Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Radiat Prot Dosimetry ; 200(11-12): 1127-1131, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016504

ABSTRACT

Coal based thermal power plants contribute about ~ 72% of the power generation in India. Indian coal is of bituminous type, having a high ash content with 55-60% ash. Due to considerable environmental importance the collected fly ash has become a subject of worldwide interest in recent years. In the present study radon exhalation rate and the activity concentration of 226Ra, 232Th and 40K radionuclides in fly ash samples from Kasimpur Thermal Power Plant, Aligarh, Uttar Pradesh, India have been measured by 'Sealed Can technique' using LR-115 type II detectors and a low-level NaI (Tl)- based gamma-ray spectrometer, respectively. Radon exhalation rate has been found to vary from 57.1 ± 5.3 to 119.4 ± 7.7 mBq m-2 h-1 with an average value of 87.3 ± 5.8 mBq m-2 h-1. Activity concentration of 226Ra ranged from 20.0 ± 8.5 to 30.0 ± 9.7 Bq kg-1 with an average value 23.4 ± 9.0 Bq kg-1, 232Th ranged from 17.0 ± 9.9 to 69.0 ± 13.8 Bq kg-1 with an average value of 46.5 ± 12.1 Bq kg-1 and 40K ranged from 130.0 ± 7.2 to 332.0 ± 11.1 Bq kg-1 with an average value of 177.0 ± 8.1 Bq kg-1.


Subject(s)
Air Pollutants, Radioactive , Coal Ash , Radiation Dosage , Radiation Monitoring , Radium , Radon , Spectrometry, Gamma , Coal Ash/analysis , Radon/analysis , Radiation Monitoring/methods , Air Pollutants, Radioactive/analysis , India , Radium/analysis , Spectrometry, Gamma/methods , Power Plants , Thorium/analysis , Potassium Radioisotopes/analysis
2.
Microsc Microanal ; 25(6): 1442-1448, 2019 12.
Article in English | MEDLINE | ID: mdl-31134875

ABSTRACT

The difference in the defect structures produced by different ion masses in a tungsten lattice is investigated using 80 MeV Au7+ ions and 10 MeV B3+ ions. The details of the defects produced by ions in recrystallized tungsten foil samples are studied using transmission electron microscopy. Dislocations of type b = 1/2[111] and [001] were observed in the analysis. While highly energetic gold ion produced small clusters of defects with very few dislocation lines, boron has produced large and sparse clusters with numerous dislocation lines. The difference in the defect structures could be due to the difference in separation between primary knock-on atoms produced by gold and boron ions.

3.
Nanoscale Res Lett ; 8(1): 433, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24138985

ABSTRACT

We report the growth and characterization of uniform-sized nanoparticles of cobalt on n-type silicon (100) substrates by swift heavy ion (SHI) irradiation. The Co thin films of 25-nm thicknesses were grown by e-beam evaporation and irradiated with two different types of ions, 45-MeV Li3+ and 100-MeV O7+ ions with fluences ranging from 1 × 1011 to 1 × 1013 ions/cm2. SHI irradiation, with the beam rastered over the area of the film, resulted in the restructuring of the film into a dense array of Co nanostructures. Surface topography studied by atomic force microscopy revealed narrowed size distributions, with particle sizes ranging from 20 to 50 nm, formed through a self-organized process. Ion fluence-dependent changes in crystallinity of the Co nanostructures were determined by glancing angle X-ray diffraction. Rutherford backscattering spectroscopy analysis showed the absence of beam-induced mixing in this system. Surface restructuring and beam-induced crystallization are the dominant effects, with the nanoparticle size and density being dependent on the ion fluence. Results are analyzed in the context of molecular dynamics calculations of electron-lattice energy transfer.

SELECTION OF CITATIONS
SEARCH DETAIL