Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Health Serv Res ; 24(1): 320, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38462610

ABSTRACT

BACKGROUND: Translating research, achieving impact, and assessing impact are important aspirations for all research collaboratives but can prove challenging. The Hunter Cancer Research Alliance (HCRA) was funded from 2014 to 2021 to enhance capacity and productivity in cancer research in a regional centre in Australia. This study aimed to assess the impact and benefit of the HCRA to help inform future research investments of this type. METHOD: The Framework to Assess the Impact from Translational health research (FAIT) was selected as the preferred methodology. FAIT incorporates three validated methodologies for assessing impact: 1) Modified Payback; 2) Economic Analysis; and 3) Narrative overview and case studies. All three FAIT methods are underpinned by a Program Logic Model. Data were collected from HCRA and the University of Newcastle administrative records, directly from HCRA members, and website searches. RESULTS: In addition to advancing knowledge and providing capacity building support to members via grants, fellowships, scholarships, training, events and targeted translation support, key impacts of HCRA-member research teams included: (i) the establishment of a regional biobank that has distributed over 13,600 samples and became largely self-sustaining; (ii) conservatively leveraging $43.8 M (s.a.$20.5 M - $160.5 M) in funding and support from the initial $9.7 M investment; (iii) contributing to clinical practice guidelines and securing a patent for identification of stem cells for endometrial cell regeneration; (iv) shifting the treatment paradigm for all tumour types that rely on nerve cell innervation, (v) development and implementation of the world's first real-time patient treatment verification system (Watchdog); (vi) inventing the effective 'EAT' psychological intervention to improve nutrition and outcomes in people experiencing radiotherapy for head and neck cancer; (vi) developing effective interventions to reduce smoking rates among priority groups, currently being rolled out to disadvantaged populations in NSW; and (vii) establishing a Consumer Advisory Panel and Consumer Engagement Committee to increase consumer involvement in research. CONCLUSION: Using FAIT methodology, we have demonstrated the significant impact and downstream benefits that can be achieved by the provision of infrastructure-type funding to regional and rural research collaboratives to help address inequities in research activity and health outcomes and demonstrates a positive return on investment.


Subject(s)
Neoplasms , Translational Research, Biomedical , Humans , Program Evaluation/methods , Australia , Translational Science, Biomedical , Neoplasms/therapy
2.
J Pathol ; 262(4): 480-494, 2024 04.
Article in English | MEDLINE | ID: mdl-38300122

ABSTRACT

Phyllodes tumours (PTs) are rare fibroepithelial lesions of the breast that are classified as benign, borderline, or malignant. As little is known about the molecular underpinnings of PTs, current diagnosis relies on histological examination. However, accurate classification is often difficult, particularly for distinguishing borderline from malignant PTs. Furthermore, PTs can be misdiagnosed as other tumour types with shared histological features, such as fibroadenoma and metaplastic breast cancers. As DNA methylation is a recognised hallmark of many cancers, we hypothesised that DNA methylation could provide novel biomarkers for diagnosis and tumour stratification in PTs, whilst also allowing insight into the molecular aetiology of this otherwise understudied tumour. We generated whole-genome methylation data using the Illumina EPIC microarray in a novel PT cohort (n = 33) and curated methylation microarray data from published datasets including PTs and other potentially histopathologically similar tumours (total n = 817 samples). Analyses revealed that PTs have a unique methylome compared to normal breast tissue and to potentially histopathologically similar tumours (metaplastic breast cancer, fibroadenoma and sarcomas), with PT-specific methylation changes enriched in gene sets involved in KRAS signalling and epithelial-mesenchymal transition. Next, we identified 53 differentially methylated regions (DMRs) (false discovery rate < 0.05) that specifically delineated malignant from non-malignant PTs. The top DMR in both discovery and validation cohorts was hypermethylation at the HSD17B8 CpG island promoter. Matched PT single-cell expression data showed that HSD17B8 had minimal expression in fibroblast (putative tumour) cells. Finally, we created a methylation classifier to distinguish PTs from metaplastic breast cancer samples, where we revealed a likely misdiagnosis for two TCGA metaplastic breast cancer samples. In conclusion, DNA methylation alterations are associated with PT histopathology and hold the potential to improve our understanding of PT molecular aetiology, diagnostics, and risk stratification. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Breast Neoplasms , Fibroadenoma , Phyllodes Tumor , Humans , Female , Phyllodes Tumor/diagnosis , Phyllodes Tumor/genetics , Phyllodes Tumor/pathology , DNA Methylation , Fibroadenoma/diagnosis , Fibroadenoma/genetics , Fibroadenoma/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast/pathology
SELECTION OF CITATIONS
SEARCH DETAIL