Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 15(20)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36295279

ABSTRACT

This is the first investigation of yttrium (Y) and erbium (Er) co-doped hydroxyapatite (HAp) structures, conducted using theoretical and experimental procedures. By using a wet chemical method, the materials were synthesized by varying the concentration of Y amounts of 0.13, 0.26, 0.39, 0.52, 0.65, and 0.78 at.% every virtual 10 atoms of calcium, whereas Er was kept fixed at 0.39 at.%. Spectroscopic, thermal, and in vitro biocompatibility testing were performed on the generated samples. Theoretical calculations were carried out to compute the energy bandgap, density of states, and linear absorption coefficient. The effects of Y concentration on thermal, morphological, and structural parameters were investigated in detail. Raman and Infrared (FTIR) spectroscopies confirmed the formation of the HAp structure in the samples. Theoretical investigations indicated that the increasing amount of Y increased the density from 3.1724 g cm-3 to 3.1824 g cm-3 and decreased the bandgap energy from 4.196 eV to 4.156 eV, except for the sample containing 0.39 at. % of the dopant, which exhibited a decrease in the bandgap. The values of linear absorption appeared reduced with an increase in photon energy. The samples exhibited cell viability higher than 110%, which revealed excellent biocompatibility for biological applications of the prepared samples.

2.
Mater Sci Eng C Mater Biol Appl ; 55: 538-46, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26117787

ABSTRACT

The objective of this study is to present a detailed report related to the synthesis and characterization of strontium substituted hydroxyapatites. Based on this purpose, hydroxyapatite (HAp) bioceramics with different amounts of strontium (e.g., 0, 0.45, 0.90, 1.35, 1.80 and 2.25 at.%) were prepared using a sol-gel method. The effects of Sr substitution on the structural properties and biocompatibility of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques, in vitro and in vivo tests. All the samples composed of the nanoparticles ranging from 21 to 27 nm. The presence of Sr at low levels influenced the crystal size, crystallinity degree, lattice parameters and volume of the unit cell of the HAp. Both in vitro conditions and soaking period in simulated body fluid (SBF) significantly affected these properties. Especially, the (Ca+Sr)/P molar ratio gradually decreases with increasing soaking period in SBF. Animal experiments revealed the bone formation and osseointegration for all samples, and as compared with other groups, more reasonable, were observed for the sample with the lowest Sr content.


Subject(s)
Durapatite/chemistry , Strontium/chemistry , Animals , Crystallography, X-Ray , Male , Microscopy, Electron, Scanning , Molecular Structure , Rabbits , Spectroscopy, Fourier Transform Infrared
3.
Mater Sci Eng C Mater Biol Appl ; 46: 118-24, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25491967

ABSTRACT

Hydroxyapatite (HAp) samples were synthesized under various amounts of citric acid using the sol-gel method. Before and after immersion in simulated body fluid (SBF) for 14 and 28 days, the structural properties of HAp samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy with energy dispersive X-ray (EDX) spectroscopy and dielectric measurements. The crystallite size (D) was found to be in the range of 25.17-33.06 nm with the crystallinity percent (XC%) of 69.53-86.09. The lattice parameters of a and c were calculated to be in the ranges of 9.373-9.434 Å and 6.828-6.896 Å, respectively. The morphology of the as-synthesized samples was changed with the amount of citric acid and soaking period in SBF. The Ca/P molar ratios indicated a decrease with increasing immersion time, and Ca-deficiency was observed. The relative permittivity (ε') and dielectric loss (ε″) were significantly affected by citric acid content and soaking period in SBF. It was seen that the alternating current conductivity (σac) increased with increasing frequency and the σac values changed with increasing soaking period and amount of citric acid.


Subject(s)
Durapatite/chemistry , Models, Biological , Calcium , Citric Acid , Electric Conductivity , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction
4.
Mater Sci Eng C Mater Biol Appl ; 47: 333-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25492204

ABSTRACT

Hydroxyapatite (HAp) samples doped with 0, 2 and 4 at.% of yttrium (Y) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy attached with energy dispersive X-ray (EDX) spectroscopy, antimicrobial activity tests and dielectric studies. The hydroxyl groups observed in FTIR spectra confirmed the formation of HAp phase in the studied samples. The crystallite size, crystallinity degree and lattice parameters of the samples were changed with Y content. The volume of the unit cell was gradually decreased with the addition of Y. Undoped and Y-containing HAp samples were screened to determine their in vitro antimicrobial activities against the standard strains. It was found that no samples have any antimicrobial effect. The relative dielectric permittivity and dielectric loss are affected by Y content. While the alternating current conductivity increases with increasing frequency, it decreases with increasing Y content.


Subject(s)
Hydroxyapatites/chemistry , Yttrium/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Crystallization/methods , Microscopy, Electron, Scanning/methods , Spectrometry, X-Ray Emission/methods , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction/methods
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 129: 268-73, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-24747847

ABSTRACT

The hydroxyapatite (HAp) samples in the presence of various amounts of ethylenediamine tetraacetic acid (EDTA) were prepared by sol-gel method. The effects of EDTA on the crystallinity, phase structure, chemical, micro-structural and dielectric properties of HAp samples were investigated. With the addition of EDTA, the average crystallite size of the HAp samples is gradually decreased from 30 to 22 nm and the crystallinity is in the range of 65-71%. The values of the lattice parameters (a and c) and volume of the unit cell are decreased by stages with the addition of EDTA. The dielectric parameters such as relative permittivity, dielectric loss and relaxation time are affected by the adding of EDTA. The alternating current conductivity of the as-synthesized hydroxyapatites increases with the increasing frequency and obeys the universal power law behavior. The HAp samples exhibit a non-Debye relaxation mechanism. The obtained results that the dielectrical parameters of the HAp sample can be controlled by EDTA.


Subject(s)
Bone Substitutes/chemistry , Durapatite/chemistry , Edetic Acid/chemistry , Crystallization , Electric Conductivity , Phase Transition
6.
Mater Sci Eng C Mater Biol Appl ; 35: 239-44, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24411374

ABSTRACT

The synthesis and characterization of sol-gel derived hydroxyapatite (HAp) were investigated with the effects of the addition of polyvinyl alcohol (PVA) to the structural and material in vitro behavior. All samples were soaked in simulated body fluid (SBF) for 14 and 28 days. The characterization of bioceramics before and after immersing in SBF was carried out by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, differential thermal analysis (DTA), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) techniques. After the simulated body fluid period, the crystal structure and phase of HAp samples did not change significantly. The characteristic bands of hydroxyl, phosphate and carbonate groups were detected. HAp exhibited a thermal stability of room temperature to 1000 °C. The surface morphologies of the samples show an evident change with the soaking period in SBF.


Subject(s)
Body Fluids/chemistry , Bone Substitutes/chemical synthesis , Durapatite/chemistry , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Polyvinyl Alcohol/chemistry , Biomimetic Materials/chemistry , Humans , Materials Testing , Molecular Conformation , Particle Size , Phase Transition , Surface Properties , Thermal Conductivity
SELECTION OF CITATIONS
SEARCH DETAIL