolate-deficient mutant sur1 and maize, and transcriptomics analysis. Our study demonstrated that the conversion of PAOx to PAA does not require glucosinolates in Arabidopsis. Furthermore, maize produces PAA and IAA from PAOx and IAOx, respectively, indicating that aldoxime-derived auxin biosynthesis also occurs in maize. Considering that aldoxime production occurs widely in the plant kingdom, aldoxime-derived auxin biosynthesis is likely to be more widespread than originally believed. A genome-wide transcriptomics study using PAOx-overproduction plants identified complex metabolic networks among IAA, PAA, phenylpropanoid and tryptophan metabolism.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Indoleacetic Acids , Oximes , Zea mays/genetics
4.
Plant Direct ; 5(12): e372, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34977451

ABSTRACT

Scutellaria is a genus of plants containing multiple species with well-documented medicinal effects. S. baicalensis and S. barbata are among the best-studied Scutellaria species, and previous works have established flavones to be the primary source of their bioactivity. Recent genomic and biochemical studies with S. baicalensis and S. barbata have advanced our understanding of flavone biosynthesis in Scutellaria. However, as over several hundreds of Scutellaria species occur throughout the world, flavone biosynthesis in most species remains poorly understood. In this study, we analyzed organ-specific flavone profiles of seven Scutellaria species, including S. baicalensis, S. barbata, and two species native to the Americas (S. wrightii to Texas and S. racemosa to Central and South America). We found that the roots of almost all these species produce only 4'-deoxyflavones, while 4'-hydroxyflavones are accumulated exclusively in their aerial parts. On the other hand, S. racemosa and S. wrightii also accumulated high levels of 4'-deoxyflavones in their aerial parts, different with the flavone profiles of S. baicalensis and S. barbata. Furthermore, our metabolomics and NMR study identified the accumulation of isoscutellarein 8-O-ß-glucuronopyranoside, a rare 4'-hydroxyflavone, in the stems and leaves of several Scutellaria species including S. baicalensis and S. barbata, but not in S. racemosa and S. wrightii. Distinctive organ-specific metabolite profiles among Scutellaria species indicate the selectivity and diverse physiological roles of flavones.

5.
Appl Plant Sci ; 7(11): e11301, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31832283

ABSTRACT

PREMISE: When plants are exposed to stress conditions, irreversible damage can occur, negatively impacting yields. It is therefore important to detect stress symptoms in plants, such as the accumulation of anthocyanin, as early as possible. METHODS AND RESULTS: Twenty-two regression models in five color spaces were trained to develop a prediction model for plant anthocyanin levels from digital color imaging data. Of these, a quantile random forest regression model trained with standard red, green, blue (sRGB) color space data most accurately predicted the actual anthocyanin levels. This model was then used to noninvasively monitor the spatial and temporal accumulation of anthocyanin in Arabidopsis thaliana leaves. CONCLUSIONS: The digital imaging-based nature of this protocol makes it a low-cost and noninvasive method for the detection of plant stress. Applying a similar protocol to more economically viable crops could lead to the development of large-scale, cost-effective systems for monitoring plant health.

SELECTION OF CITATIONS
SEARCH DETAIL
...