Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Immunol ; 199(4): 1382-1392, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28716827

ABSTRACT

Yersinia enterocolitica is an enteropathogenic bacterium that causes gastrointestinal disorders, as well as extraintestinal manifestations. To subvert the host's immune response, Y. enterocolitica uses a type III secretion system consisting of an injectisome and effector proteins, called Yersinia outer proteins (Yops), that modulate activation, signaling, and survival of immune cells. In this article, we show that galectin-1 (Gal-1), an immunoregulatory lectin widely expressed in mucosal tissues, contributes to Y. enterocolitica pathogenicity by undermining protective antibacterial responses. We found higher expression of Gal-1 in the spleen and Peyer's patches of mice infected orogastrically with Y. enterocolitica serotype O:8 compared with noninfected hosts. This effect was prevented when mice were infected with Y. enterocolitica lacking YopP or YopH, two critical effectors involved in bacterial immune evasion. Consistent with a regulatory role for this lectin during Y. enterocolitica pathogenesis, mice lacking Gal-1 showed increased weight and survival, lower bacterial load, and attenuated intestinal pathology compared with wild-type mice. These protective effects involved modulation of NF-κB activation, TNF production, and NO synthesis in mucosal tissue and macrophages, as well as systemic dysregulation of IL-17 and IFN-γ responses. In vivo neutralization of these proinflammatory cytokines impaired bacterial clearance and eliminated host protection conferred by Gal-1 deficiency. Finally, supplementation of recombinant Gal-1 in mice lacking Gal-1 or treatment of wild-type mice with a neutralizing anti-Gal-1 mAb confirmed the immune inhibitory role of this endogenous lectin during Y. enterocolitica infection. Thus, targeting Gal-1-glycan interactions may contribute to reinforce antibacterial responses by reprogramming innate and adaptive immune mechanisms.


Subject(s)
Galectin 1/metabolism , Host-Pathogen Interactions , Yersinia Infections/immunology , Yersinia enterocolitica/immunology , Animals , Bacterial Load , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Galectin 1/antagonists & inhibitors , Galectin 1/genetics , Galectin 1/immunology , Interferon-gamma/blood , Interferon-gamma/immunology , Interleukin-17/blood , Interleukin-17/immunology , Intestines/immunology , Intestines/microbiology , Intestines/pathology , Mice , NF-kappa B/metabolism , Nitric Oxide/biosynthesis , Peyer's Patches/immunology , Peyer's Patches/microbiology , Peyer's Patches/pathology , Protein Tyrosine Phosphatases/deficiency , Protein Tyrosine Phosphatases/genetics , Spleen/immunology , Spleen/microbiology , Tumor Necrosis Factor-alpha/biosynthesis
2.
Infect Immun ; 84(11): 3172-3181, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27550935

ABSTRACT

Yersinia enterocolitica evades the immune response by injecting Yersinia outer proteins (Yops) into the cytosol of host cells. YopH is a tyrosine phosphatase critical for Yersinia virulence. However, the mucosal immune mechanisms subverted by YopH during in vivo orogastric infection with Y. enterocolitica remain elusive. The results of this study revealed neutrophil recruitment to Peyer's patches (PP) after infection with a YopH-deficient mutant strain (Y. enterocolitica ΔyopH). While the Y. enterocolitica wild-type (WT) strain in PP induced the major neutrophil chemoattractant CXCL1 mRNA and protein levels, infection with the Y. enterocolitica ΔyopH mutant strain exhibited a higher expression of the CXCL1 receptor, CXCR2, in blood neutrophils, leading to efficient neutrophil recruitment to the PP. In contrast, migration of neutrophils into PP was impaired upon infection with Y. enterocolitica WT strain. In vitro infection of blood neutrophils revealed the involvement of YopH in CXCR2 expression. Depletion of neutrophils during Y. enterocolitica ΔyopH infection raised the bacterial load in PP. Moreover, the clearance of WT Y. enterocolitica was improved when an equal mixture of Y. enterocolitica WT and Y. enterocolitica ΔyopH strains was used in infecting the mice. This study indicates that Y. enterocolitica prevents early neutrophil recruitment in the intestine and that the effector protein YopH plays an important role in the immune evasion mechanism. The findings highlight the potential use of the Y. enterocolitica YopH-deficient strain as an oral vaccine carrier.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Neutrophil Infiltration/physiology , Neutrophils/cytology , Peyer's Patches/cytology , Yersinia Infections/immunology , Yersinia enterocolitica/pathogenicity , Animals , Bacterial Load , Bacterial Outer Membrane Proteins/genetics , Chemokines, CXC/metabolism , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/metabolism , Receptors, Chemokine/metabolism , Virulence/physiology , Yersinia Infections/metabolism , Yersinia Infections/microbiology , Yersinia enterocolitica/immunology
SELECTION OF CITATIONS
SEARCH DETAIL